Top Banner
Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers [email protected] “Petru Poni” Institute of Macromolecular Chemistry Romanian Academy Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania
28

Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers [email protected] “Petru Poni” Institute of.

Dec 18, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Polymers for biomedical applications – recent results

Gabrielle Charlotte Chitanu

Green Chemistry of Polymers

[email protected]

“Petru Poni” Institute of Macromolecular ChemistryRomanian Academy

Aleea Grigore Ghica Voda 41A, 700487, Iasi, Romania

Page 2: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Polymers and “Nanoworld”

Polymer nanoscience

Nanotechnologies based on polymers

Nanomaterials from polymersNanointeractions

between polymers or polymers and other

entities

Nanoobjects:particles, spheres, capsules, plaquets,

discs, tubes, etc.

nanolayersmonolayers (LB),

bilayers,multilayers (LBL:

P-P, P-Prot, P-Dye, P-Tens,

P-Inorg.)

Organo-inorganic hybrid materials

Polymers+ metals,oxydes (TiO2, Fe2O3,

ZrO2, silica), salts , clays

Page 3: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Results of the “Petru Poni” Institute teams in nano/bio-topics

Thin films of conjugated

polymers

LBL deposition

using poly-electrolytes and dyes

Micro/nanoparticles from natural

polymers

Maleic polymers for

nanoapplications

Hybrid supramolecular

architectures Photopolymers - organoclay composites for optical applications

Thin films based on fluorinated polyimides

Page 4: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

POLYMERIC MICRO- and NANOPARTICLESGh. Fundueanu, M. Constantin, G. Mocanu, D. Mihai, A. CarpovE-mail: [email protected]

Microparticles for liquid chromatography

Microparticles for drug delivery systems

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

0

20

40

60

80

100

Time (min)

% d

rug

rel

eas

ed

Tem

pe

ratu

re (°C

)

Effect of temperature cycling on indomethacin release from poly(NIPAAm-co-AAm-co-HEA) intelligent microspheres

A B

Optical photomicrographs of poly(NIPAAm-co-AAm-co-HEA) microspheres taken in the swollen state in phosphate buffer, pH=7.4, under LCST (Panel A), and above LCST (Panel B)

Page 5: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Hybrid supramolecular structures

Valeria Harabagiu ([email protected]),

Bogdan C. Simionescu, Mariana Pinteala, Virginia Epure,…..

Polysiloxanes/cyclodextrine rotaxanes

J. Polym. Sci. 2004

Carbohydrate Res. 2004

SEM: surface (left) and cross (right) sections

Active principle

matrixPolymerNanosphere

Galactose

Nanocapsule

Nanoparticle

Nanoparticles based on organic-inorganic copolymers

Page 6: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

MALEIC POLYMERS (MP) FOR NANOAPPLICATIONS

Gabrielle Ch. Chitanu ([email protected]), Gabriela Aldea, Irina Popescu, Dana M. Suflet, Irina Pelin, Adina G. Anghelescu-Dogaru, Adrian Carpov

Prospects:

• MP for preparation of microspheres

loaded with bioactive substances

• tailored MP bearing chromophores,

fullerenes, LC moities for electro-optical

applications, sensors, etc.

C H( )C H 2 pm n)()(

O

C OO C

C HC H 2C HC H

h y d r o p h i l i c h y d r o p h o b i ca c t i v e

m a l e i c a n h y d r i d e c o p o l y m e r s

s u p p o r t s f o r d e l i v e r y s y s t e m s ( a n t i b i o t i c s , a n a e s t h e s i c sa n d a n a l g e s i c s , g r o w t h f a c t o r , a n t i c a n c e r d r u g s , m o d e l

p r o t e i n s , d i s i n f e c t a n t s , o d o r a n t s , p e s t i c i d e s , e t c . ) i fp o s s e s s N H 2 o r O H g r o u p s

Chemical Structure of The Partners Used for LBLChemical Structure of The Partners Used for LBL

