Top Banner
Portfolio of Designs and Projects Created By Scott Qualkenbush
16

Portfolio of Designs and Projects

Apr 12, 2017

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Portfolio of Designs and Projects

                 

Portfolio  of  Designs  and  Projects      

Created  By  Scott  Qualkenbush    

   

Page 2: Portfolio of Designs and Projects

  1  

Table  of  Contents    Solid  Fuel  Rocket  Motor  Project  with  Associated  Equipment  …………………………………………p-­‐2    Designing  for  Fun  …………………………………………………………………………………………………...……p-­‐5       Foldable  Tennis  Ball  Launcher…………………………………………………………………………..p-­‐5       Precision  Tennis  Ball  Launcher……………………………………………………………...…………..p-­‐6       Combustion  Powered  Tennis  Ball  Repeater  Cannon……………………….…………………..p-­‐7       In  Ceiling  5-­‐Gallon  Multi-­‐Tank  Water  Reservoir  for  Keurig…………………………..……..p-­‐8       Non-­‐Destructive  Clip-­‐Lamp  Hanging  Fixture………………………………………………….…..p-­‐9       Heavy-­‐Duty  3D  Scanner…………………………………………………………………………….….....p-­‐10       Slim  Ratchet  Mechanism  with  Four-­‐Position  Toggle……………………………………..…..p-­‐11    Patents  Pending……………………………………………………………………………………………….…………p-­‐13       Efficient  Desalination  Technology……………………………………………………………..……..p-­‐13       Novel  Dry-­‐Erase  Eraser  /  Marker  Holder…………………………………………….........……..p-­‐14       Temperature  Foresight  Technology……………………………………………………………..…..p-­‐15      

Page 3: Portfolio of Designs and Projects

  2  

Solid  Fuel  Rocket  Motor  Project  with  Associated  Equipment       I  began  a  personal  project  in  2011  with  the  end  goal  of  manufacturing  my  own  solid  fuel  rocket  motors,  for  less  then  commercial  prices.  After  performing  extensive  research  about  solid  fuel  rocket  motors,  I  gained  a  greater  understanding  of  how  and  why  they  worked.  I  tested  several  fuel  formulations  and  engine  component  materials  before  deciding  on  my  prototype  design.  From  this  point,  I  built  tooling  that  allowed  me  to  construct  engines  and  test  them.  After  several  rounds  of  prototype  tests  and  consecutive  redesigns,  I  was  able  to  successfully  develop  3  classes  of  motors  and  the  associated  tooling  to  manufacture  them.    

Below,  you  can  see  my  first  prototype  design  sketch  in  Figure  1.  Figure  2  depicts  an  altitude  measurement  device  that  I  fabricated  using  a  crossbow  frame,  protractor,  pendulum,  and  winch  mechanism  to  lock  the  pendulum  on  the  final  altitude  angle.  Figure  3  is  a  test  stand  I  built  for  static  engine  tests  in  order  to  analyze  the  thrust  profiles  of  the  motors.  Figure  4  is  a  prototype  Electromagnetic  Rail  Assisted  Launch  Device  (EMRALD)  I  built  for  testing  purposes  with  the  intent  of  using  future  designs  to  augment  rocket  launches.  

A  two-­‐minute  video  highlighting  the  projects  progress  including  fuel  tests,  core  tests,  static  tests,  and  flight  tests  can  be  found  on  YouTube  by  following  this  link:  http://youtu.be/jEMeUA5hJJg    

 Figure  1:  Prototype  1  –  Solid  fuel  rocket  motor  

Page 4: Portfolio of Designs and Projects

  3  

 

 Figure  2:  Fabricated  altimeter  -­‐  For  flight  performance  analysis  

   

 Figure  3:  Fabricated  thrust  analysis  test  stand  

 

Page 5: Portfolio of Designs and Projects

  4  

 Figure  4:  Electromagnetic  Rail  Assisted  Launch  Device  (EMRALD)  prototype  

   

Page 6: Portfolio of Designs and Projects

  5  

Designing  for  Fun    

  Frequently,  I  am  presented  with  problems  and  situations  in  life  that  require  a  bit  of  design  work  and  tinkering.  Below,  I  have  included  a  few  images  of  these  projects.    

