Top Banner
Laboratoire de Physique des Plasmas Plasmas radiofréquence à couplage capacitive: effet de la fréquence, les mélanges de fréquences et la forme d'onde Jean-Paul Booth
72

Plasmas radiofréquence à couplage capacitive: effet de la ...

Feb 19, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Plasmas radiofréquence à couplage capacitive: effet de la ...

Laboratoire de Physique des Plasmas

Plasmas radiofréquence à couplage capacitive:

effet de la fréquence,

les mélanges de fréquences

et la forme d'onde

Jean-Paul Booth

Page 2: Plasmas radiofréquence à couplage capacitive: effet de la ...

Radiofrequency capacitively-coupled plasmas

~ V

E

Low-pressure: ωRF >> ω collision e-neutral

RF generator: 1 MHz < ωRF < 100MHz Often 13.56 MHz Why?

Substrate: -Often insulating -damaged by DC current DC discharge not suitable!

Processing by ions: -flux -energy -composition (+ reactive neutrals)

Page 3: Plasmas radiofréquence à couplage capacitive: effet de la ...

Plasma response to RF fields

MHz GHz

�<�pe �>�pe

Electron-Plasma frequency

�pe 2

0

epe

e

e nm

ωε

=

fpe ≈ 1 GHz @ 1010cm-3

Page 4: Plasmas radiofréquence à couplage capacitive: effet de la ...

Plasma response to RF fields

MHz GHz

Conductor

�<�pe

Dielectric

�>�pe

�pe Electron-Plasma frequency

Waves absorbed; Electrons accelerated

Waves propagate

Page 5: Plasmas radiofréquence à couplage capacitive: effet de la ...

Plasma response to RF fields

MHz GHz

�<�pe �>�pe

Electron-Plasma frequency

�pe

Ion-Plasma frequency �pi

2

0

epe

e

e nm

ωε

=

2

0

epi

i

e nm

ωε

=

fpe ≈ 1 GHz @ 1010cm-3 fpi ≈ 3 MHz for Ar @ 1010cm-3

Page 6: Plasmas radiofréquence à couplage capacitive: effet de la ...

Plasma response to RF fields

MHz GHz

Conductor

�<�pe

Dielectric

�>�pe

�pe Electron-Plasma frequency

�pi Ion-Plasma frequency

Electrons accelerated

Ions accelerated

Page 7: Plasmas radiofréquence à couplage capacitive: effet de la ...

Plasma response to RF fields

MHz GHz

Electrons absorb waves: ⇒ electrons heated Ions do not respond

⇒ Ions cold

�pe Electron-Plasma frequency

�pi Ion-Plasma frequency

RF domain

Page 8: Plasmas radiofréquence à couplage capacitive: effet de la ...

Why Radiofrequency excitation?

•  Substrates are often insulating •  Drawing current through a device causes damage

•  Heat electrons not ions – ωpion < ωRF < ωpe –  However, ions accelerated by DC fields at boundaries

•  Uniform over large areas : λRF >> substrate (not microwave!)

•  In practice, 1 – 100 MHz, often 13.56 MHz

DC discharges not suitable!

Page 9: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

Electron velocity (Te = 3eV) ?

Imagine a uniform plasma created between two electrodes:

Page 10: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

16, 108 −≈= ms

mkTve

eeth π

Electron velocity

Page 11: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

16, 108 −≈= ms

mkTve

eeth π

14, 108 −≈= ms

mkTvi

iith π

Electron velocity Ion velocity

What is the flux of particles to the surfaces? What effect will this have?

Page 12: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

More electrons leave than ions: Space Potential?

Electrons

Ions

Page 13: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

Potential

Loss of electrons causes the plasma space potential to increase until electron flux = ion flux

Page 14: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

Potential

High field boundary regions created near walls : Space-charge SHEATHS

Page 15: Plasmas radiofréquence à couplage capacitive: effet de la ...

Sheaths and Plasma potential

Potential

Electrons pushed towards the centre: Ions accelerated towards surfaces At steady state,

Ion flux= electron flux

Ion velocity out of bulk plasma = sound speed (Bohm velocity) - Limits ion flux

ion

eBohm m

kTv =

Page 16: Plasmas radiofréquence à couplage capacitive: effet de la ...

