Top Banner
PIPELINE MECHANICAL DESIGN REPORT Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 1 of 12 PIPELINE MECHANICAL DESIGN REPORT Z12/112996-ENG-RPT-00002. Rev 02 Client: LOTOS PETROBALTIC S.A. Project Number: Z12/112996 Project Name: B8 GAS PIPELINE INSTALLATION ENGINEERING Date Revision Description of Revision Prepared Checked Approved 02.08.2016 02 Issued for Construction M. Bowie G. Cowie A. Cowie
36

PIPELINE MECHANICAL DESIGN REPORT

Oct 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 1 of 12

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002. Rev 02 Client: LOTOS PETROBALTIC S.A. Project Number: Z12/112996 Project Name: B8 GAS PIPELINE INSTALLATION ENGINEERING

Date Revision Description of Revision Prepared Checked Approved

02.08.2016 02 Issued for Construction M. Bowie G. Cowie A. Cowie

Page 2: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 2 of 12

DOCUMENT COMMENT SHEET

CLIENT: Lotos Petrobaltic PROJECT : B8 Gas Pipeline Installation Engineering Date : 13.06.2016

Comments : The response to : Installation Engineering Report Document

Document Type : Report

Document No.: Z12/112996-ENG-PT-00002 Revision : 00 Date : 10.06.2016

Document Title : Pipeline Mechanical Design Report

Received by : M. Maciejewski Date : 13.06.2016 Transmittal No. CSL-OPS-P422-DTN-003

Item Reference Comment Comment By

Contractor’s Response

1. Section 2.1 Wall Thickness

Second sentence reads “Based on the corrosion allowance the pipeline will achieve the design life of (HOLD). LPB confirms design life of 25 years

A. Wojcikowski

(20.06.2016)

Noted and amended accordingly

2. Section 2.2 Corrosion & Material Selection

First sentence reads “The corrosion allowance for the pipeline is HOLD.” Replace HOLD with following “is 3.78mm, so taking into account 0.1mm per year, we have 37.8 years design corrosion allowance.”

A. Wojcikowski

(20.06.2016)

Noted and amended accordingly

3. Section 2.2 Corrosion & Material Selection

Second sentence reads “The material selected is HOLD.” Replace HOLD with following “X-65-C according to API 5LCP.”

A. Wojcikowski

(20.06.2016)

Noted and amended accordingly

4. Section 2.3 Coating & CP

First sentence reads “The coating system is specified by Tenaris as part of the pipeline supply (TBC).” Please reference HDPP coating data sheet for available information. Please note that the HDPP coating is referenced as “Moplen Coat EP/60 BIANCO on page 2 of data sheet.”

M. Maciejewski

(21.06.2016)

Noted and amended referencing HDPP data sheet accordingly

5. Section 2.3 Coating & CP

Fourth sentence HOLD point to be replaced with following “anodes will be installed at the gas export riser wet end.”

A. Wojcikowski

(20.06.2016)

Noted and amended accordingly

6. Section 2.7 Tie-in Design

Remove HOLD point in point 2.7, as LPB confirmed won’t have any Tie-in points along route

M. Maciejewski

(02.08.2016)

Noted and amended accordingly

7.

8.

9.

10.

Page 3: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 3 of 12

REVISION RECORD SHEET

Date Revision Status Reason for Change(s)

02.08.2916 02 IFC Issued for Construction

01.07.2016 01 IFA Issued for Approval

10.06.2016 00 IFK Issued for Review

TABLE OF CONTENTS

1.0 INTRODUCTION ........................................................................................................................... 4 1.1 General .................................................................................................................................................. 4 1.2 Objective ................................................................................................................................................ 4

2.0 CONCLUSIONS ............................................................................................................................. 5 2.1 Wall Thickness ....................................................................................................................................... 5 2.2 Corrosion and Material Selection .......................................................................................................... 5 2.3 Coating and CP ....................................................................................................................................... 5 2.4 Expansion and Free span ....................................................................................................................... 5 2.5 On-bottom Stability ............................................................................................................................... 6 2.6 Crossing Design ...................................................................................................................................... 6 2.7 Tie-in Design .......................................................................................................................................... 6

APPENDIX A – PIPELINE WALL THICKNESS CALCULATION. ..................................................................... 6 APPENDIX B – CORROSION AND MATERIAL SELECTION REPORT. .......................................................... 8 APPENDIX C – COATING AND CP PHILOSOPHY. ...................................................................................... 9 APPENDIX D – EXPANSION AND FREE SPAN EVALUATION. .................................................................. 10 APPENDIX E – ON BOTTOM STABILITY AND PROTECTION DESIGN. ...................................................... 11 APPENDIX F – TIE-IN DESIGN. ................................................................................................................ 12

Page 4: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 4 of 12

1.0 INTRODUCTION

1.1 General

Lotos Petro-Baltic are planning an offshore gas pipeline which will connect a production platform located on the B8 field to a combined heat and power plant (CHP) situated onshore in Wladyslawowo. Prior to being transported in the pipeline the natural gas will be separated from the crude on the production platform. The platform is located in the Poland exclusive economic zone (EEZ) in the Baltic Sea. The B8 field spans an area of 387.1sqare km which was defined in the Concession No. 1/2006 on 5th September 2006 and amended by the Minister for the Environment No. DGiKGe-4770-69/4579/09/MO on 26 October 2009.

