Top Banner
PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES A . Yu . Chirkov 1) , S.V. Ryzhkov 1) , P.A. Bagryansky 2) , A.V. Anikeev 2) 1) Bauman Moscow State Technical University, Moscow, Russia 2) Budker Institute of Nuclear Physics, Novosibirsk, Russia
16

PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Jan 19, 2016

Download

Documents

PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES. A . Yu . Chirkov 1) , S . V . Ryzhkov 1) , P . A . Bagryansky 2) , A . V . Anikeev 2) 1) Bauman Moscow State Technical University, Moscow, Russia - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

PLASMA KINETICS MODELS FOR FUSION

SYSTEMS BASED ON THE AXIALLY-SYMMETRIC

MIRROR DEVICES

A.Yu. Chirkov1), S.V. Ryzhkov1), P.A. Bagryansky2), A.V. Anikeev2)

1) Bauman Moscow State Technical University, Moscow, Russia

2) Budker Institute of Nuclear Physics, Novosibirsk, Russia

Page 2: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Injection of energetic neutrals

Neutron generator concept:T ~ 10..20 keV, n ~ 1019 m–3, a ~ 1 m, L ~ 10 m, B ~ 1..2 T in center solenoid, ~ 20 T in mirrors,

fast particle energy ~ 100..250 keV, Pn Pinj

Simple mirror geometry with long central solenoid

Page 3: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

The power balance scheme

dVP

dVPQ

ext

fus

Plasma amplification factor

Local balance

lossessourcest

nj

j

Γ

eiextnfusiiiBi PPPPTknt

)(2

3J

sbi

einfuseeeBe PPPPPTknt

)(

23

J

Page 4: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Electron – ion bremsstrahlung

i

eiie

i

ei

ieei dpppfpnnpddf

d

dnnP

0

23 4)()()( vv p

max

0

)( dd

dp

eiei

22222max )( cmcmcp ee

)/1()(4

)/exp()(

23

Kcmpf

e

2)/(1/1 cv)/( 2cmTk eeB

mec2 = 511 keV

)1(408.0exp)2ln4()2ln(43

203121

ibei ZcC

32 cmrC eeb

1 2 3 4 5 6 7 8 9 10 0

10

20

30

40

50

60

70

80

90

100 eic/(CbZeff

2)

- - - - - numerical ––––– fit – – – – extreme relativistic

213

16ib

eiNR ZcC

3121 )2ln(44

ibeiER ZcC

Electron energy losses during slowing down on ions

1 10 100 103 104 1051

1.1

1.2

1.3

1.4

1.5

1.6

1

2 3

Te, eV

g––––– fit– - – - Elwert- - - - - Gould

Gaunt factors for low temperatures. Approximations of B: 1 – formula corresponds g 1 at Te 0; 2 – g gElwert at Te 0; 3 – by Gould

1

320

31

2

22

)1(408.0exp)2ln4()2ln(4)/1(K

ZnCP effebei

eiPd 22 )1)(/exp(

222

332

effebeiNR ZnCP Eeffeb

eiER CZnCP

2322 )2ln(12 CE = 0.5772...

i

iii

iieff nZnZZ 22 Pei – correction to the Born approximation

2

)2(ln2

3

21

eff

effeiNR

ei

BZ

Z

P

P– for Te ~ 1 keV [Gould]

Integral Gaunt factor: eieiNR PPg Kramers/

Approximation taking into account Gaunt factor for low temperatures:

)505exp(49.0)/008.0exp(139.02

3

eff

effB

Z

Z

Radiation losses

Page 5: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Electron – electron bremsstrahlung

dpdpdffud

dnP

ee

eee

23

13

21212 )()(),(

2

1pppp

2/322/14 ebF

eeNR nCCP 1/ 2

23

effeiNR

eeNR ZPP

CF = (5/9)(44–32) 8

EebeeER CncCP

4523 )2ln(24

CE = 0.5772...

Approximations of numerical results

222

332

effebei ZnCP )(07.2)4.4exp(32.068.0 B

2/322/14 ebF

ee nCCP )1.77.248.336.226.664.01( 65432

2

1

1 0 1 0 0 1 0 0 0 0.1

1

10

100 Pei/(Zeff

2Cbne2)

Pee/(Cbne2)

Te, keV

1 (ei)

2 (ee)

non rel.

ext. rel.

