Top Banner
MA THEMA TICS: C . A . NICOL o f contact. I every matrix X o A  ,uoB has a multiple characteristic root i t follows that C has a component which h a s t o b e counted double. Detailed proofs a nd extensions t o fields o f finite characteristic will appear elsewhere. I Motzkin, T . S . , a n d Taussky, Olga, Pairs o f Matrices with Property L, Trans. Amer. Math. Soc., 7 3 , 108-114, (1952). ON RESTRICTED PARTITIONS AND A GENERALIZATION O F THE EULER p NUMBER AND THE MOEBIUSFUNCTION B Y CHARLES A . NICOL UNIVERSITY O F TEXAS Communicated By H . S . Vandiver, June 2 3 , 1953 Introduction.-In the present paper w e shall treat the function n - I  z , x ) I I I (z-x8) ( 1 ) s = 1 mainly from a n arithmetic standpoint. Functions o this type have been studied extensively i n the theory o f partitions o f positive integers' where z i s replaced b y 1 o r - 1 a n d the range o f t h e product i s infinite. F o r example, a famous result d u e t o Euler f o r l x i < 1 m ay b e written a s co ( 1  X 1  2 1  3 . . . = 1  E  _j nX 1/i n 3n+1 2 n=  X Th e coefficients o f t h e series admit t h e following combinatorial interpre- tation. I f E(n) denotes the number o f partitions o f n into a n even number o f unequal parts a n d U(n) t h e number o f partitions o f n into a n o d d number o f unequal parts then ( 2 ) m ay b e stated i n t he following way. E(n) = U(n) except when n = 2 k(3k  1 , when E(n)  U(n) = (-1)k 2 T h e case where w e have only a finite number o f terms i n ( 2 ) h a s received comparatively little attention. I f in ( 1 ) w e l e t z = 1 w e have n- 1 F,,-  1 , x ) = I I (1  Xe). (3) s = 1 T h e coefficient o f x k f o r k < n will b e E(k)  U(k). Bu t t h e coefficient o f x k f o r k > n i s the number o f partitions o f k into a n even number o f unequal parts, none o f which i s larger than n , minus t h e number o f partitions o f k VOL. 3 9 , 1953 9 6 3
7

Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

Apr 14, 2018

Download

Documents

humejias
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 1/6

MATHEMA T I C S : C . A . NICOL

o f c o n t a c t . I f e v e r y m a t r i x X o A + , u o B h a s a m u l t i p l e c h a r a c t e r i s t i c r o o t

i t f o l l o w s t h a t C h a s a c o m p o n e n t w h i c h h a s t o b e c o u n t e d d o u b l e .

D e t a i l e d p r o o f s a n d e x t e n s i o n s t o f i e l d s o f f i n i t e c h a r a c t e r i s t i c w i l l a p p e a r

e l s e w h e r e .

I M o t z k i n , T . S . , a n d T a u s s k y , O l g a , " P a i r s o f M a t r i ce s w i t h P r o p e r t y L , " T r a n s .

A m e r . M a t h . S o c . , 7 3 , 1 0 8 - 1 1 4 , ( 1 9 5 2 ) .

ON RESTRICTED PARTITIONS AND A GENERALIZATION OFTHE EULER p NUMBER AND THE MOEBIUS FUNCTION

BY CHARLES A . N I C O L

U N I V E R S I T Y OF TEXAS

Communicated By H . S . V a n d i v e r , J u n e 2 3 , 1 9 5 3

I n t r o d u c t i o n . - I n t h e p r e s e nt p a p e r we s h a l l t r e a t t h e f u n c t i o n

n-I

( z , x ) I I I ( z - x 8 ) ( 1 )s = 1

m a i n l y f r o m a n a r i t h m e t i c s t a n d p o i n t .F u n c t i o n s o f t h i s t y p e h a v e b e e n s t u d i e d e x t e n s i v e l y i n t h e t h e o r y o f

p a r t i t i o n s o f p o s i t i v e i n t e g e r s ' w h e r e z i s r e p l a c e d b y 1 o r - 1 a n d t h e r a n g e

o f t h e p r o d u c t i s i n f i n i t e . F o r e x a m p l e , a f a m o u s r e s u l t d u e t o E u l e r f o r

l x i < 1 m a y b e w r i t t e n a s

co

( 1 - X ) ( 1 - 2 ) ( 1 - 3 ) . . . = 1 + E ( _ j ) n X ( 1 / i ) n ( 3 n + 1 ) ( 2 )n= -X

