Top Banner
Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1
73

Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

Dec 24, 2015

Download

Documents

Annabella Moody
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

1

Polymer Chemistry

Controlled/Living Polymerization

Donghui ZhangFall 2012

Page 2: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

2

Architecture

Page 3: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

3

Tacticity

• Asymmetric carbons have alternate configuration• Methylene hydrogens are racemic• Polymer stays in planar zig-zag conformation

R R R R R R R R

R R R R R R R R

R R R R R R R R

Isotactic

• All asymmetric carbons have same configuration • Methylene hydrogens are meso• Polymer forms helix to minimize substituent interaction

Syndiotactic

Atactic

• Asymmetric carbons have statistical variation of configuration

Page 4: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

4

Statistical description of tacticity

Page 5: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

5

Major Developments in the 1950-60's

Living Polymerization (Anionic)• Mw/Mn 1• Blocks, telechelics and stars available

(Controlled molecular architecture)• Statistical Stereochemical Control• Statistical Compositions and Sequences• Severe functional group restrictions

Page 6: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

6

Page 7: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

7

1.

2.

3.

4.

Page 8: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

8

Good monomers for anionic polymerizations

. labile a-protonIn the polymers

steric stabilizing effect as well

Page 9: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

9

Reactivity trend of monomers in anionic polymerizations

Increasing ease of initiation

Page 10: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

10

Initiators for anionic polymerizations

Page 11: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

11

Page 12: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

12

Kinetics of Living Polymerizations

Page 13: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

13

≈ 1+ 1/n

conversion (p)

conversion

conversion

Page 14: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

14

1,4 trans content increases crystallinity, Tm > 25oC.1,4 cis content suppress crystallinity, low Tg (-110oC), Tm ~12oC; used for synthetic rubber

Solvent and Counter Ion Effect

Page 15: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

15

Solvent characteristics

Page 16: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

16

Solvent effect on anionic polymerizations

[M-]{M-n}

[M]propagating

Ke

kp

Page 17: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

17

Solvent effect on anionic polymerizations

so is the stereoselectivity

Page 18: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

18

End functionalization of anionic polymerizations

Page 19: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

19

End functionalization of anionic polymerizations

Page 20: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

20

Block copolymers from anionic polymerizations

Page 21: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

21

Block copolymers from anionic polymerizations

Page 22: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

22

Block copolymers from anionic polymerizations

Page 23: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

23

Microphase separation of block copolymers

Sphere Cylinder Lamellar Gyroid

Page 24: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

24

Application of block copolymers

Hillmyer, 2010 JACS

Russell, 2008 Nano Lett.

Page 25: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

25

( )

Industry block copolymers (SBR)

Page 26: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

26

Additional Developments in the 1980's

"Immortal" Polymerization (Cationic)– Mw/Mn 1.05– Blocks, telechelics, stars– (Controlled molecular architecture)– Statistical Compositions and Sequences– Severe functional group restrictions

Page 27: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

27

Cationic Polymerization

Page 28: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

28

Cationic Polymerization

Page 29: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

29

Monomers for Cationic Polymerization

Page 30: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

30

Kinetic Steps in Cationic Polymerization

:

of C+

Page 31: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

31

Page 32: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

32All these reactions kill the chain growth.

Page 33: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

33

Page 34: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

34

Industry Example of Cationic Polymerization

Page 35: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

35

OR

+HI

OR

IZnI

OR

IOR

OR

ZnI

+

-

OR

I

ZnI

OR

dormantspecies

OR

IOR

ZnI

ORreactivespecies

(irriversible)

Strategy: prolong the life time of cationic propagating species by reversible formation of dormant species. (Note: anionic propagating species has a much longer life time).

Page 36: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

36

Page 37: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

37

Page 38: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

38

Chain shuffling can increase PDI

Page 39: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

39

Chain-End Functionalization of Aliphatic Polyether

Page 40: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

40

Free Radical Initiated Polymerization

• Controlled Free Radical Polymerization• Broad range of monomers available• Accurate control of molecular weight• Mw/Mn 1.05 --Almost monodisperse• Blocks, telechelics, stars• (Controlled molecular architecture)• Statistical Compositions and Sequences

Page 41: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

41

Free Radical Polymerizations

Page 42: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

42

Iniferter approach

Otsu et al 1982

hn

recombination

exhibit living characteristics at low conversion, but PDI is broad as 3 can also initiate polymerizations.