0 2 0 4 0 6 0 8 0 1 0 0 0

1

2

3

4

5 Pei/(Zeff

2Cbne2)

Pee/(Cbne2)

Te, keV

1

1

2

3

3

numerical - - - - - numerical + Born corr. – – – – non relativistic 1 – fits 2 – McNally 3 – Dawson

Page 6: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Synchrotron radiation losses

ees

e

eB

eBeeees nC

cm

Tk

Tkn

BncmrP

2

22

20

2232

0 5.3323

32

Emission in unity volume of the plasma:

10 100 1000

Ps/Ps0

10–3

Te, keV

10–2

0.1

1

10

–––– Trubnikov– – – Trubnikov + relativistic corr.- - - - Tamor, Te < 100 keV– - – - Tamor, Te = 100–1000 keV– - - – Kukushkin, et al.

0.2 0.4 0.6 0.80 10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2Trrel

0

12

3

4

1 – Te = Ti = 30 keV 2 – 50 keV3 – 70 keV4 – 90 keV

a = 2 m, Rw = 0.7, Bext = 7 T

Output factors at a = 2 m, Rw = 0.7, Bext = 7 T, 0 = 0.1 (upper curves) and 0 = 0.5 (down)

Output factor vs 0 at a = 2 m, Rw = 0.7, Bext = 7 T, Te = Ti = 30 keV (1), 50 (2), 70 (3), and 90 keV (4)

VRaBTnP wexteetots 11)1(414.0 2/125.1

05.25.2

Losses from plasma volume (Trubnikov):

Output factor: 1160 2/12/3

Tr wR – Trubnikov

])511()1/(3201/[ 2/3relTam

wR

/11

5.15.21rel – relativistic correction

[Tamor]

)/(2cep ca

2

2

R

a

)511/(1039.0 Generalized Trubnikov’s formula for non-uniform plasma [Kukushkin et al., 2008]:

VT

a

RBTnP

effe

eff

weffeeffetots

5115.21

1)(414.0

,5.2

05.2

,,

a

eeffe rdrrna

n0

, )(2

a

eeffe drrTa

T0

, )(1

kaaeff

Page 7: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Proton slow-down rate (a) and cross section (b) for interaction with electrons (- - - - -), deuterium ions (–––––) and helium-3 ions (– - – - –):

1, 2 – Coulomb collisions, 3 – nuclear elastic scattering

D–T reaction and slow-down cross sections ratio for tritium ions in the deuterium plasma with Ti = Te = T

Fast particle kinetics

b

Page 8: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Some estimations

)(4)(

33c

sqf

vvv

High-energy approximation:2131

2 2

4

3

e

eB

i i

ii

e

e

e

ic m

Tk

m

nZ

n

mv

ee

eB

es

neZ

Tk

m

m42

2320

2

2

12

Optimal parameters: T 10 keV, Einj 100 keV, Pn Pinj ~ 4 MW/m3

keVkeV keV

MW/m3

m3/s

Page 9: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

The Fokker – Planck equation

aaa

aaCa

NCaCa Lsf

DfAAf

Dt

f

)(4

)(sin

sin

1)(

102

02

22

vvvvv

vvv

vvvv

b

bbbb

bba

C uuuu

uD )erf(

1)erf(

2

12/vvv

b

bbb

bb

baC u

uuu

uD )erf(

1)erf(

12

4

12/v

b

bb

bbb

aba

C uu

uum

mA )erf()erf(

1/2v

v2/

2

0

2

/4 a

babbaba

m

neZZ

)2/(2

bBbb Tkmu v

b

bbbNv EEvnA )/()(

2

1v

)(v a

af

L)(||

|| v a

af

L

0

sin),(2

1)( dfF aa vv

aa qds

0

sin)(2

1

Boundary conditions:

0),( 0 aaf vv

0),( vaf In the loss region

0),0(

vvaf

0)0,(

vaf0),(

vaf

Quasi isotropic velocity distribution function:

Page 10: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Numerical scheme

220

420

04 a

a

m

eZn

)(4 00

a

a

a

qf

v

0

30

0 atv

0f

fy a

0

2 )(~

NC AA

a vvv

a

CDb

00

2~

v

v vv

0

0~

C

a Dc

v

Scales and dimensionless variables:

az

0vv

0

~t

tt

0

)(~t

v

Dimensionless equation (symbols “~” are not shown):

y

zyc

z

ybay

zt

yz 22 sin

sin

)(),1( szy

Page 11: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Numerical scheme

Kkkhzk ,...,2,1,0,1 Jjjhj ,...,2,1,0,2 ,...2,1,0, nnhtnGreed:

Finite difference equations:

21

,1,,,11

1

,,11,,2 )()(

h

yybyyb

h

yaya

h

yyz jkjkkjkjkkjkkjkkjkjk

k

jk

jkk

j

jkjkjjkjkjk

yz

h

yyyyc

,

,222

1,,,1,1

sin

)(sin)(sin

02

0,2,

h

yy kk 02

1,1,

h

yy JkJk

Matrix form:

1,...,2,1,11 KkYYY kkkkkkk DBCA

01 YY 1,...,2,1

)(

JjjaK sY

1,...,2,1,

Jjjkk yY

1,...,2,1,

Jjjkk DD

)1()1(,

JJjkk AA

)1()1(,

JJjkk BB )1()1(

1,,1,

...................