T h e c o e f f i c i e n t s o f t h e s e r i e s a d m i t t h e f o l l o w i n g c o m b i n a t o r i a l i n t e r p r e -

t a t i o n . I f E ( n ) d e n o t e s t h e n u m b e r o f p a r t i t i o n s o f n i n t o a n e v e n n u m b e ro f u n e q u a l p a r t s a n d U ( n ) t h e n u m b e r o f p a r t i t i o n s o f n i n t o a n o d d n u m b e r

o f u n e q u a l p a r t s t h e n ( 2 ) m a y b e s t a t e d i n t h e f o l l o w i n g w a y .

E ( n ) = U ( n ) e x c e p t w h e n n = 2 k ( 3 k + 1 ) , w h e n E ( n ) - U ( n ) = ( - 1 ) k2

T h e c a s e w h e r e we h a v e o n l y a f i n i t e n u m b e r o f t e r m s i n ( 2 ) h a s r e c e i v e dc o m p a r a t i v e l y l i t t l e a t t e n t i o n . I f i n ( 1 ) we l e t z = 1 we h a v e

n - 1

F , , - ( 1 , x ) = I I ( 1 -X e ) . ( 3 )s = 1

The c o e f f i c i e n t o f x k f o r k < n w i l l b e E ( k ) - U ( k ) . Bu t t h e c o e f f i c i e n t o fx k f o r k > n i s t h e number o f p a r t i t i o n s o f k i n t o an e v e n n u m b e r o f u n e q u a l

p a r t s , n o n e o f w h i c h i s l a r g e r t h a n n , m i n u s t h e n u m b e r o f p a r t i t i o n s o f k

V O L . 3 9 , 1 9 5 3 9 6 3

Page 2: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 2/6

MATHEMA T I C S : C . A . NICOL

i n t o a n o d d n u m b e r o f u n e q u a l p a r t s , n o n e o f w h i c h i s l a r g e r t h a n n . T h i s

t h e n i s a n e x t e n s i o n o f t h e a n a l o g o u s p r o b l e m a r i s i n g i n t h e u s e o f t h e i n -f i n i t e p r o d u c t .

A l s o i f z i s r e p l a c e d b y - 1 we c o n s i d e r t h e f o l l o w i n g f u n c t i o n .

n - i

( - ) n - l F n - _ ( - I x X ) = I ( 1 + x 8 ) . ( 4 )s - i

T h e c o e f f i c i e n t o f x " r e s u l t i n g f r o m t h e e x p a n s i o n o f t h i s p r o d u c t i s t h e

n u m b e r o f p a r t i t i o n s o f k a s a su m o f d i s t i n c t p o s i t i v e i n t e g e r s n o n e o fw h i c h i s l a r g e r t h a n n . T h i s m a y a l s o b e s t a t e d a s t h e n u m b e r o f s o l u t i o n s

o f t h e e q u a t i o n x 1 + 2 x 2 + . . . + ( n -l ) x - i= k , w h e r e f o r i = 1 , 2 , . . . ,( n - 1 ) , x i i s e i t h e r z e r o o r u n i t y .The p r o d u c t s ( 3 ) a n d ( 4 ) h a v e b e e n s t u d i e d b y C a u c h y , T . V a h l e n , v o n

S t e r n e c k , a n d o t h e r s . 2 I n p a r t i c u l a r v o n S t e r n e c k s t u d i e d t h e c a s e w h e r e

t h e p o l y n o m i a l r e s u l t i n g f r o m t h e e x p a n s i o n i s r e d u c e d m o d u l o a p o s i t i v ei n t e g e r .

