Top Banner
S Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello Spazio- Università degli Studi di Firenze-Italy
24

Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Mar 29, 2015

Download

Documents

Jaiden Cork
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

S

Polarization in Pulsar Wind Nebulae

Delia Volpi

In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini

Dipartimento di Astronomia e Scienza dello Spazio-Università degli Studi di Firenze-Italy

Page 2: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Observations: optical and X-ray Continnum emission

Jet-torus structure

Crab Nebula

PWN

Optical (Hubble)

X-ray (CHANDRA)

Vela PSR 1509-58 G 54.1+0.3

Page 3: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

RELATIVISTIC MHD Models

Analytical 1-D models (Kennel & Coroniti ,1984 -- Emmering and Chevalier,1987): no jet-torus structure.

Analytical 2-D models (Bogovalov & Khangoulian, 2002 -- Lyubarsky, 2002): anisotropic Poynting+kinetic energy flux torus and oblate TS. Jets collimated by hoop stresses downwards TS.

RMHD simulations (Komissarov and Lyubarsky, 2003 – Del Zanna et al., 2004) solve 2-D hyperbolic equations and confirm jet-torus morphology theories

Lyubarsky, 2001

Page 4: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

IDEAL RMHD EQUATIONS

∂ ργ( )∂t

+∇ • ργr v ( ) = 0 continuity equation

∂r S

∂t+∇ •

r T = 0 equation of the momentum conservation

∂U∂t

+ c2∇ •r S = 0 equation of the energy conservation

∂r B

∂t−∇×

r v ×

r B ( ) = 0 Faraday induction equation

r S =

w

c2γ 2r

v +1

4πc

r E ×

r B

r T =

w

c2γ 2 r

v r v −

14π

r E

r E +

r B

r B ( ) + P + uem( )I U = wγ 2 − P + uem

w = ρc2 +Γ

Γ −1P Γ =

43

uem =E2 + B2

r E = -

r v ×

r B

c Ohm law

Adiabatic equation of state

ECHO: GRMHD 3-D VERSION (Del Zanna et al., 2007, A&A, 473, 11)

Page 5: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Numerical model• 2-D (axysimmetric) RMHD shock capturing code in spherical coordinates (Del

Zanna et al., 2002, 2003, 2004) • Initial cold ultrarelativistic Pulsar Wind with v radial and r-2 +SNR+ISM Lorentz factor (conservation of energy along streamlines) :

Anisotropic energy flux:

Toroidal field:

• Space and time evolution of RMHD equations+ maximum particle energy (Lorentz factor) equation with adiabatic and synchrotron losses averaged on the pitch angle:

γ θ( )=γ0α

0+ 1−α

0( )sin 2 θ( ) γ 0= 100 α

0= 0.1 anisotropy parameter

F0 r,θ( ) = F0r0r

⎛ ⎝ ⎜

⎞ ⎠ ⎟2

α 0 + 1− α 0 +σ( )sin2 θ[ ] σ =B2

4πwγ 2= magnetization parameter

B r,θ( ) = B0r0r

⎛ ⎝ ⎜

⎞ ⎠ ⎟sinθ tanh b

π2

−θ ⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎣ ⎢ ⎤

⎦ ⎥ b = width of striped wind region

(b =/2)

w=c2+4p

d

dt'lnε

∞=

d

dt'ln n1/3 +

1

ε∞

dε∞

dt'

⎝ ⎜

⎠ ⎟sync

∞dt'

⎝ ⎜

⎠ ⎟sync

= −4e4

9m3c5 B'2ε∞

2

Page 6: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Synchrotron emission recipes

• Emitting particles’ isotropic distribution function at termination shock (TS = 0)

(Kennel & Coroniti, 1984b):