Radiofrequency Sheaths I

V

Big electron current

Vp

Page 17: Plasmas radiofréquence à couplage capacitive: effet de la ...

Radiofrequency Sheaths

Isat

I

V

Small ion current

Vp

Page 18: Plasmas radiofréquence à couplage capacitive: effet de la ...

Radiofrequency Sheaths

Radiofrequency field is rectified by the sheath non-linearity: -DC sheath voltage must increase to balance fluxes

Isat

I

V

Big electron current

Small ion current

Vp

Page 19: Plasmas radiofréquence à couplage capacitive: effet de la ...

Distribution de potentiels RF

Quand la surface polarisée en RF est de taille non-négligeable, le potentiel plasma est perturbé par le RF. La tension RF est repartie selon les capacités respectives des gaines:

VRF

Vplasma

VRF

C1

C2

Vplasma tVVV plasmaplasmaplasma ωcosʹ+=

Pont diviseur capacitif: ≡

RFplasma VCC

CV .21

2

+=ʹ

surfaceC ∝

Page 20: Plasmas radiofréquence à couplage capacitive: effet de la ...

Distribution de potentiels continus

VRF

C1

C2

Vplasma

Mais la gaine est non-linéaire: courant d'électrons >> courant d'ions ⇒ se comporte comme une diode ⇒ rectification de la tension (autopolarisation)

n

SS

VV

⎟⎟⎠

⎞⎜⎜⎝

⎛=ʹʹ

1

2

2

1

Repartition des tensions depend de l’inverse du rapport des surfaces des electrodes :

n≈ 2.5 (selon theorie)

Page 21: Plasmas radiofréquence à couplage capacitive: effet de la ...

Ion Energy Control : RF biased substrates

Capacitive coupling ( E-mode)

Substrate on small electrode: High energy ion bombardment ~ V

Sheath E

Page 22: Plasmas radiofréquence à couplage capacitive: effet de la ...

Reacteurs grand surface: Plasma symétrique

VRF

Potentiel

d 0

Surfaces égales: C1 = C2 V’plasma = VRF/2 :

-potentiel plasma fortement modulé

Page 23: Plasmas radiofréquence à couplage capacitive: effet de la ...

Laboratoire de Physique des Plasmas

Effects of frequency

Page 24: Plasmas radiofréquence à couplage capacitive: effet de la ...

Effect of RF frequency

13,56 MHz : Low ion flux High Ion energy Increasing voltage increases energy and flux simultaneously How to get high flux at low energy?

Page 25: Plasmas radiofréquence à couplage capacitive: effet de la ...

Equivalent circuit for the capacitive discharge

Page 26: Plasmas radiofréquence à couplage capacitive: effet de la ...

Equivalent circuit for the capacitive discharge

Sheath capacitance : highest impedance ⇒ controls current

Page 27: Plasmas radiofréquence à couplage capacitive: effet de la ...

Equivalent circuit for the capacitive discharge

Sheath capacitance : highest impedance ⇒ controls current

Sheath resistance : most power absorbed here: Ion acceleration Electron heating ⇒ density

Page 28: Plasmas radiofréquence à couplage capacitive: effet de la ...

Equivalent circuit for the capacitive discharge

Sheath capacitance : highest impedance ⇒ controls current

Sheath resistance : most power absorbed here: Ion acceleration Electron heating⇒density

Bulk plasma resistance : Becomes more important at higher pressure

Bulk inductance : Electron inertia Increased effect with frequency

Page 29: Plasmas radiofréquence à couplage capacitive: effet de la ...

Effect of RF frequency

13,56 MHz : Low ion flux High Ion energy Increasing voltage increases energy and flux simultaneously How to get high flux at low energy?

Page 30: Plasmas radiofréquence à couplage capacitive: effet de la ...

Effect of RF frequency

Electrons heated by expanding sheath front Increasing frequency heats electrons more efficiently than ions: Allows high ion flux at low energy

Page 31: Plasmas radiofréquence à couplage capacitive: effet de la ...