 Figure  5:  Foldable  tennis  ball  launcher  (65+  yards)  

    Figure  5  is  a  foldable  tennis  ball  launcher,  which  can  be  fired  at  variable  vertical  angles.  The  range  of  the  device  is  between  10  and  65+  yards  depending  on  the  angle  from  which  the  tennis  ball  is  launched.    

The  innovative  aspect  about  this  device  is  it’s  foldable  arms.  We  were  tasked  with  building  a  device  that  could  fit  within  a  3’x3’x3’  space;  however,  the  device  did  not  need  adhere  to  this  guideline  during  its  operation.  I  quite  literally  thought  outside  the  box  for  this  design  and  added  foldable  arms  to  increase  its  power.  Needless  to  say,  we  placed  first  in  the  distance  part  of  the  competition.     If  I  were  to  redesign  this  contraption  I  would  have  added  a  function  to  variably  adjust  the  height  of  the  back  end  of  the  device  pivoting  on  the  front.  This  would  have  allowed  us  to  hit  the  targets  at  multiple  distances  with  much  greater  accuracy  instead  of  adjusting  the  triggering  location  on  the  central  beam.    

 

Page 7: Portfolio of Designs and Projects

  6  

 Figure  6:  Precision  tennis  ball  launcher  

    Figure  6  is  a  precision  tennis  ball  launcher  capable  of  finite  angle-­‐of-­‐fire  adjustments  in  the  horizontal  and  vertical  planes.  The  power  of  the  shot  can  also  be  adjusted  depending  on  how  many  clicks  the  winch  is  wound  up.    Thus,  the  range  of  this  device  is  between  1  to  45  feet.       My  team  placed  third  among  the  finalists.  The  design  was  easily  capable  of  taking  first  place.  However,  during  the  final  round,  the  linkage  between  the  surgical  tubing  and  the  slider  got  in  the  way  of  the  balls  trajectory  upon  release.  If  I  were  to  redo  this  project  I  would  insist  that  my  team  spend  more  time  on  testing  and  analyzing  the  design  for  possible  failure  modes.     My  project  group  created  a  short  1m  40s  video  of  the  project  design  process,  build,  and  operation.    Though  I  was  responsible  for  the  primary  design  of  the  machine,  I  worked  in  a  team  to  model  and  build  the  launcher.  The  video  can  be  found  on  YouTube  using  the  following  link:  http://youtu.be/q55BCgVFKLo    

Page 8: Portfolio of Designs and Projects

  7  

 Figure  7:  Combustion  powered  tennis  ball  repeater  cannon  

    Figure  7  depicts  a  design  I  made  for  a  multi-­‐shot  Ether  powered  tennis  ball  cannon.  By  pulling  the  loading  handle  on  the  top  of  the  cannon  back,  a  new  tennis  ball  is  loaded  while  the  combustion  chamber  is  filled  with  Ether.    When  the  loading  handle  is  pushed  forward,  the  tennis  ball  is  seated  and  the  trigger  is  armed.  The  trigger  is  a  simple  electronic  sparking  device  such  as  those  found  in  electronic  lighters.       My  friend  made  a  Pokémon  ball  launcher  for  a  Halloween  costume  and  shared  a  picture;  15  minutes  later  I  finished  this  design  in  Paint,  on  my  computer,  to  show  him  a  ball  launcher  with  some  oomph.  I  never  built  this  design  nor  do  I  intend  to;  at  least  not  after  analyzing  it’s  feasibility  and  structural  integrity  to  include  very  healthy  margins  of  safety,  because  of  the  danger  it  could  pose  to  a  user  or  surrounding  persons.  I  told  him  as  much  and  made  sure  he  understood  the  danger  of  such  a  design.    

