Top Banner

of 50

Pleno Skenario D Blok 7 2012

Apr 03, 2018

Download

Documents

Syarif A
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/28/2019 Pleno Skenario D Blok 7 2012

    1/50

    Pleno scenario D

    bloc 7

    dr.Swanny,MSc

    Physiology dept.

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    2/50

    Scenario D

    An old lady, 63 years old.

    -Hypertensive

    -Low salt diet-Diuretic (HCT)

    Chief complaint : Lethargy

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    3/50

    Kriteria Hypertensi

    menurut JNC7

    Kriteria Sistolik (mmHg) Diastolik (mmHg)

    Normal < 120 < 80

    Prehypertension 120 - 139 80 - 89

    Stage I hypertension 140 - 159 90 - 99

    Stage II hypertension > 160 > 100

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    4/50

    Total Body Water Distribution

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    5/50

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    6/50

    K+

    Mg++

    Ca++A-

    Na+

    Cl-

    HCO3-

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    7/50

    Exchange of Water Between Cellular and

    Extracellular Fluids

    Osmotic Forces

    - prime determinants of water distribution in the body

    - holds water within a space

    Osmosis

    - movement of water from one compartment to another

    - ECF and ICF are in equilibrium when cell membranes

    are freely permeable to water

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    8/50

    Exchange of Water Between Cellular and

    Extracellular Fluids

    Osmotic gradient

    - if one osmotic force is higher in onecompartment osmotic gradient

    - water flows from space of low osmolality(less solutes) to higher osmolality (more

    solutes)

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    9/50

    Major Osmotic Forces

    1. Extracellular osmole

    - Na+ salts

    2. Intracellular osmole

    - K+ salts

    3. Vascular Osmoles

    - plasma proteins

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    10/50

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    11/50

    Why is Na important?

    Osmotic Equilibrium

    Osmolality: 280-295 mOsm/Kg H20 85-95% Na is extracellular

    Cell function relies on maintenance of body fluid tonicity

    Present as disorders of water balance:

    Altered Na and Water content: Regulation of volume and osmolality

    Alterations in Na levels manifest as:

    ECF volume depletion

    Hypotension

    Tachycardia

    ECF volume overload

    Peripheral edema

    Pulmonary Edema

    Water balance regulated through ADH (AVP; vasopressin)

    Hypothalamus: Thirst Control Center

    Washington Manual of Therapeutics

    Palmer, Biff F., John R. Gates, and Malcolm Lader. "Causes and Management of Hyponatremia." The Annals of

    Pharmacotherapy37 (2003): 1694-701.

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    12/50

    The Basics:

    Plasma Na concentration too LOW

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    13/50

    Water Homeostasis

    Sodium = Extracellular Tonicity/Osmolality = Water

    balance

    Brain Osmoreceptors

    Vasopressin

    AquaporinChannels in CT Urinary concentration

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    14/50

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    15/50

    Na Regulation

    Thirst

    ADH most common cause of hypoNa

    Excrete dilute urine Retention of H2O (salt to lesser extent)

    May be appropriate or inappropriate

    RAAS

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    16/50

    ADH

    No ADH: ADH Present:

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    17/50

    CNS Manifestations

    Osmotic Cerebral Edema

    H2O from Plasma Brain cells

    Mild: N/V, HA, Malaise

    Severe: AMS, Hyporeflexia, Seizures, Coma

    Nausea: stimulus for ADH release

    Inc ADH H2O retentionWorse HypoNa

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    18/50

    Major Causes

    Appropriate ADH Release:

    ECV depletion: dec perfusion

    True volume depletion

    Heart failure (dec CO)

    Cirrhosis (Arterial vasodil)

    Thiazide diuretics

    Physiologic ADH Release:

    Pain

    Nausea

    Inappropriate ADH Release:

    Reset osmostat

    SIADH

    Adrenal Insufficiency

    Hypothyroidism

    Pregnancy

    Appropriate ADH Suppression:

    Advanced renal failure Primary polydipsia

    Beer Potomania

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    19/50

    Pathophysiology of Hyponatremic State

    How do patients develop hyponatremia?

    Why do they stay hyponatremic?