Theory: Effect of frequency

Increase the frequency to increase the plasma density

Page 32: Plasmas radiofréquence à couplage capacitive: effet de la ...

Ion acceleration in an oscillating (RF) sheath

Low frequency -Ions see time-varying field

High frequency Ions only see time-averaged field

Page 33: Plasmas radiofréquence à couplage capacitive: effet de la ...

Énergie des ions

Les ions sont donc accélères dans la gaine et bombardent la surface avec une grande énergie. Cependant, selon la fréquence appliqué, les ions ne sont pas mono-énergétiques:

Basse fréquence - L ’énergie dépend de la phase RF quand l ’ion est rentré dans la gaine Temps de transit: (100 ns pour Ar+/100V/1mm)

Haute fréquence - les ions ne voient que le champ électrique moyenne

Vemdt +=2

Page 34: Plasmas radiofréquence à couplage capacitive: effet de la ...

0,0 0,1 0,2 0,3 0,4 0,510

100

1000

13.56 MHz

40.68 MHz

81.36 MHz

Ene

rgie

des

ions

(V

)

Flux d'ions Ji (mA.cm-2)

15 mTorr

Frequency: Ion energy vs Ion flux

Ion flux = 0.06mA/cm2 15 mTorr

0 20 40 60 80 100 120 140 160 180 200 2200,000

-0,005

-0,010

-0,015

-0,020

-0,025

-0,030

dIC /d

VD (

u.a.

)

VD (V)

Derivative of Data32_Coll

81.36 MHz

sm = 1.2 mm

0 20 40 60 80 100 120 140 160 180 200 2200,0000

-0,0002

-0,0004

-0,0006

-0,0008

-0,0010

-0,0012

dIC /d

VD (

u.a.

)

VD (V)

Derivative of Smoothed1_Data1Coll

13.56 MHz

sm = 7 mm

Page 35: Plasmas radiofréquence à couplage capacitive: effet de la ...

Electromagnetic effects at high frequency

~

z

r 0

R

Ez

Er

Page 36: Plasmas radiofréquence à couplage capacitive: effet de la ...

r

z

Field line E

Field line B

E0 B1 E1

-0,4 -0,2 0,0 0,2 0,40,0

0,2

0,4

0,6

0,8

1,0

E0+E1 (100 MHz)

E (u

.a.)

r (m)

E0

•  Standing wave profile

•  The electric field is not radially uniform

The capacitor at high frequency (Feynman “Lectures on Physics”, chapter 23-2)

Page 37: Plasmas radiofréquence à couplage capacitive: effet de la ...

Experimental evidence of EM effects

Top-grounded electrode

64 planar probes

Cartography of the ion flux

3 RFEA Retarding Field Energy

Analyser Ion energy uniformity

Page 38: Plasmas radiofréquence à couplage capacitive: effet de la ...

Standing wave effect

13.56 MHz Ji max = 0.07 mA.cm-2

50 W, 200 mTorr Ji/Jimax

Ji/Jimax

A. Perret et al., Appl. Phys. Lett 83 ( 2003) 243

Good uniformity

Page 39: Plasmas radiofréquence à couplage capacitive: effet de la ...

Standing wave effect

13.56 MHz Ji max = 0.07 mA.cm-2

50 W, 200 mTorr Ji/Jimax

Ji/Jimax

Ji/Jimax

60 MHz Ji max = 0.15 mA.cm-2

A. Perret et al., Appl. Phys. Lett 83 ( 2003) 243

Page 40: Plasmas radiofréquence à couplage capacitive: effet de la ...

Standing wave effect

13.56 MHz Ji max = 0.07 mA.cm-2

50 W, 200 mTorr Ji/Jimax

Ji/Jimax

Ji/Jimax

60 MHz Ji max = 0.15 mA.cm-2

81.36 MHz Ji max = 0.17 mA.cm-2

A. Perret et al., Appl. Phys. Lett 83 ( 2003) 243

Significant standing wave + edge heating (inductive effect)

Page 41: Plasmas radiofréquence à couplage capacitive: effet de la ...