Page 9: Portfolio of Designs and Projects

  8  

 Figure  8:  Discrete  (above  ceiling)  5-­‐gallon  multi  tank  water  reservoir  

    Figure  8  is  a  picture  I  took  of  my  Keurig  set-­‐up  after  installing  a  5-­‐gallon  multi  tank  water  reservoir  above  my  ceiling.  I  adapted  my  design  to  take  advantage  of  existing  sturdy  support  structures.  I  chose  the  tubing  size  so  that  I  can  open  the  flow  valve  at  the  beginning  of  the  brewing  process  and  shut  it  when  the  cup  is  done  brewing;  during  that  time,  the  water  used  to  make  my  beverage  is  100%  replaced.  The  refilling  tank  operates  on  the  basic  principle  of  siphoning.  I  have  saved  myself  quite  a  bit  of  time  by  utilizing  this  design  instead  of  just  refilling  the  included  reservoir  every  4  cups.      

Page 10: Portfolio of Designs and Projects

  9  

   

 Figure  9:  Sketch  of  non-­‐destructive  clip-­‐lamp  hanging  fixture  

 

 Figure  10:  Fabricated  clip-­‐lamp  part  with  lamp  attached    

    I  was  disappointed  with  the  lighting  in  my  dorm  room.  The  best  locations  to  add  lights  were  in  the  corners  between  the  walls  and  ceiling  (see  Figure  8  for  reference).  However,  we  are  not  allowed  to  make  and  holes  in  our  walls  for  any  reason.  Therefore,  I  inspected  the  ceiling  tiles  and  the  suspension  system  and  determined  that  I  could  fabricate  a  fixture  to  do  the  trick.  Figure  9  shows  the  design  that  I  came  up  with  and  Figure  10  shows  the  part  that  I  made  with  a  lamp  clipped  on  it  for  reference.  I  ordered  the  brass  strip  on  McMaster  and  trimmed  it  with  my  Dermal.  Bending  was  tricky,  but  I  was  cautious  to  place  the  correct  bends  in  the  correct  locations;  I  also  ordered  an  extra  long  strip  of  brass  to  make  another  in  case  the  first  became  damaged.  It  worked  exactly  as  designed,  but  I  moved  out  of  my  room  before  I  could  take  a  picture  of  it  in  action.    

Page 11: Portfolio of Designs and Projects

  10  

 Figure  11:  Heavy-­‐duty  3D-­‐Scanner  

 

 Figure  12:  Resultant  3D  Model    

    I  lead  a  project  team  of  4  students  in  an  organization  I  co-­‐founded,  Makers  UIUC,  to  design  and  build  a  heavy-­‐duty  3D-­‐scanner  to  be  fully  operational  in  one  month.  This  was  an  ambitious  timeline  considering  the  busyness  of  our  schedules.  The  project  was  finished  in  time  for  the  Engineering  Open  House  event  held  on  campus  once  a  year.  Out  of  the  hundreds  of  exhibits,  ours  received  3rd  place  in  the  most  innovative  exhibit  category  and  it  was  not  even  our  intention  to  compete.  We  were  able  to  scan  over  100  people  during  the  open  house  and  we  were  able  to  raise  funds  for  our  organization  by  selling  3D-­‐printed  models  of  the  scans  to  the  individuals  scanned.     Figure  11  depicts  the  3D-­‐scanner  with  the  adjustable  scanner  stand  and  motorized  heave-­‐duty  turntable,  capable  of  supporting  at  least  500  lbs.  Currently;  we  are  developing  autonomous  motorized  modifications  for  the  scanner  stand  and  turntable.  Figure  12  is  a  compilation  of  screenshots  of  an  actual  scan  we  made.  You  can  see  the  level  of  detail  captured  by  the  system  is  acceptable  but  we  are  also  developing  modifications  to  increase  the  quality  of  our  scans  by  at  least  50%.  