Poly(maleic acidsodium salt - vinylacetate) Poly(maleic acid sodium salt – methyl

methacrylate)

CH

+ -CH2

CH2

NH3 Cl

CH CH CH

C COOO O Na +-Na

+ -OCOCH3

CH2

CH CH

C COOO COOCH3O Na +-

Na+ -

C

CH3

CH2

O N+

C2H5

COOC2H5

H5C2HN

H3C

CH2CH2 CH CH

CH3

CH2CH2

N

CH3+

Cl_

Rhodamine 6G

Poly(allylaminehydrochloride)

Poly(diallyldimethylammoniumchloride)

Calcium

oxalate

Calcium

oxalate

Calcium phosphates

Hydroxyapatite

Calcium phosphates

Hydroxyapatite

Barium

sulfate

Barium

sulfate

Barium titanate

TiO2, ZrO2

Fe oxides

Manganites

Barium titanate

TiO2, ZrO2

Fe oxides

Manganites

Calcium

sulfate

Calcium

sulfate

Calcium

carbonate

Calcium

carbonate

Salts

and other

Salts

and other

Crystallization modulators

Page 7: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

FUNCTIONAL MICRO- AND NANOPARTICLES BASED ON POLY[(N-ACYLIMINO)ETHYLENE]

Bogdan C. Simionescu ( [email protected]), Geta David

CH2 CH2 N

C

CH3

ON CH2 CH2C

CH3

O

))( (m O O m CH C N N C CH C22 2 2

CH3

CH3

CH3

CH3CO O

x( ( ))

Macroazoinitiator for soapless emulsion polymerisation

block copolymer

TEM: micron-sized block copolymer particles

J. Appl. Polym. Sci., 2001

Eur. Polym. J., 2001, 2002

J. Macromol. Sci. – Pure Appl. Chem., 2003

Mol. Cryst. Liq. Cryst., 2004

Page 8: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Photopolymers - organoclay composites for optical applicationsE.C. Buruiana*, T. Buruiana, V. Melinte, M. Olaru

*e-mail: [email protected]

Activities: Study and development of new photopolymers with photochromic, fluorescence and UV/laser ablative properties. A tentative to produce a photosensible liquid crystal (LC) polymer is presented as follows:

N

CH3

O

O

CH3

+I-

11( )

p

CH3

( )11

( )N N RO3S-

PA / PA-Az LC texture for alkylammonium polyacrylates by polarizing microscopy

PA PA-Az

References:

1. Synthesis and characterization of liquid crystalline alkylammonium polyacrylates, E.C. Buruiana, T. Buruiana, Macromol. Rapid Commun. 2002, 23, 1302. Design and using of new mesogens to achieve ionic polyacrylates with possible liquid crystalline properties, Grant of Roumanian Academy, 2003-2004 3. Synthesis and properties of new polyurethane ionomers. Photosensitive cationomers with triazene units, E.C. Buruiana,

V. Niculescu, T. Buruiana, J. Appl. Polym. Sci. 2003, 88, 1203

Page 9: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

LBL deposition using polyelectrolytes and dyesStela Dragan, Luminita Ghimici, Simona Schwarz e.mail: [email protected]

C H E M I C A L S T R U C T U R E S O F P O L Y C A T I O N A N D A Z O D Y E S U S E D I N T H E M U L T I L A Y E R C O N S T R U C T I O N

P C A 5

D ir e c t R e d 8 0 ( D R 8 0 )

D ir e c t B lu e 1 ( D B 1 )

C r o c e in S c a r l e t M O O ( C S M O O ) P o n c e a u S S ( P S S )

O H

O H

C H 2N

C H 2

C H 2

C H C H 2

C H C H 2N

O H

C l-

+N

C H 3

C H 3

C H 3

)C H C H 2( ()