Page 43: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

43

The Key Concept in Living Radical Polymerization

formation of dormant propagating species reduces

the effective polymeric radical concentration and hence

minimize termination reactions

R is a capping agent ∙and does not initiate

chain growth

PDI= Mw/Mn=1+qM0/Mn = 1+q/n(Poisson distribution PDI = 1+1/n, slide 25)

(Page 144, Hiemenz and Lodge)

Page 44: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

44

Stable Free Radical Polymerization (SFRP)or Nitroxide Mediated Polymerization (NMP)

+ radical initiator (BPO, AIBN)

N

O

SFRP Initiator System (e.g., biomolecular or unimolecular)

Page 45: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

45

Stable Free Radical Polymerization (SFRP)Bimolecular Initiator System

Page 46: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

46

Stable Free Radical Polymerization (SFRP)Unimolecular Initiator System

Page 47: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

47

State of Art for SFRP

•MW > 105, PDI = 1.1-1.2•High reaction temperature (125-145oC)•Long reaction time (24-72 hr)•Low to moderate conversion (<70%)•Limited scope of monomers: St, MA, MMA etc. •functionalized alkoxyamine is required for block or telechelic polymer synthesis

lower temperature(60-80oC), shorter

reaction time (several hrs) and higher

conversion (>99%) are desired

Page 48: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

48

Page 49: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

49

Atom Transfer Reversible Polymerization (ATRP)

Basic components: vinyl monomers, metal catalyst/ligand and initiator

Example:

most common

Page 50: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

50

Atom Transfer Reversible Polymerization (ATRP)

Keq’

R'

kp

ki

Keq

Page 51: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

51

State of Art for ATRP

•MW > 105 easily, PDI = 1.1-1.6•reaction temperature (70-130oC)•Low to moderate conversion (<80%)•Tolerant of functional groups, wide scope of monomers: St, MA, MMA, acrylamide, vinylpyridine (VP), acrylonitrile (AN) etc. (acrylic acid, vinyl halide, vinyl ether, a-olefin cannot be polymerized) •Availability of a variety of initiator and catalysts. •block polymers and telechelic polymers are readily prepared.•metal contaminant is sometime less desired

Page 52: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

52

Reversible Addition-Fragmentation Transfer Polymerization (RAFT)

SFRP (NMP) and ATRP involves reversible termination

RAFT involves reversible chain transfer

Page 53: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

53

Reversible Addition-Fragmentation Transfer Polymerization (RAFT) Mechanism

Basic components: vinyl monomers, radical initiator and RAFT chain transfer agent.The number of growing chain is determined by both CTA and initiator content.

Stability can be

controlled by Z

group

Page 54: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

54

RAFT Chain Transfer Agent

RAFT polymerizations are compatible with a variety of activated (St, MMA, MA etc.) or unactivated vinyl monomers (VAc, NVP). RAFT is versatile and robust as compared to SFRP and ATRP. But CTA agents need to be individually synthesized.

Design of CTA structures allows for control of the relative rate of addition and fragmentation steps

Page 55: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

55

Ring Opening Metathesis Polymerization (ROMP)

[Ru] or [Mo] or [W]catalyst

2nd Gen. Grubb’s catalystSchrock’s catalyst

Page 56: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

56

Ring Opening Metathesis Polymerization (ROMP)

Page 57: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

57

Ring Opening Metathesis Polymerization (ROMP)

examples ofnorbornadiene

Page 58: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

58

Ring Opening Metathesis Polymerization (ROMP)

Page 59: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

59

Ring Opening Metathesis Polymerization (ROMP)

Page 60: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

60

Synthesis of Conjugating Polymers from ROMP

ROMP

Page 61: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

61

Ring Opening Metathesis Polymerization (ROMP)

Page 62: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

62

Ring Opening Polymerization (ROP)

metal-mediated reaction

organic-mediated reaction

Aliphatic Polyester synthesis

(Waymouth, Hedrick)

(Coates, Chisholm, Tolman/Hillmyer, Bourissou)

Page 63: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

63

Polypeptide synthesis

Ring Opening Polymerization (ROP)