• Post-shock distribution function (obtained from conservation of particles’number along streamlines and under condition of 0.5):

f0(ε0 ) =A

4πε0

−(2α +1) ε 0min≤ ε0 ≤ ε0

max A = Knn0 = Kpp0

mc2

f (ε ) =K

p

p

mc2ε −(2α +1) ε <ε

∞ K

p= constant

spectral index

Page 7: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Synchrotron emission recipes

• Emission coefficient in observer’s fixed frame:

Relativistic corrections:

• Cut-off frequency for synchrotron burn-off (evolved in the code from the maximum particle energy):

jν(ν , ˆ n )∝Cp

r B ' × ˆ n '

α +1

Dα + 2ν −α ν∞

≥ ν

jν(ν , ˆ n ) = 0 ν

∞< ν

D =1

γ (1−r β • ˆ n )

= Doppler boosting factor r β =

r v

c

ˆ n ' = D ˆ n +γ 2

γ +1

r β • ˆ n −γ

⎝ ⎜ ⎜

⎠ ⎟ ⎟r β

⎣ ⎢ ⎢

⎦ ⎥ ⎥

r B ' =

1

γ

r B +

γ 2

γ +1

r β •

r B ( )

r β

⎣ ⎢

⎦ ⎥

ν ∞ =D3e

4πmc

r B ' × ˆ n ' ε

2

observer direction versor

optical or X-ray frequency of observation

Page 8: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Synchrotron emission recipes• Surface brightness:

• Stokes parameters (linear polarization):

• Polarization fraction () and polarization direction (P):

• Spectral index () for two frequencies (1, 2) and integrated spectra (F):

Iν (ν ,Y ,Z) = jν−∞

+∞

∫ (ν , X,Y ,Z)dX X = line of sight Y, Z = plane of sky

Qν (ν ,Y ,Z) =α +1

α + 5/3jν

−∞

+∞

∫ (ν , X,Y ,Z) cos 2χ( )dX

Uν ν ,Y ,Z( ) =α +1

α + 5/3jν

−∞

+∞

∫ (ν , X,Y ,Z) sin 2χ( )dX local polarization position anglebetween emitted electric field and Z

Πν =Q

ν

2+U

ν

2

r P

ν= Π

νsin χ( ) ˆ x + cos χ( ) ˆ y ( )

αν ν1,ν

2,Y ,Z( ) = −

log Iν

ν2,Y ,Z( ) / I

νν

1,Y ,Z( )[ ]

log ν2/ν

1( )

ν( ) =1

d 2I

νν ,Y ,Z( )∫∫ dYdZ d=distance of emitting object

Page 9: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Wind magnetization Runs with effective=0.02

(averaged over ) A (=0.025, b=10) B (=0.1,

b=1)

Page 10: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: flow structure maps

• RunA: a) Stronger pinching forces smaller wind zone; b) Equipartition near TS; c) Larger magnetized region • particles loose most of their energy nearer to TS; d) Less complex magnetization map.• Supersonic jets and equatorial outflow: v 0.5-0.7c (as in Crab Nebula-Hester-2002, Vela-Pavlov 2003).

=0.025, b=10 narrow striped wind region

=0.1, b=1 large striped wind region

Page 11: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: surface brightness maps

• Optical and X emitting particles: = 0.6 (Veron-Cetty & Woltjer,1993)

• Cut-off frequencies: =5364 Å in optical maps (V.C.1993) h=1keV in X maps (Chandra)

• Angles (Weisskopf, 2000): inclination of symmetry axis:300

rotation respect to North: 480

• I normalized respect to maximum value, logarithmic scales

• Larger emitting regions in optical than in X bandsynchrotron burn-off• Internal regions: system of rings (connected to external vortices), brighter arch (inner ring), a central knot (connected to polar cusp region) due to Doppler boosting (very strong near TS, vc)• Stronger emission near TS where magnetization and velocity are higher