F u n d a m e n t a l i n t h i s i n v e s t i g a t i o n w i l l b e t h e u s e o f t h e n u m b e r 3

c 1 ( k , n ) =v

( n ) _ A ( n / ( k , n ) ) , ( 5 )( p ( n / ( k , n ) )

w h e r e k a n d n a r e p o s i t i v e i n t e g e r s a n d ( k , n ) d e n o t e s t h e g r e a t e s t c o m m o nd i v i s o r o f k a n d n . I f n i s a p o s i t i v e i n t e g e r s o ( n ) d e n o t e s a s u s u a l t h e

n u m b e r o f p o s i t i v e i n t e g e r s l e s s t h a n n a n d p r i m e t o i t . ( s ( 1 ) = 1 . )A l s o , f o r n a p o s i t i v e i n t e g e r , p ( n ) i s z e r o i f n c o n t a i n s a r e p e a t e d p r i m e

f a c t o r . O t h e r w i s e u 2 ( n ) i s e q u a l t o ( - I ) T w h e r e Y i s t h e n u m b e r o f d i s -t i n c t p r i m e f a c t o r s o f n . ( , u ( 1 ) - 1 . ) N o t e t h a t ( 5 ) r e d u c e s t o , A ( n ) w h e n( k , n ) = 1 a n d p ( n ) w h e n ( k , n ) n . A l t h o u g h ( 5 ) a p p e a r s m o r e c o m p l i -

c a t e d t h a n i t s c o n s t i t u e n t s i t w i l l b e s h o w n t h a t m a n y o f t h e p r i n c i p a lt h e o r e m s c o n c e r n i n g i t a r e h a r d l y m o r e c o m p l e x t h a n t h o s e

i n v o l v i n gt h e

( p or I A n u m b e r a l o n e .T h e p r o p e r t i e s o f t h e c o e f f i c i e n t s i n t h e d e v e l o p m e n t o f ( 1 ) a r e e x t e n s i v e l y

u s e d t o o b t a i n p r o p e r t i e s o f ( 5 ) a n d v i c e v e r s a .We n o w s t a t e a n u m b e r o f t h e o r e m s w i t h o u t p r o o f . We h o p e t o p u b l i s h

t h e p r o o f s e l s e w h e r e .I n t h e f o l l o w i n g p a r a g r a p h s t h e s y m b o l [ x ] w i l l d e n o t e t h e l a r g e s t i n t e g e r

c o n t a i n e d i n t h e r e a l n u m b e r x . A l s o t h e s y m b o l $ ( a , b ) w i l l d e n o t e t h e

n u m b e r d e f i n e d i n ( 5 ) w h e r e a a n d b a r e p o s i t i v e i n t e g e r s .We h a v e i f k , r , a n d n a r e p o s i t i v e i n t e g e r s t h a t 4

E, e x p ( 2 r i r k / n ) = c 1 ( k , n ) , ( 6 )( r , n ) - 1

w h e r e t h e r a n g e o f r i s o v e r a l l p o s i t i v e i n t e g e r s l e s s t h a n n a n d p r i m e t oi t . ( j 2 = - 1 . )

9 6 4 P R O C . N . A . S .

Page 3: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 3/6

MATHEMA T I C S : C . A . NICOL

" , W e a l s o h a v e

T H I E O R E M 1 . -

d i nd O o t h e r w i s e .

S i m i l a r l y

( 0 i f ( k , n ) $ n .

> Z ( _ l ) d D ( k , n / d ) = ( - n i f ( k , n ) = n , n e v e n . ( 8 )d i n ( O i f ( k , n ) =n ,n o d d .

We m a y a l s o p r o v eTHEOREM 2 . L e t a . ( k ) d e n o t e t h e sum o f t h e d i v i s o r s o f k l e s s t h a n o r e q u a l

t o n . T h e n ,

n

, [ n / s ] P ( k , s ) = o a n ( k ) . ( 9 )s = 1

I n c a s e k = 1 t h i s b e c o m e s t h e w e l l - k n o w n r e l a t i o n "

n

E [ n / s ] A ( s ) = 1 .