-20 -10 0 10 20 0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18 Experiments

J i (m

A.c

m -2 )

X (cm)

TL Theory

Standing wave effect

81.36 MHz 200 mTorr (local heating) 50 W

P. Chabert et al., Physics of Plasmas 11 (2004) 1775

Worsening factor

Fairly insensitive to the gas composition

Page 42: Plasmas radiofréquence à couplage capacitive: effet de la ...

Ion energy uniformity

81.36 MHz, 10 mTorr

Voltage profile

From simple usual theory: Vp ≅ Vrf / 2 + 5Te

Page 43: Plasmas radiofréquence à couplage capacitive: effet de la ...

Ion energy uniformity

0 10 20 30 40 50 60

0

-20

-40

-60

-80

dIC/d

VD (

u.a.

)

VD (volts)

Centre Bord Coin

81.36 MHz, 10 mTorr Vp = 32 V Voltage profile

From simple usual theory: Vp ≅ Vrf / 2 + 5Te

Ion energy is uniform although Vrf is not!

Page 44: Plasmas radiofréquence à couplage capacitive: effet de la ...

Ion energy uniformity

0 10 20 30 40 50 60

0

-20

-40

-60

-80

dIC/d

VD (

u.a.

)

VD (volts)

Centre Bord Coin

81.36 MHz, 10 mTorr Vp = 32 V Voltage profile

From simple usual theory: Vp ≅ Vrf / 2 + 5Te

DC current flow

Ion energy is uniform although Vrf is not!

Page 45: Plasmas radiofréquence à couplage capacitive: effet de la ...

Laboratoire de Physique des Plasmas

L’excitation multifréquence: non-synchronisée

Comment contrôler indépendamment le flux et l’énergie des ions?

Page 46: Plasmas radiofréquence à couplage capacitive: effet de la ...

Dual Frequency Capacitively Coupled Plasma Separate control of Ion flux and energy?

Vhf 27 MHz

Vlf 2 MHZ

MULF MUHF

High frequency to generate ion flux

Page 47: Plasmas radiofréquence à couplage capacitive: effet de la ...

Dual Frequency Capacitively Coupled Plasma Separate control of Ion flux and energy?

Vhf 27 MHz

Vlf 2 MHZ

MULF MUHF

Low frequency to control ion energy

High frequency to generate ion flux

Page 48: Plasmas radiofréquence à couplage capacitive: effet de la ...

Dual Frequency Capacitively Coupled Plasma Separate control of Ion flux and energy?

Vhf 27 MHz

Vlf 2 MHZ

MULF MUHF

Low frequency to control ion energy

High frequency to generate ion flux

Page 49: Plasmas radiofréquence à couplage capacitive: effet de la ...

Electron density and ion flux in a Dual-Frequency CCP

27 MHz 2 MHz 200 mm Silicon wafer

Silicon Electrodes,

Spacing 25 mm

- Based on an industrial 200 mm dielectric etch tool

- Confinement assembly home-made

- HARC etch recipe: Ar/O2 (+C4F8)

27 MHz: ≤ 750 W

2 MHz : ≤ 750 W

Ion energies up to 2 keV

Inner Pressure :

50 mTorr Outer pressure

≈5 mTorr

Page 50: Plasmas radiofréquence à couplage capacitive: effet de la ...

Electron density & Ion flux vs 27 and 2 MHz (Ar/O2)

•  both W27 and W2 increase Electron Density and Ion Flux •  2 MHz increases sheath width, enhances 27 MHz heating •  Secondary electrons play a major role

0 250 500 7500

1

2

3

100 W2

400 W2

250 W2

500 W2

Ele

ctro

n de

nsity

, (10

11 c

m-3)

27 MHz Power [W]

700 W2Electron density:Ar/O2

0 250 500 7500

1

2

3

100 W2

250 W2

500 W2

Ion

Cur

rent

Den

sity

(m

A.c

m-2)

27 MHz Power [W]

700 W2Ion Flux:Ar/O2

Page 51: Plasmas radiofréquence à couplage capacitive: effet de la ...