Page 12: Portfolio of Designs and Projects

  11  

My  latest  design  is  of  a  slim  4-­‐position  toggle  ratchet  mechanism  for  a  tool  that  can  be  used  as  a  hand  tool  as  well  as  a  drill  attachment.  The  design  process  is  ongoing  and  in  it’s  early  stages;  this  is  why  the  mechanism  is  depicted  in  Figure  13  as  part  of  a  pseudo  wrench  tool  handle.  My  team  is  designing  and  building  this  multi-­‐tool  that  will  make  use  of  a  double  universal  joint,  which  will  allow  the  tool  to  operate  at  any  position  between  0  and  90  degrees  near  the  front  end  of  the  tool.  In  addition,  there  will  be  a  cap  at  the  back  of  the  handle  that  can  be  pushed  into  the  tool,  which  will  lock  the  toggle  switch  into  a  position  that  allows  the  shaft  to  freely  rotate  in  either  direction  so  that  one  may  transition  the  hand  tool  to  a  drill  attachment.     Please  refer  to  Figures  14  and  15  to  better  understand  the  operation  of  the  4-­‐position  toggle  ratchet  mechanism.  When  the  switch  is  in  the  back  position,  a  cam  is  positioned  between  the  two  prongs;  turning  the  green  lever  45  degrees  in  either  direction  will  cause  one  or  the  other  of  the  ratchet  prongs  to  disengage  from  the  geared  shaft.  This  state  will  only  allow  one-­‐way  shaft  rotation  as  typically  seen  in  ratcheted  hand  tools  (the  neutral  angle  position  will  restrict  rotation  in  both  directions).  When  the  switch  is  pushed  forward  into  the  prongs,  both  prongs  are  forced  to  disengage  from  the  geared  shaft  allowing  it  to  freely  rotate  in  either  direction,  which  is  a  suitable  feature  for  a  drill  attachment.  The  design  depicted  is  the  first  iteration  of  the  mechanism  design  and  is  expected  to  become  more  ergonomic,  compact,  and  efficient  in  successive  design  iterations.    

 Figure  13:  Pseudo  wrench  tool  handle  with  4-­‐position  ratchet  toggle  

 

 Figure  14:  Interior  view  of  ratchet  mechanism  engaging  shaft  

 

Page 13: Portfolio of Designs and Projects

  12  

 

 

 Figure  15:  Side,  bottom,  and  back  views  of  ratchet  mechanism  within  wire  

frame  assembly  of  pseudo  handle      

Page 14: Portfolio of Designs and Projects

  13  

Patents  Pending    

  This  category  highlights  some  products  and  concepts  that  I  created  which  are  in  the  process  of  being  patented.  I  have  not  included  all  projects  or  information  about  the  highlighted  projects  below,  due  to  proprietary  and  confidential  purposes.      

 Figure  11:  A  sketch  of  a  novel  method  I’m  developing  to  desalinate  seawater  

    The  desalination  process  depicted  in  Figure  11  makes  use  of  properties  of  capacitance,  electric  fields,  and  unique  semi-­‐permeable  membranes  to  separate  ions  from  salt  saturated  water  thus  producing  clean  and  pure  water.  This  was  my  first  concept  drawing  that  I  put  together  in  Paint;  subsequent  drawings  contain  proprietary  information  so  they  could  not  be  included  in  this  portfolio,  which  is  released  to  the  public.    

Page 15: Portfolio of Designs and Projects

  14  

 Figure  12:  Dry-­‐erase  eraser  /  marker  holder  

    Figure  12  is  dry-­‐erase  eraser  /  marker  holder  that  is  designed  to  holds  your  markers  in  a  unique  way  that  may  the  whole  whiteboard  experience  simple  and  refreshing.  I  would  add  more  information,  however  the  innovative  design  concept  is  very  simple  and  would  be  easily  given  away  if  I  did.    

Page 16: Portfolio of Designs and Projects

  15