1.2 Objective

The objective of this document is to collate the relevant design documentation produced for the pipeline system and provide an executive summary of the system design. This document will not address the design of the flexible riser system.

Page 5: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 5 of 12

2.0 CONCLUSIONS The summary of the design within the Appendices is described below.

2.1 Wall Thickness

The wall thickness selected for the 114.3mm OD pipeline is 6.35mm. Based on the corrosion allowance the pipeline will achieve the design life of twenty-five (25) years. Details on the calculations used are available within LPB document “Calculation of Pipeline” document number DP00315-OWR, Rev 0, Section 1. Reference Appendix A for extract pages.

2.2 Corrosion and Material Selection

The corrosion allowance for the pipeline is 3.78mm, so taking into account 0.1mm per year, we have 37.8 years’ design corrosion allowance. The material selected is X-65-C according to API 5LCP.

2.3 Coating and CP

The coating system is specified by Tenaris as part of the pipeline supply. Specific details on the coating can be referenced in Appendix C - HDPP Product Detail coating data sheet, Moplen Coat EP/60 BIANCO on page 2 of data sheet for more information The coating thickness is 5.7mm. Corrosion protection in the form of anodes shall not be applied to the pipeline. Corrosion protection at pipeline end shall be by anodes installed at the gas export riser at platform end of pipeline.

2.4 Expansion and Free span

To determine the maximum unsupported length of the pipeline, calculations were performed using AutoPIPE software. Calculations showed that maximum acceptable unsupported length of the pipeline is 50 meters. Details on the calculations used are available within LPB document “Calculation of Pipeline” document number DP00315-OWR, Rev 0, Section 2 & 3. Reference Appendix D for extract pages.

Page 6: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 6 of 12

2.5 On-bottom Stability

The On-bottom Stability of the pipeline shall be with concrete mattresses, with position and number to be used calculated within LPB document “Calculation of Pipeline” document number DP00315-OWR, Rev 0, Section 4 Division of the pipeline sections. Reference Appendix E for extract of summary pages.

2.6 Crossing Design

There are no crossings along the route.

2.7 Tie-in Design

There are no Tie-in points along the route.

Page 7: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 7 of 12

APPENDIX A – PIPELINE WALL THICKNESS CALCULATION.

INTENTIONALLY BLANK

Page 8: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

�������������� �������������

� ���� ����

���� �� � ����

���� � ����

���������

���� ��� � ��!�

� � � ��!�

"#����$ � ��$%�

�&��

��' ����

(�� �)* � �

+��

,%-�.-%�/����"�$/$�-/��

������������

����������������� ������������������������������� ��

����������������

����-�0.%-/�#

�$��/"/�1��/�/�.��#/�-1�2���22

�$��/"/�1��/�/�.�����2/-��2����*�3

���%�/�*�%��1�2/*�����$��%�.��

4.����1/%�����

5%--��3/�)��22

,����2/���%--�6%���

� ����� �����

��� ���

7#$�

73/�)��22

�$��/"/��6�/*3�

��� ��

,������ +��

(� �)* � �

� �8,�

����� �9%�*�

1 �� ���

� �8,�

: ' �1�*�

���

���

;

���%-

���������

���� ��

�%*� �%*�2 <�=

' �

���������%��

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

���%�/��

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

5%����1�$�3

�$��/"/��6�/*3�

��2/*�����$��%�.��

��2/*��$��22.��

,������

�������� ����� �

��9/�������$��%�.��

���������� ���

��/%-�"�/��/������""/�/���

�%���%-�"�/��/������""/�/���

�%�1��"�/��/���%�*-�

���� �����������

A-./1��%��*��#

���%�/����-%22

�%"��#��-%22

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

���� ���45<

Page 9: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

��-#=%-���

�� !�� �)*�

����� � ���

C ��' � 2

���! �)� 3�

�6 ���1�D�!�� ���

� ������ �� )�!�

E���$����� F

�* !