Control of ion energy in 2f – CCRF discharge (O‘Connell/Gans, QUB)

00

1x103

2x103

3x103

4x103

0 50 100

150

200

Energy (eV)

Cou

nts

/ sec

1.94 MHz Sheath Voltage (V)

112.5 V

75 V

0 V

Xe admixture H2 discharge, p = 5 Pa, V1.94 MHz = 37.5 V, V27.12 MHz = 37.5 V

Xe+ IEDF

Increasing 2 MHz voltage (27 MHz constant) → increases ion energy (& spread)

Page 52: Plasmas radiofréquence à couplage capacitive: effet de la ...

Control of ion energy in 2f – CCRF discharge (O‘Connell/Gans, QUB)

00

1x103

2x103

3x103

0 50 100

150

200

Energy (eV)

Cou

nts

/ sec

27.12 MHz Sheath Voltage (V)

112.5 V

75 V

37.5 V

00

1x103

2x103

3x103

4x103

0 50 100

150

200

Energy (eV)

Cou

nts

/ sec

1.94 MHz Sheath Voltage (V)

112.5 V

75 V

0 V

Xe admixture H2 discharge, p = 5 Pa, V1.94 MHz = 37.5 V, V27.12 MHz = 37.5 V

Xe+ IEDF

Increasing 2 MHz voltage (27 MHz constant) → increases ion energy (& spread)

Increasing 27 MHz voltage (2 MHz constant) → Also increases ion energy

Page 53: Plasmas radiofréquence à couplage capacitive: effet de la ...

DF-CCP Summary

• Use of dual (or even triple) frequency allows access to a wide range of ion flux/ energy not available with single frequency

• Ion energy distribution functions : wide, complex (But may be useful for processing..)

• Low frequency power nevertheless also increases flux

• High frequency power also increases ion energy

Page 54: Plasmas radiofréquence à couplage capacitive: effet de la ...

Laboratoire de Physique des Plasmas

L’excitation multifréquence synchronisée: les formes d’onde « sur-mesure »

Page 55: Plasmas radiofréquence à couplage capacitive: effet de la ...

0 100 200 300-200

-150

-100

-50

0

50

100

150

200

<Vplasma

>

Vplasma

Ele

ctro

de p

oten

tial (

V)

time (ns)

Average ion energy =50eV

VRF

Sheath rectifies RF voltage Same RF current flows through each sheath (180° phase) Plasma potential high and strongly modulated Same large DC potential drop Both sides recieve high ion bombardment

Large area CCP: equal area electrodes - equal sheaths

Can we break this symmetry? ⇒low energy and high energy sides ?

Page 56: Plasmas radiofréquence à couplage capacitive: effet de la ...

The same current must flow through both sheaths, polarity is inverted: voltage is no longer divided equally between the two: High energy and low energy sides : adjust division by changing the relative phase:

-allows ion energy control at constant flux

VRF

0 100 200 300-200

-100

0

100

200

Average ion energy at ground electrode

Pot

entia

l (V

)

time (ns)

Average ion energy at powered electrode

Plasma potential

Powered electrode potential

f + 2f excitation : Electrical Asymmetry Effect (EAE) (B.G. Heil, et al, J. Phys. D: Appl. Phys. 41, 165202 (2008))

Non-sinusoidal waveforms in a symmetric reactor

Page 57: Plasmas radiofréquence à couplage capacitive: effet de la ...

What is the optimum waveform for high density/low energy ?

•  Highly asymmetric waveform –  Minimise sheath voltage at substrate

•  Fast rise-time / slew rate –  Efficient electron heating (c.f. VHF)

•  Ohmic :High peak current through sheaths + bulk plasma •  Stochastic : high sheath velocity

–  High density for high deposition rate/high H atom density

•  High repetition rate •  High average power

⇒ Fast positive spikes (ns rise) on a flat background,

>10 MHz repetition frequency

Page 58: Plasmas radiofréquence à couplage capacitive: effet de la ...