......

...................

JJ

kjj

kjj

kjjk CCCC

Page 12: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

21h

bA kk

j 1,...,2,1 Jj21

1

1 h

b

h

aB kkk

j 1,...,2,1 Jj

h

zz

h

c

h

bb

h

aC k

jk

k

j

jkkkkkjj

2

,

21

22

21

1

1, 1

sin

sin

1,...,2,1 Jj

1sin

sin

1

222

2,1h

cC kk

22

1,h

cC kk

jj 1,...,3,2 Jjj

jkkjj

h

cC

sin

sin 122

1, 2,...,2,1 Jj

1sin

sin

122

2,1J

JkkJJ

h

cC

h

yzD jk

kkj

,2 1,...,2,1 Jj

Solution:

0,1,2,...,2,1,111 KKkYY kkkk

1,...,2,1,)( 11 Kkkkkkk BAC

1,...,2,1,)()( 11 Kkkkkkkkk DAAC

Page 13: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Examples of numerical calculations

Velocity distribution function of tritium ions and its contours at time moments after injection swich on t = 0.1s (а), 0.3s (b) и 10s (c). Deuterium density nD = 3.31019 м–3, energy of injected particles 250 keV, injection angle 455, injection power 2 MW/m3, Ti = Te = 20 keV, = 10

keV, slow-down time s = 4.5 s, transversal loss time = s

Page 14: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Role of particles in D–T fusion mirror systems

5 10 15 200

0.004

0.008

0.012

T, keV0

0.1

0.2

0.3

n /n0

p /p0

5 10 15 201.6

2.0

2.4

2.8

3.2

0.02

0.04

0.06

0.08

0.10

T, keV

/s

WL /W0

Relative pressure and density of alphas in D–T plasma (D:T = 1:1):

–––––– isotropic plasma (no loss cone)– – – – mirror plasma with loss cone

n0 = nD + nT = 2nD p0 = pD = pT

Energy losses (WL) due to the scattering into the loss cone and corresponding energy loss time () of

alphas in D–T mirror plasmaW0 is total initial energy of alphas (3.5 MeV/particle)

s is slowdown time

Page 15: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Parameters of mirror fusion systems: Neutron generator and reactors with D–T and D–3He fuels

Parameter Neutron generator regimes Tandem mirror reactors

Ver. # 1 Ver. # 2 Ver. # 3 Ver. # 4 D–T fuel D–3He fuel

Plasma radius a, m 1 1 1 1 1 1

Plasma length L, m 10 10 10 10 10 44

Magnetic field of the central solenoid B0, T 1.5 1.5 2 2 3.3 5.4

Magnetic field in plugs (mirrors) Bm, T 11 11 14 14 14.8 14.8

Averaged 0.5 0.5 0.5 0.5 0.2 0.7

Deuterium density nD, 1020 m–3 0.26 0.22 0.21 0.415 0.82 1.35

Ion temperature Ti, keV 10 11 22 22 15 65

Electron temperature Te, keV 10.5 8.5 18 19 15 65

Ion electrostatic barrier , keV 15 16.5 33 44 60 260

Injection power Pinj, MW 60 74 60 55 – –

ECRH power PRH, MW 18 0 0 0 – –

Neutron power Pn, MW 24 30 43 59 – –

Plasma amplification factor Qpl = Pfus/(Pinj + PRH) 0.38 0.5 0.9 1.34 10 10

Total neutron output N, 1018 neutrons/s 11 13 19 26.5 – –

Neutron energy flux out of plasma Jn, MW/m2 0.4 0.4 0.7 1 2 0.04

Heat flux out of plasma JH, MW/m2 1.2 1.8 1.8 2.0 2.4 0.94

Page 16: PLASMA KINETICS MODELS FOR FUSION SYSTEMS BASED ON THE AXIALLY-SYMMETRIC MIRROR DEVICES

Thank you!