A l s o i f k i s r e p l a c e d b y n ! we h a v e a n o t h e r known r e s u l t 6

n

E [ n / s ] s p ( s ) = n ( n + 1 ) / 2 .s = l

THEOREM 3 . I f 5 n , t h e n

( d / ) - 1 ( k , b / d ) 0 ( m o d . n ) . ( 1 0 )

C O R O L L A R Y . I f n o w p d e n o t e s a n o d d p r i m e a n d a i s a p o s i t i v ei n t e g e r , t h e n

pa) (pa/1) ( m o d . n ) . ( l O a )

THEOREM 4 .

, R , ( d ) c I ( k , n / d ) =0 ( m o d . n ) , ( 1 1 )d l n

w h e r e

R s ( d ) =9d ) ( _ 1 ) a

a n d t h i s sum i s o v e r a l l i n t e g r a l s o l u t i o n s a t o f t h e e q u a t i o n ( n l d ) a + , = s

w h e r e O < s< n , 0 . a < d , 0 . < n / d .

V O L . 3 9 , 1 9 5 3 9 6 5

Page 4: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 4/6

MA THEMA T I C S : C . A . NICOL

C o n s i d e r n o w t h e f u n c t i o n F , n - ( z , x ) d e f i n e d i n ( 1 ) . I f n > 1 a n d t h e

p r o d u c t i s e x p a n d e d a s a p o l y n o m i a l i n x , we m a y w r i t e

n

F P - 1 ( z , x ) = E P , ( z ) x 8 , ( 1 2 )s=O

w h e r e n i = n ( n - 1 ) / 2 a n d P . ( z ) i s a p o l y n o m i a l i n z . Then we m a y d e f i n et h e p o l y n o m i a l B , ( z ) a s

M g

B j ( z ) = E P k n + t ( Z ) , ( 1 3 )k =O

w h e r e n , = [ ( n - 1 ) / 2 -t / n ] a n d 1 < t < n .

T h e n we m a y o b t a i n

THEOREM 5 . I f z i s a n u m b e r d i f f e r e n t f r o m u n i t y , t h e n

B , ( z ) = 1 ( z n / d - ) d - W ( t , n / d ) , ( 1 4 )n ( z - 1 ) d l n

w h e r e 1 < t < n a n d B t ( z ) i s d e f i n e d i n ( 1 3 ) .D e n o t e t h e p o l y n o m i a l d e f i n e d b y t h e f u n c t i o n F . - 1 ( 1 , x ) i n ( 3 ) b y

E A o x , w h e r e n j = n ( n - 1 ) / 2 . - ( 1 5 )s-O

A l s o d e f i n e t h e n u m b e r C , b y t h e r e l a t i o n

M c

C:=E A k * + : , w h e r e n , = [ ( n - 1 ) / 2 - t / n ] . ( 1 5 a )k =O

T h e n we o b t a i n t h e f o l l o w i n gTHEOREM 6 .

C t = n ( t , ) , ( 1 6 )w h e r e C , i s d e f i n e d i n ( 1 5 a ) .THEOREM 7 .

in

i o ( n ) =- E C 2 , ( 1 7 )n t = l

w h e r e C s i s d e f i n e d i n ( 1 5 a ) .I n v i e w o f t h e o r e m 6 we m a y w r i t e t h e o r e m 7 a s

l i n

s p ( n ) = - E j 1 2 ( t , n ) . ( 1 8 )n t = i

An o b s e r v a t i o n o f p o s s i b l e i n t e r e s t m a y b e made c o n c e r n i n g t h e o r e m

7 i f i t i s n o t e d t h a t C , ( o ( n ) . T h e n ( 1 7 ) b e c o m e s a q u a d r a t i c r e l a t i o n i n( p ( n ) . E m p l o y i n g t h e q u a d r a t i c f o r m u l a we f i n d

9 6 6 P RO C . N . A . S .

Page 5: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 5/6

MATHEMA T I C S : C . A . NICOL

( p ( n ) = ( n ' V / n 2 - 4 G ( n ) ) / 2 , ( 1 9 )n - 1

w h e r e G ( n ) = E C.