DRACULA reactor: Waveform generation

Power amplifier 1-200 MHz 1kW class A

Arbitrary function

generator

Blocking capacitor

NB no impedance matching!

Page 59: Plasmas radiofréquence à couplage capacitive: effet de la ...

• Gaussian pulses difficult to make -finite bandwidth of the amplifier

• Use sums of sine wave harmonics :

With

(constant total amplitude) Relative phase = 00

(similar to Schulze PSST 2011)

∑=

=k

n

kn

k tnCVV1

0 )cos( ω

( )211

knkCk

n+

+−=

Waveforms used

Page 60: Plasmas radiofréquence à couplage capacitive: effet de la ...

Voltage waveforms and DC bias (Ar 50mTorr 100Vpp unless stated)

Peaks

Valleys Establishment of positive or negative self-bias depending on the polarity of the pulses: We can probe either the high or low energy sheath simply by inverting the waveform

Page 61: Plasmas radiofréquence à couplage capacitive: effet de la ...

Voltage waveforms and DC bias (Ar 50mTorr 100Vpp unless stated)

Sinusoidal: -Near-zero bias Near perfect geometrical symmetry

Increasing (positive or negative) DC bias for increasing number of harmonics

Page 62: Plasmas radiofréquence à couplage capacitive: effet de la ...

Electron density (Microwave resonator probe)

Electron density increases strongly (as predicted by PIC model) Peaks and valleys very similar (good geometrical symmetry of reactor)

Valleys

Peaks

Page 63: Plasmas radiofréquence à couplage capacitive: effet de la ...

20 mTorr Linear increase in ion flux with number of harmonics

Ion Flux

Page 64: Plasmas radiofréquence à couplage capacitive: effet de la ...

Measured :

Peaks Valleys Ion energy at a substrate can be switched from low to high by inverting the waveform Increased control as number of harmonics is increased

Ion energy distribution at ground side : 20 mTorr

Page 65: Plasmas radiofréquence à couplage capacitive: effet de la ...

Can we break the ion FLUX symmetry?

Page 66: Plasmas radiofréquence à couplage capacitive: effet de la ...

WHAT IS THE EFFECT OF SAWTOOTH WAVEFORMS?

B. Bruneau et al., Plasma Sources Sci. Technol., vol. 23, no. 6, p. 065010, Aug. 2014.

Amplitude or temporal asymmetry

Page 67: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bastien Bruneau – 12/11/2014 6

Asymetric electron heating and ionization Ionization rate (1021m-3.s-1) Electron heating (kW.m-3) P=400 mTorr, VPP=200 V, n=1-5

Page 68: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bastien Bruneau – 12/11/2014 6

Asymetric electron heating and ionization Ionization rate (1021m-3.s-1) Electron heating (kW.m-3) P=400 mTorr, VPP=200 V, n=1-5

Page 69: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bastien Bruneau – 12/11/2014 6

Asymetric electron heating and ionization Ionization rate (1021m-3.s-1) Electron heating (kW.m-3) P=400 mTorr, VPP=200 V, n=1-5

Peak in ionisation at fast expanding sheath

only

Page 70: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bastien Bruneau – 12/11/2014 8 P=400 mTorr, VPP=200 V, n=1-5

Ionization rate asymmetry = ion flux asymmetry

Page 71: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bastien Bruneau – 12/11/2014 8 P=400 mTorr, VPP=200 V, n=1-5

Ionization rate asymmetry = ion flux asymmetry

…is translated in an asymmetry of the ion flux The asymmetry in the ionization rate…

Page 72: Plasmas radiofréquence à couplage capacitive: effet de la ...

Bibliography

•  Physics of Radiofrequency Plasmas P. Chabert and N. Braithwaite, Cambridge University Press, 2011

•  Principles of Plasma Discharges and Materials Processing, M.A.Lieberman and A.J.Lichtenberg, 2nd Edition, John Wiley and Sons Inc.,

New York, 2005 •  Fields and Waves in Communication, S. Ramo, J. R. Whinnery, and T. Vanduzer, Electronics, 3rd ed., John Wiley and Sons Inc., New York, 1994