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    20/50

    Effective Circulating

    Volume Depletion

    ADH secretion

    Proximal

    reabsorption

    Thirst K+ loss

    Water

    intakePlasma

    K+

    Water retention

    Persistent volume depletion

    Urine Na+

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    21/50

    Pathophysiologic Factors that Diminish Renal

    Water Excretion

    Diminished generation of free water in the Loop of

    Henle and distal tubule

    Decreased fluid delivery into these segments

    Effective volume depletion

    Renal Failure

    Inhibition of NaCl reabsorption

    Diuretic use

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    22/50

    Hyponatremia

    Types

    Hypovolemic hyponatremia

    Euvolemic hyponatremia

    Hypervolemic hyponatremia

    Redistributive hyponatremia

    Pseudohyponatremia

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    23/50

    Hypovolemic hyponatremia

    develops as sodium and free

    water are lost and/or replaced

    by inappropriately hypotonic

    fluids

    Sodium can be lost through

    renal or non-renal routes

    www.grouptrails.com/.../0-Beat-Dehydration.jpg

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    24/50

    Hypovolemic hyponatremia

    Nonrenal loss

    GI losses

    Vomiting, Diarrhea, fistulas, pancreatitis

    Excessive sweating

    Third spacing of fluids

    ascites, peritonitis, pancreatitis, and burns

    Cerebral salt-wasting syndrome traumatic brain injury, aneurysmal subarachnoid

    hemorrhage, and intracranial surgery

    Must distinguish from SIADH

    www.jupiterimages.com

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    25/50

    Hypovolemic hyponatremia

    Renal Loss

    Acute or chronic renal insufficiency

    Diuretics

    www.ct-angiogram.com/images/renalCTangiogram2.jpg

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    26/50

    Euvolemic hyponatremia

    Normal sodium stores and a total body excess

    of free water

    Psychogenic polydipsia, often in psychiatric

    patients

    Administration of hypotonic intravenous or

    irrigation fluids in the immediate postoperative

    period

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    27/50

    Euvolemic hyponatremia

    administration of hypotonic maintenance

    intravenous fluids

    Infants who may have been given inappropriate

    amounts of free water bowel preparation before colonoscopy or

    colorectal surgery

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    28/50

    Euvolemic hyponatremia

    SIADH

    downward resetting of the osmostat

    Pulmonary Disease

    Small cell, pneumonia, TB, sarcoidosis

    Cerebral Diseases

    CVA, Temporal arteritis, meningitis, encephalitis

    Medications SSRI, Antipsychotics, Opiates, Depakote, Tegratol

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    29/50

    Hypervolemic hyponatremia

    Total body sodium increases, and TBW

    increases to a greater extent.

    Can be renal or non-renal

    acute or chronic renal failure

    dysfunctional kidneys are unable to excrete the

    ingested sodium load

    cirrhosis, congestive heart failure, or nephroticsyndrome

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    30/50

    Redistributive hyponatremia

    Water shifts from the intracellular to theextracellular compartment, with a resultant

    dilution of sodium. The TBW and total body

    sodium are unchanged.

    This condition occurs with hyperglycemia

    Administration of mannitol

    http://images.google.com/imgres?imgurl=http://www1.istockphoto.com/file_thumbview_approve/2803967/2/istockphoto_2803967_high_blood_sugar.jpg&imgrefurl=http://www.istockphoto.com/file_closeup/%3Fid%3D2803967%26refnum%3D638407&h=253&w=380&sz=26&hl=en&start=3&tbnid=1x19YVIiAoj7xM:&tbnh=82&tbnw=123&prev=/images%3Fq%3Dblood%2Bsugar%26gbv%3D2%26hl%3Denhttp://www.neurobiology.com/index.html
  • 7/28/2019 Pleno Skenario D Blok 7 2012

    31/50

    Hyponatremia

    Pseudohyponatremia

    The aqueous phase is diluted by excessive

    proteins or lipids. The TBW and total body sodium

    are unchanged.

    hypertriglyceridemia

    multiple myeloma

    http://images.google.com/imgres?imgurl=http://v.mercola.com/ImageServer/public/2007/07--july/7.12triglycerides.jpg&imgrefurl=http://v.mercola.com/blogs/public_blog/Triglycerides-Explained-27640.aspx&h=300&w=400&sz=43&hl=en&start=6&tbnid=jvfqAjnf4yu_AM:&tbnh=93&tbnw=124&prev=/images%3Fq%3Dtriglycerides%26gbv%3D2%26hl%3Den
  • 7/28/2019 Pleno Skenario D Blok 7 2012

    32/50

    Diuretics

    Excretion of Water and Electrolytes

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    33/50

    Background

    Primary effect of diuretics is to increase solute excretion, mainly asNaCl

    Causes increase in urine volume due to increased osmotic pressurein lumen of renal tubule.