Polypeptoid synthesis

HN

O

nHN

O

O

O

R Initiators

initiators: RNH2 HNTMS2 (Cheng, 2007) Ni(bipy)(COD) (Deming, 1997)

-nCO2

NO

O

OR -nCO2

RNH2 N

O R

n

N

NN

O

O

O

R R

Rn-2

-nCO2

NHC NN

iPr

iPr iPr

iPrNHC

Zhang, 2010

Page 64: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

64

Coordination Polymerization

• Stereochemical Control• Polydisperse products• Statistical Compositions and Sequences• Limited set of useful monomers, i.e. olefins

• SINGLE SITE CATALYSTS

Ziegler-Natta Polymerization (50-60’s)

Page 65: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

65

Commodity Polyolefins

Polyethylene

Low Density (1939-1945)LDPE

Packaging Film, wire and cable coating, toys, flexible bottles, house wares, coatings

High Density (1954) HDPE

Bottles, drums, pipe, conduit, sheet, film

Linear Low Density (1975) Shirt bags, high strength films LLDE

Page 66: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

66

Polyolefins• Polypropylene (PP, 1954)

• dishwasher safe plastic ware, carpet yarn, fibers and ropes, webbing, auto parts

Page 67: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

67

Ziegler-Natta (Z-N) Polymerization

Radical polymerization is inefficient due to stable radicals from chain transfer

Page 68: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

68

Page 69: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

69

TiCl

Cl Cl

Cl

CH2 CH

CH3

CH2

CH2=CHCH3

Syndiotactic PP

isotactic PP

Page 70: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

70

Consider polyethylene

radical process

Z-N process

% crystallinity: 40-60%

Page 71: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

71

Single Site Catalyst 1990

Allows for production of elastomeric polypropylene (PP)

Waymouth 1995

atactic PP isotactic PPMAOMAO

Page 72: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

72

Single Site Catalyst in 2000-olefinethylene

+

CTA

Allows for production of thermoplastic

elastomer

Arriola, Carnahan, Hustad, Kuhlman, Wenzel (Dow Chemical, Freeport, TX)

Page 73: Polymer Chemistry Controlled/Living Polymerization Donghui Zhang Fall 2012 1.

73

Acknowledgement•MIT OpenCourseWare: Synthesis of Polymers by Dr. Paula Hammondhttp://ocw.mit.edu/courses/chemical-engineering/10-569-synthesis-of-polymers-fall-2006/lecture-notes/•Note by USM Dr. Daniel Savin and Dr. Derek Pattonhttp://www.usm.edu/polymerkinetics/•Note by LSU Dr. Daly•Polymer Chemistry, 2nd edition, Hiemenz and Lodge•Principle of Polymerization, 4th edition, Odian•Polymer Chemistry, 4th edition, Pan, Zheijiang University

•“Functional Polymers via Anionic Polymerizations.” Akira Hirao, 1997 ACS Symposium Series.•“New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations.” Craig Hawker, 2001, Chem. Rev. •“Atom Transfer Radical Polymerization.” Krzysztof Matyjaszewski, 2001, Chem. Rev.•“Copper(I)-Catalyzed Atom Transfer Radical Polymerization.” Krzysztof Matyjaszewski and Timothy Patten, 1999, Acc. Chem. Res.•“Toward Living Radical Polymerization.” Graeme Moad, Ezio Rizzardo, San Thang, 2008, Acc. Chem. Res.•“Living Radical Polymerization by the RAFT Process.” Graeme Moad, Ezio Rizzardo, San Thang, 2005, Aust. J. Chem.•“Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes.” Richard Schrock, 1990, Acc. Chem. Res.•“The Development of L2X2RuCHR Olefin Metathesis Catalysts: An Organometallic Success Story.” Robert Grubbs, 2001, Acc. Chem. Soc.•“Organocatalytic Ring-Opening Polymerization.” Robert Waymouth, James Hedrick, 2007, Chem. Rev.•“Controlled Ring-Opening Polymerization of Lactide and Glycolide.” Didier Bourissou, 2004, Chem. Rev.•“Synthesis of Well-Defined Polypeptide-Based Materials via the Ring-Opening Polymerization of α-Amino Acid N-Carboxyanhydrides.” Nikos Hadjichristidis, 2009, Chem. Rev.