C H 2

+ C l-

( )3

0.95 0.05

H 3 C

N NN N

S O 3 N a

S O 3 N a

O H

N H C O N HN a O 3 S

S O 3 N a

N a O 3 S N N N N

O H

= = == S O 3 N a

S O 3 N a

S O 3 N a

N H 2O H

O C H 3H 3 C O

O H

N N=N N=

S O 3 N a

N H 2

N a O 3 S

N N NN

N aO 3 S

S O 3 N a

O HS O 3 N a

N N N N

O H

S O 3 N a

Spectral changes of DR80 by the interaction with PCA5 in the multilayers

400 450 500 550 600 650

0.1

0.2

0.3

0.4

0.5558.8

(nm) (nm)

inte

nsity

inte

nsity

15 dl12 dl10 dl8 dl6 dl4 dl2 dl

Water, PCA5 10 mM, Ra = 2.02 nm

1 M NaCl, PCA5 10 mM, Ra = 3.44 nm

1 M NaCl, PCA5 10 mM, Ra = 2.31 nm

1

M

1M Na2SO4, PCA5 10 mM, Ra = 2.72

1. Electrostatic self-assembled nanoarchitectures between polycations of integral type and azo dyes Stela Dragan, Simona Schwarz, Klaus-Jochen Eichhorn, Klaus Lunkwitz Colloid and Surfaces, A: Physicochem. Eng. Aspects 195, 243-251 (2001). 2. Surface Modification by Self-Assembled Polycation/Azo Dye Multilayers Stela Dragan, Simona Schwarz Macromol. Symp. 181, 55-166 (2002). 3. Aggregation Mode of Two Bidentate Azo Dyes in the Polycation/Dye Multilayers in Dependence on the Dye Structure and the Polycation Conformation Stela Dragan, Simona Schwarz Prog. Colloid Polym. Sci. 122, 8-15 (2003).

Page 10: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Chemical structure of maleic anhydride (MA) copolymers

CH( )CH2 pm n)()(

O

COOC

CHCH2CHCH

hydrophilic hydrophobicactive

maleic anhydride copolymers

Synthesis: radical copolymerization of MA in organic solvents

Characterization: 1) composition: electrochemical methods; IR, 1H or 13NMR spectroscopy; 2) MW and MWD: SEC; viscometry, light scattering

Page 11: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

COOHCOOH

m n)()( CHCH2CHCH CH( )CH2 p

maleic acid containing polyelectrolytes

CH2 CH

R11

R

CH2CH

OR

ROH

OCHOOCCOOC

CHCHCH CH 1-x)

O

CO

(x

CO

CH CH( )+

O

2CH2 CH

R11

R

CH2CH

OCHOOCCOOC

CHCHCH CH 1-x)

O

CO

(x

NHR

CO

CH CH( )RNH+

O

esterification

amidation

Page 12: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Advantages of maleic acid copolymers

are obtained by a convenient technique, from cheap and available monomershave regular, reproducible chemical structureare capable to link a wide variety of low molecular compounds by mild reactions at low temperature, without catalysts are biocompatiblehave pH-dependent solubilityhave variable hydrophobic character depending on the comonomer

Page 13: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Applications of MA copolymers (most as polyelectrolytes)

Antiscale agentsAdditives for tanning of hides with chromium basic saltsSoil conditionersPhosphate substitutes in detergentsFlocculants and coagulating aidsAdditives for drilling muds

• Layer-by-layer deposition from maleic polyelectrolytes and dyes (Rhodamine G)

• Synthesis of new maleic copolymers derivatives containing dyes or chromophores for optical applications

• Organo-inorganic composites or hybrids based on maleic acid copolymers and phosphates (hydroxyapatite)

• Supports for controlled delivery of bioactive substances - (antibiotics, anesthesics and analgesics, growth factor,anticancer drugs, model proteins, if possess NH2 or OH groups)

Page 14: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

A. Literature data: biomedical uses of MA copolymers

Three main investigation ways could be evidenced from the literature

i) MA copolymers possessing per se bioactivity;

ii) conjugates of MA copolymers with various drugs/bioactive agents;

iii) drug formulations as solid dispersions based on MA copolymers.

another promising application seems to be the use in the dentistry

Current applications:

SMANCS (neocarzinostatin conjugate with n-butyl monoester of MA–styrene copolymer)

DIVEMA (MA–divinyl ether copolymer), promoted after laborious and long time lasted research efforts.