    Causes concomitant decrease in extra-cellular volume (blood

    volume) Certain disease states may cause blood volume to increase outside

    of narrowly defined limits

    Hypertension

    Congestive heart failure

    Liver cirrhosis Nephrotic syndrome

    Renal failure

    Dietary Na restriction often not enough to maintain ECF andprevent edema diuretics needed

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    34/50

    Review of Kidney Structure

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    35/50

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    36/50

    Types of diuretics and therapeutic uses

    Loop diuretics (ascending limb of loop)

    Hypertension, in patients with impaired renalfunction

    Congestive heart failure (moderate to severe) Acute pulmonary edema

    Chronic or acute renal failure

    Nephrotic syndrome

    Hyperkalemia

    Chemical intoxication (to increase urine flow)

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    37/50

    Types of diuretics and therapeutic uses

    Thiazide diuretics (distal convoluted tubule)

    Hypertension

    Congestive heart failure (mild)

    Renal calculi

    Nephrogenic diabetes insipidus

    Chronic renal failure (as an adjunct to loop

    diuretic) Osteoporosis

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    38/50

    Types of diuretics and

    therapeutic uses

    Potassium-sparing diuretics (collecting tubule)

    Chronic liver failure

    Congestive heart failure, when hypokalemia is a problem

    Osmotic agents (proximal tubule, descending loop ofHenle, collecting duct)

    Reduce pre-surgical or post-trauma intracranial pressure

    Prompt removal of renal toxins

    One of the few diuretics that do not remove large amounts ofNa+

    Can cause hypernatremia

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    39/50

    Nephron sites of action of diuretics

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    40/50

    Background to Mechanisms of Action of Diuretics

    Previously told that reabsorption, secretion occurred along renaltubule but not howthis was accomplished

    Movement from tubular fluid through renal epithelial cells and intoperitubular capillaries accomplished by three transport mechanismsafter cell interior is polarized by Na+/K+ pump

    1. Channels formed by membrane proteins

    Allows only sodium to pass through

    2. Cotransport Carrier mediated

    Simultaneously transports both Na+ and other solute (Cl-, glucose, etc)

    from tubular lumen into renal epithelial cell3. Countertransport

    Carrier mediated

    Transports Na in, another solute (H+) out of renal epithelial cell

    Water moves transcellularly in permeable segments or via tight

    junctions between renal epithelial cells

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    41/50

    Electrolyte Transport Mechanisms

    Channel

    Cotransport

    Countertransport

    Na+/K+ pump

    X = glucose, amino

    acids, phosphate,etc.

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    42/50

    Mechanisms of Action:

    Carbonic anydrase inhibitors

    CAIs work on cotransport of Na+, HCO3- and Cl- that is coupled to H+

    countertransport

    Acts to block carbonic anhydrase (CA),

    1. CA converts HCO3-

    + H+

    to H2O + CO2 in tubular lumen2. CO2 diffuses into cell (water follows Na

    +), CA converts CO2 + H2O intoHCO3

    - + H+

    3. H+ now available again for countertransport with Na+, etc)

    4. Na+ and HCO3- now transported into peritubular capillary

    CA can catalyze reaction in either direction depending on relativeconcentration of substrates

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    43/50

    Mechanisms of Action: Loop diuretics No transport systems in descending loop of Henle

    Ascending loop contains Na+

    - K+

    - 2Cl-

    cotransporter from lumen to ascending limbcells

    Loop diuretic blocks cotransporter Na+, K+, and Cl- remain in lumen, excretedalong with water

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    44/50

    Mechanisms of Action: Thiazide Diuretics in

    the Distal Convoluted Tubule

    Less reabsorption of water and electrolytes in the distalconvoluted tubule than proximal tubule or loop

    A Na+ - Cl- cotransporter there is blocked by thiazides

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    45/50

    Mechanisms of Action: Collecting tubule and

    potassium-sparing diuretics

    Two cell types in collecting tubule

    1. Principal cells transport Na, K, water

    2. Intercalated cells secretion of H+ and HCO3

    3. Blocking Na+ movement in also prevents K+ movement out

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    46/50

    Types and Names of Diuretics

    Osmotic agents Mannitol Proximal tubuleDescending loop

    Collecting duct

    Carbonicanydrase inhib. AcetazolamideProximal tubule

    Thiazides Hydrochlorothiaz

    ide

    Distal convoluted

    tubule

    Loop diuretic Ethacrynic acid

    Furosemide

    Loop of Henle

    Type Example Sites of Action

    K+

    - sparingSpironolactone

    Amiloride

    Collecting tubule

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    47/50

    Thiazide diuretics

    Developed to preferentially increase Cl-

    excretion over HCO3- excretion (as from CAIs)

    Magnitude of effect is lower because work on

    distal convoluted tubule (only recieves 15% of

    filtrate)

    Cause decreased Ca excretion

    hypercalcemia reduce osteoporosis

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    48/50

    Comparison of loop and thiazide diuretics

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    49/50

    Summary

    Hypertensive salt restriction

    hyponatremia

    Hypertensive HCT/ diuretic diuresis and

    hyponatremia continues dehydration

    hypovolemic hyponatremia

  • 7/28/2019 Pleno Skenario D Blok 7 2012

    50/50

    Thank you