=0.025, b=10 narrow striped wind region

=0.1, b=1 large striped wind region

Page 12: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

HIGH RESOLUTION POLARIZATION MAPS TOY MODEL

UNIFORM EMITTING TORUS WITH B TOROIDAL AND V RADIAL : ANGLE SWING INCREASES WITH V AND BIGGER IN THE FRONTv=0.2C θ=90° - - v=0.5c θ=75° -- v=0.8c θ=60°=>INFORMATION ABOUTFLOW VELOCITYPOLARIZATION FRACTION=>MAXIMUM EVERYWHERE

SAME EFFECT WITH A KC FLOW

Page 13: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: optical polarization maps Synchrotron emission

linear polarization

Polarization fraction: Bpoloidal

• Normalization against (+1)/(+5/3)70%• Along polar axis: higher polarized fraction (projected B line of sight)• Outer regions: depolarization (opposite signs of projected B along line of sight)

Polarization direction: vflow

• Ticks: ortogonal to B, lenght proportional to Π (Schmidt, 1979)• Polarization angle swing (deviation of vector direction) in brighter arcs, v c, strong Doppler boost Bigger effect in the front side Origin of the knot????? RunB: more complex structure slow velocity

=0.1, b=1 large striped wind region

=0.025, b=10 narrow striped wind region

Page 14: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: X-ray polarization maps=0.025, b=10 narrow striped wind region

=0.1, b=1 large striped wind region

Page 15: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: spectral index maps

• Values of Crab Nebula• Optical maps obtained with: 1=5364Å, 2=9241Å (Veron-Cetty & Woltjer, 1993)• X-ray maps obtained with: h1=0.5keV, h2=8keV (Mori et al., 2004)• Spectral index grows from inner to outer regions• RunA: X-ray simulated spectral index maps similar to ones of Crab Nebula (Mori et al, 2004)

= + 1

=0.025, b=10 narrow striped wind region

=0.1, b=1 large striped wind region

Page 16: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Observations: gamma-ray• MAGIC Telescope (J.Albert et al., Arxiv:0705.3244v1, 2007)

• Crab Nebula: gamma-ray standard candle → target of new instruments

• Emission: accelerated electrons+target photons (CMB+FIR+sync)

• HESS: TeV frequencies; GLAST: 20MeV-300GeV

• Disantangle magnetic field and distribution function+adronic component

Page 17: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Synchrotron and IC emission recipes

• Primordial isotropic radio-emitting population (A&A,1996):

• Accelerated wind population at TS (A&A,1996):

• Evolved distribution function (Del Zanna et al., 2006):

• Integration between spectral power per unit of frequency and distribution function:

synchrotron=> monochromatic frequency

IC => respect to ε and ν, total differential cross section, 3 targets (FIR, CMB, SYNC) (Blumenthal and Gould, 1970)

fr(ε) =Ar4π

ε−(2αr +1)

e(−ε /ε*r)

fTS

(εTS

) =A

TS4π

(ε +εTS

)−(2α

w+1)

e(−ε

TS/ε*

w ) ε

TS= ε

ρ TSρ

⎝ ⎜

⎠ ⎟

1/31

1 -ε

ε∞

fw(ε) = ρρTS

⎜ ⎜

⎟ ⎟

4/3εTS

ε

⎝ ⎜ ⎜

⎠ ⎟ ⎟

2fTS(εTS)

νc = 0.293

4πe

mcB⊥

'ε 2 critical frequency

Page 18: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: IC

Multislopes Disconnetted areas in maximum particle energyIC emission in excessEnergy map: Compression around TS of B.Parameter? Distribution function?

=0.025, b=10 narrow striped wind region

Page 19: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: IC

Size reduction with increasing frequency: along y-axisJet and torus visible for radio electron distribution, no observational counterpart

=0.025, b=10 narrow striped wind region

Page 20: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Results: IC

Time-variability: gamma-rays similar to X-rays.

=0.025, b=10 narrow striped wind region

Page 21: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Conclusions• Spectra: well reproduced from radio to X-ray. Excess in gamma-ray due to

compression of B around TS (flux vortices).