Page 15: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

B. Selected resultsB.1. Conjugates of maleic copolymers with pendant

disinfectant molecules

1-x

OC

CH CH CH2 CH

CO

O

( )

A

x

OR

COHOOC

CH CH CH2 CH( )

A

OH+ R

A

)(

O

COOC

CHCH2CHCH

3OCOCHwhere: A = ; N(CO)(CH2)3;

3 3CH CH

3CH

thymol

2 2

3

CHCHCH

OCH

eugenol

Page 16: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

B.2. Reaction of MA copolymers with piperazine

1. Reaction with piperazine and its derivatives: 2-amino-etylpiperazine, 2-hydroxyethylpiperazine, 4-methylpiperazine, was carried out in organic solvents such as DMF, NMP, DMSO, at low temperature, without catalystsSoluble or insoluble derivatives were obtained, depending on the number of reactive groups in the moleculeSoluble derivatives were characterized by elemental analysis, conductometric titration in acetone/water, IR spectra, potentiometric titration Insoluble derivatives were characterized by elemental analysis and IR spectraThey are potential antihelmintic drugs with reduced toxicity

Page 17: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

A

)(

O

COOC

CHCH2CHCH

CH

N

NH

3

+

-x

OC

CH CH CH2 CH

CO

O

( )

A

x

CO

CH CH CH2 CH( )

ACOOH

1

3

N

CH

N

Sample Parent copolymer

Ia (g NaOH/ g)

N (%)

Conversion (%)

Xcond XN

VM

SM

MM

PM

MA - VA

MA - St

MA - MMA

MA - NVP

0.189

0.157

0.141

0.169

8.27

8.28

4.44

10.74

76,48

86,47

56,83

78,25

76,75

86,57

58,89

51,97

Characterization

Conversion > 50%, depending on the comonomer

Soluble derivatives 4-methylpiperazine

Page 18: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Soluble derivatives

2-hydroxyethylpiperazine

CH CH CH2 CH

C C N

COH2C

CH2

O O O

CH2

( )

+

CH2 2

CH

N

NH

OH

CH22

CH

N

H2C CH2

CH2 CO

NCC

CHCH2CHCH( )

O O

N

OH

OH

0

100

200

300

400

500

600

0 2 4 6 8 10 12

VNaOH, mL

C, Scopolimer P

SE1

Conductometric curves in Ac/H2O. Conversion ~ 90%

Potential application: sensors for CO

Page 19: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Other promising uses in the bio topic

The effect of maleic polyelectrolytes on the hydroxyapatite separation

R.M. Piticescu, G.C. Chitanu. M.L. Popescu, W. Lojkowski, A. Opalinska, T. Strachowski, “New hydroxyapatite based nanomaterials for potential use in medical field”, Annals of Transpalntation, 9 (1A), 20-25 (2004)

The inhibition of crystal growth of COM - model for understanding and treatment of the renal calculi

P. G. Koutsoukos, G.C. Chitanu, A.G. Anghelescu-Dogaru, A. Carpov, Inhibition of calcium oxalate monohydrate crystal growth by maleic acid copolymers, J. Urology, 159,1755-1761, (1998)

Page 20: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Water soluble derivative of a maleic anhydride

copolymer with functionalized fullerene

G. Aldea, G.C. Chitanu, J. Delaunay, J.-M. Nunzi, J. Cousseau, B.C. Simionescu, “Multi-functional water soluble C60 - pendant maleic anhydride copolymer”, J. Polym. Sci. Part A: Polym. Chem. 43(23), 5814-5822, 2005.