E x c e p t i n t h e c a s e when s o ( n ) = n / 2 o n l y o n e o f t h e r o o t s o f ( 1 9 ) c o r r e -

s p o n d s t o s p ( n ) . T h e s i g n i f i c a n c e o f t h e r e m a i n i n g r o o t h a s n o t b e e n d e t e r -m i n e d a n d w o u l d s e e m t o b e o f i n t e r e s t .

I f x i s r e p l a c e d b y e x p ( i O ) , w h e r e i 2 = - 1 , we o b t a i n t h e f o l l o w i n g

THEOREM 8 .

4 ( t , n ) =2

f

{ F n _ - ( e x p ( i 6 ) )E

e x p ( - ( k n+ t ) i O ) } d O , ( 2 0 )

n - I

w h e r e F n _ i ( e x p ( i O ) ) = I ( 1 - e x p ( s i O ) ) a n d l n f = [ ( n - 1 ) / 2 - t / n ] .$=1

S i m i l a r l y f o r t h e n u m b e r s A g d e f i n e d i n ( 1 5 ) w e h a v e

1 ( 2wA t = J r 1 F n - l ( e x p ( i O ) ) ( e x p ( - t i O ) ) ) d O . ( 2 1 )

F u r t h e r m o r e t h e n u m b e r s A , d e f i n e d i n ( 1 5 ) h a v e t h e f o l l o w i ng p r o p e r -

t i e s :

n

j AA > n , ( 2 2 )s=O

w h e r e n i = n ( n - 1 ) / 2 .

A r a t h e r u n u s u a l p r o p e r t y o f t h e s e n u m b e r s i s :

T H E O R E M 9 . I f d i ( n - 1 ) , t h e n

A =0 , ( 2 3 )( s , n-1) =d

w h e r e 0 < s < n ( n - 1 ) / 2 .A b y - p r o d u c t o f t h e s e i n v e s t i g a t i o n s i s t h e f o l l o w i n g r e s u l t : I f p i s a n

o d d p r i m e , t h e i n t e g r a l r o o t s o f t h e c o n g r u e n c e

p - 1

1 + E c b ( s , p - 1)xSO0 ( m o d . P ) ( 2 4 )s= 1

a r e t h e i n c o n g r u e n t p r i m i t i v e r o o t s m o d u l o p .

I f w e c o n s i d e r t h e f u n c t i o n d e f i n e d i n ( 4 ) we m a y o b t a i n t h e f o l l o w i n g :I f n i s a n o d d p o s i t i v e i n t e g e r a n d t i s a n i n t e g e r s u c h t h a t 1 < t < n , t h e n

B t ( - 1 ) = - E 2 d 4 ( t , n l d ) , ( 2 5 )2n d i n

w h e r e B , ( z ) i s d e f i n e d - i n ( 1 3 ) .

VOL. 3 9 , 1953 9 6 7

Page 6: Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

7/27/2019 Pnas01594-0071 Restricted Partitions and Generalizations of the Euler Number and the Moebius Function

http://slidepdf.com/reader/full/pnas01594-0071-restricted-partitions-and-generalizations-of-the-euler-number 6/6

9 . 6 8 M A THEMA T I C S : C . A . NICOL

S i n c e B , ( z ) i s a p o l y n o m i a l w i t h i n t e g r a l c o e f f i c i e n t s t h e n u m b e r B , ( 1 )

i s a n i n t e g e r .I n p a r t i c u l a r , i f n i s o d d a n d t i s l e s s t h a n n a n d p r i m e t o i t , t h e r n

B t ( - 1 ) =-E 2 d , ( n / d ) . ( 2 6 )2 n d l - n

T h i s n u m b e r i s a g e n e r a l i z a t i o n o f t h e F e r m a t Q u o t i e n t , ( 2 P - 1 - 1 ) / p ,w h e r e p d e n o t e s a n o d d p r i m e .

A c k n o w l e d g m e n t . - T h e a u t h o r i s i n d e b t e d t o H . S . V a n d i v e r f o r h i sm a n y h e l p f u l s u g g e s t i o n s a n d e n c o u r a g e m e n t .