• Brightness maps: jet-torus structure in gamma-rays as in X-rays (high resolution). Observed dimensions.

• Gamma-ray (as X-ray) time-variability is well reproduced by MHD motions.

COMPLETE SET OF DIAGNOSTIC TOOLS FOR PWNe AND OTHER EMITTING SOURCES (AGN, GRB)

• Future work: direct evolution of the distribution function; investigation of the parameter space; applications to other PWNe (different evolution stages) and other non-thermal emitting sources (AGN, GRB).

• Paper: Simulated synchrotron emission from Pulsar Wind Nebulae (L.Del Zanna, D.Volpi, E.Amato, N.Bucciantini, A&A, 453, 621-633, 2006)

• Paper: Non-thermal emission from relativistic MHD simulations of pulsar wind nebulae: from synchrotron to inverse Compton, D.Volpi, L. Del Zanna, E. Amato, N. Bucciantini, A&A, 2008, 485, 337

Page 22: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

WHICH KIND OF CONTINUUM EMISSION FROM RADIO TO SOFT-GAMMA ?

CRAB NEBULA: SAME FRACTION AND POSITION ANGLE OF POLARIZATIONFROM RADIO TO X-RAYS=> SIGNATURE OF SYNCHROTRON EMISSIONOPTICAL (SHKLOVSKY, 1952- DOMBROVSKY, 1954)

SYNCHROTRON EMISSION=> LINEAR POLARIZATION WITH A MAXIMUMOF ≈ 80%

IMPORTANCE OF POLARIZATION: 1) GEOMETRY OF THE SOURCE (PULSAR WIND)2) PROPERTIES OF THE SOURCE=>MAGNETIC FIELD STRENGHT AND DIRECTION3) ACCELERATION OF PARTICLES

OBTAIN SYNTHETIC MAPS FROM NUMERICAL SIMULATIONS AND COMPAREWITH OBSERVATIONS: STUDY OF POLARIZATION

Page 23: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

IC emission recipes

Integration between distribution function (primordial and wind) and power per unit of frequency respect to ε and ν(Blumenthal&Gould, 1970)

Incident photon density per unit of frequency: IC from CMB target

IC from FIR target

IC from SYN target

nνIC−CMB = 8π

c3νt

2

ehνt /kBT

−1 blackbody formula → T= 2.7K

nνIC−FIR = 1

chνt

LνFIR

4πR2 Lν → uniformly emitting region of blackbody radiation

nνIC−SYN r

r ,νt( ) = 1chνt

jνsyn r

r ',νt ⎛ ⎝ ⎜

⎞ ⎠ ⎟

r r ' −

r r

∫ dV ' integration over the entire nebula

Page 24: Polarization in Pulsar Wind Nebulae Delia Volpi In collaboration with: L. Del Zanna - E. Amato - N. Bucciantini Dipartimento di Astronomia e Scienza dello.

Qν (ν ,Y ,Z ) =α +1

α + 5/3jν (ν ,X ,Y ,Z )cos2χdX

−∞

Uν (ν ,Y ,Z ) =α +1

α + 5/3jν

−∞

∫ (ν ,X ,Y ,Z )sin2χdX

r ′ e ∝

r ′ n ×

r ′ B emitted electric field in the comoving frame

r ′ b =

r ′ n ×

r ′ e radiated magnetic field

r e = γ

r ′ e -

γγ +1

r ′ e •

r β ( )

r β −

r β ×

r ′ b

⎣ ⎢

⎦ ⎥ Lorentz transformation

r e ∝

r n ×

r q in the plane of the sky

r q =

r B +

r n ×

r β ×

r B ( )

qY = 1− βX( )BY + βY BX qZ = 1− βX( )BZ + βZBX

cos2χ =qY

2 − qZ2

qY2 + qZ

2 sin2χ = -

2qYqZ

qY2 + qZ

2