40% C60

Page 21: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

4. Crystallization of drugs: nystatin

There are three different crystal forms of Nystatin, referred as Types A, B and C. They can be identified by X-ray powder diffraction patterns,

infrared spectra and thermal behaviour

Nys is a polyene-macrolide antifungal antibiotic

produced by Streptomyces noursei

Page 22: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Experiment:

Nystatin was crystallized from aqueous solution in which a maleic acid copolymer (MP) at low and high concentration was added. The samples were examined by FTIR spectroscopy, thermal analysis and X-ray diffraction.

Sample

D1 without MP

D2 with low MP concentration

D3 with high MP concentration

Page 23: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

FTIR spectra: quite similar; no polymer

4000 3000 2000 1000Wavenumber (cm-1)

529.44

847.68

1002.951070.4

51175.5

7

1321.19

1400.27

1437.88

1572.891629.7

91711.7

6

2928.8

3409.06

CH4

D1

D2

D3

Page 24: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

X-ray diffraction pattern

Operations: ImportFile: ND1.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 30.000 ° - Step: 0.010 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 12 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00 ° - X: 0.0 mm -

Lin

(C

ou

nts

)

0

100

200

300

400

500

600

700

800

2-Theta - Scale

2 10 20 30

Page 25: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Interplanar distances and relative intensities

ND_1 ND_2 ND_3

d value Intensity % d value

Intensity % d value

Intensity %

Angstrom % Angstrom % Angstrom % d=32.10122 35,4 d=32.95295 39,4 32,21835 39,6 d=29.25844 100 d=29.98935 100 29,50632 100 d=14.78677 8,3 d=14.96195 9,9 14,85592 8,2 d=11.88604 6,1 d=11.99545 8,1 11,88097 8,6 d=10.73653 23,6 d=10.82716 33,6 10,74424 25,1 d=10.22700 7,8 d=10.33122 10,2 10,25376 9,6 d=9.86338 6,3 d=9.95708 7,5 9,91608 7,7 d=8.85228 12,4 d=8.92893 14,3 8,86908 15,2 d=8.54942 6,8 d=8.62429 9,3 7,89977 7,7 d=7.91442 7,9 d=7.96450 9,3 7,13975 18,2 d=7.14479 16,5 d=7.17287 21,8 6,41194 34,2 d=6.41809 32,8 d=6.44544 34,1 6,3207 27,7 d=6.31279 25,8 d=6.32520 26,9 6,00771 15,6 d=5.99443 14 d=6.01733 19,2 5,37862 19 d=5.37534 18,5 d=5.40193 23,4 4,94679 13,8 d=4.80759 12,1 d=4.95878 12,5 4,79347 15,5 d=4.46802 31,3 d=4.81410 12,3 4,46486 32,1 d=4.33900 23,3 d=4.47833 33,3 4,34765 27,7 d=4.06457 19,1 d=4.38384 27,1 4,31817 31,1 d=3.24546 8 d=4.31115 27,6 4,06937 19,9 d=4.06724 16,6 3,62781 8,6 d=2.40118 8,6

Page 26: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

DSC: the sample D2 seems to have the

most crystalline organization

Page 27: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Conclusion

Maleic acid copolymers were demonstrated as efficient in:

the inhibition of crystal growth of COM (model for understanding and treatment of the renal calculi)the control of synthesis of HAP and HAP compositesthe control of the crystalline form of Nystatin

In the future – controlled synthesis of the nanocrystals, nanopowders…..

Page 28: Polymers for biomedical applications – recent results Gabrielle Charlotte Chitanu Green Chemistry of Polymers chita@icmpp.ro “Petru Poni” Institute of.

Thanks: Prof. P. G. Koutsoukos, University of Patras, GreeceProf. Jean-Michel Nunzi, dr. Gabriela Aldea, University of Angers, France and Egide AgencyRomanian Agency for Research and Development, for the financial support, project no. 16 and 42/2005-2008My young co-workers: Dana Suflet, Adina Anghelescu-Dogaru, Irina Popescu, Carmen Rosca, Elena Cadu, Irina PelinProf. dr. Antonia Poiata, UMF IasicpI Adrian Carpov, ICMPP Iasi

…… and you all, for your kind attention!