I D i c k s o n , L . E . , H i s t o r y o f t h e T h e o r y o f N u m b e r s , V o l . 2 , c h a p t e r 3 , C a r n e g i e I n s t . o fW a s h i n g t o n , P u b l i ca t i o n N o . 2 5 6 ( 1 9 2 0 ) .

B a c h m a n n , P . , " N i e d e r e Z a h l e n t h e o r i e , " Z w e i t e r T e i l , c h a p t e r s 3 - 6 , B . G . T e u b n e r ,

L e i p z i g , 1 9 1 0 .

2 V a h l e n , T . , B a c h m a n n , P . , I b i d . , 1 1 6 , 1 6 7 , 2 7 3 .Vo n S t e r n e c k , S i t z u n g s b e r . d . W i e n e r A k a d . , 1 1 1 , 1 5 6 7 ( 1 9 0 2 ) ; 1 1 3 , 3 2 6 ( 1 9 0 4 ) ;

1 1 4 , 7 1 1 ( 1 9 0 5 ) .

C a u c h y , O e u v r e s D ' A u g u s t i n C a u c h y , 5 ( s e r i e s 1 ) , 8 1 - 8 5 , 1 3 5 - 1 5 2 . P a r i s , G a u t h i e r -

V i l l a r s ( 1 8 8 5 ) .3 Vo n S t e r n e c k ( P . B a c h m a n n , I b i d . ) i n t r o d u c e d a f u n c t i o n e q u i v a l e n t t o c b ( k , n ) .

H e u s e d i t t o o b t a i n r e s u l t s c o n c e r n i n g p a r t i t i o n s m o d u l o a p o s i t i v e i n t e g e r . E m p l o y i n gt h i s f u n c t i o n h e o b t a i n e d a s p e c i a l c a s e o f t h e o r e m 1 .Th e n u m b e r ' ( k , n ) was u s e d b y R . M o l l e r i n t h e f o l l o w i n g r e s u l t ( M a t h . M o n t h l y ,

5 9 , N o . 4 , 2 2 8 ( A p r i l 1 9 5 2 ) ) . I f t h e n u m b e r s g d a r e a l l o f t h e i n c o n g r u e n t i n t e g e r sb e l o n g i n g t o d m o d u l o p , p b e i n g a n o d d p r i m e a n d d a d i v i s o r o f p - 1 , t h e n f o r

any r , E g d =(r, d ) ( m o d . p )

4 T h e su m E e x p ( 2 x r i r k / n ) i s known a s R a m a n u j a n ' s su m ( c f . , H a r d y , G . H .( r , n ) = 1

a n d W r i g h t , E . M . , I n t r o d u c t i o n t o t h e N u m b e r T h e o r y , O x f o r d , 1 9 3 8 . p p . 5 5 , 2 3 7 ) . A n o t h e r

c l o s e d f o r m f o r t h i s su m was f o u n d p r e v i o u s l y b y T . M. A p o s t a l a n d D . R . A n d e r s o n

a n d s t a t e d b y them i n a n a b s t r a c t i n B u l l . Am. M a t h . S o c . , 5 8 , N o . 5 , 5 5 9 ( 1 9 5 2 ) . Th e

f o r m t h e y f o u n d i n o u r n o t a t i o n i s c J ( b ) 3 ( a ) / o p ( c ) w h e r e a = ( n , k ) : b = n / a , a n d c =( a , b ) . I f , u ( b ) . Owe h a v e t h e r e l a t i o n p ( n ) / , o ( b ) = c , ( a ) / , i ( c ) .

N a g e l l , T . , I n t r o d u c t i o n t o N u m b e r T h e o r y , U p p s a l a , 1 9 5 1 , p . 4 3 .R e v i e w o f P e r e z - C a c h o , " T h e F u n c t i o n E ( x ) i n t h e T h e o r y o f N u m b e r s , " M a t h .

R e v i e w s , 1 8 , 9 1 3 , ( 1 9 5 2 ) .

9 6 8 P R O C . N . A . S .