7�%6-�9�%�1��#$�

�������������������

C�22�-�1��2/�#

7�%6-�9�%�1�2���-��%22

�.�9����"���%6-�9�%�12��9�%��23��2�����-.�$�6�/*3�2�

$�����%6-�=�22�-

7�%6-�2/G��E-��*�3���3�/*3�F

7�%6-�=�-��/�#

5%�$�-/���-��*�3

73��$/$�-/���/2��$��%��1�/��%��%��%���$�2�1�������2.�����%6-/�*�63�����3��-%�*�2����%6-�9�%�1�/2�

!���)*��"��3��$�-#=%-�����#$����9�%����%6-/�*�/2���$����1�/���3��%��%�73��"/23/�*�=�22�-�1��2/�#�

E/���.�9����"���%6-��2�$���%��%F�"����3��"/�-1�/2�"�.�1�9#�%�2�$%�%���2�.1#����9�����$����� �)�!�

%2�%���%��"����3��63�-��$/$�-/�����.���73��63�-��$/$�-/���-��*�3�/2���$�2�1������%6-�-�%12

,%-�.-%�/����"�$/$�-/��

���������� ��������!��"������������#�����

*

H� �

I !� �1�*�

������� �� )�J3�

���������

���� ��

�%*� �%*�2 <�=

� ' ����� ���45<

���������%�� ���%�/��

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

���J�� )�!�J�)� 3�J���J���

73����%6-�*�%��/�$%���"��0.���#�/2��%-�.-%��1�%2�K

� �� ���� � � �� ���!���" � ����� I��

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

$��=%/-/�*���%6-�1/����/�����-%�/=������3��$/$�-/���

$��$��1/�.-%�

�/�K�"/�$�D�!�J�E��� �� �)�!F�J��������)� 3�J���J���2E!�8F

$�����%6-�=�22�-

$��$���/����"�$/$�-/���-��*�3���$�2�1������%6-�

/����"�������E����9.�/�1����$�������1��*�9#����)�

��=��F

Page 10: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

��-#=%-���

�% �!� �)*�

)9 �� �� ��

,3 ���� �����

<"2 ����

<"% �

�� � ����

� �����

����-��%22�%22��/%��1

�11�1��%22�%22��/%��1

�/$��6%--��3/�)��22K

��� �� �# � ���� ��

7�%6-�9�%�1�9��1/�*�

2�/""��22

������������� $����� �������� ���������� �������� ����

7�%6-�/�$%���=�-��/�#�

���""/�/���

����������������

7�%6-�9�%�1��#$�7�%6-�9�%�1�

3#1��1#�%�/���%22

,%-�.-%�/����"�$/$�-/��

73��2/�$-/"/�1�%$$��%�3�/2�.2�1�����9�%/��%����2��=%�/=����2.-��73��$/$�-/���/2���%��1�6/�3�

����%-�1��2/�#�����������3%��/2�2�/""����.*3�������2��=%�/=�-#�%22.���%�23�--�2�/""��22��"��3��

��%��1�$/$��%��-�%2���0.%-�����3%���"�%�9%���2���-�$/$��73��$/$��/2���2�/�*�����3��2�%9�1�6/�3����

"����2$%�2

�� �

E/�K���D������ �D�� �����

���� �)L�

!!���' L

���������

���� ��

�%*� �%*�2 <�=

� ' �

����M���E�'��N '��FM!��O!

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

���� ���45<

73��%92��9�1�����*#�1.������3��/�$%��/�*�2���-��%22�/2��%-�.-%��1�%2K

���������%�� ���%�/��

� ���% � � J�&'( ��� � !��(�

�L�D���J�)*�J�E��J�� 2F!��

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

��� �� �# � ���� ��

����������� ���������

A����-.�$�6�/*3�2���3�����%-�%92��9�1�����*#��%��9���%-�.-%��1�%2K

D

Page 11: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

5%����1�$�3 1 �� ���

7�%6-�9�%�1�3�/*3� 3D!9 �� ���

�$%��3�/*3� &2$ � ���

5%�$�-/���1/%����� � ����

!

!

���

���

���

,��1/�/���-�%1��""����"%������ ���'

��/%-�"�/��/������""/�/���

�%���%-�"�/��/������""/�/����

��%1��""����"%����

���K��3��-�%1��""�������1/�/���"%������P ,��/2����9��%$$-/�1�����3��=���/�%-����$�������"��3��

����$�%�&�

7�%6-��0./$������%11/�/��%-�1%�%�"���$.--��=����%-�.-%�/��2K

��%*����""/�/���

�11�1��%22����""/�/���

,%-�.-%�/����"�$/$�-/��

73��$.--��=���2���%�/��/2�%�%-#2�1�.2/�*�%�1#�%�/��"/�/����-������%�%-#2/2�7��"��.2�����3��

$/$�-/�����2$��2��"�����3��$.--��=���-�%1���-#�/���3/2��%-�.-%�/��2���3��$/$�-/���/2����2/1���1����

3%=����-�%2�1��3����2/1.%-�"����2�9#�*-�9%-�9.�)-/�*��-�2������3��$.--�=���-��%�/���&�������3��

���2/1���1�$/$�-/���3%2���*-/*/9-�����$��22/=��"����2�1.������3���%-�%�1�/�����%-�$��22.���

�""���2��%�1��3��%�%-#2�2�%���9%2�1����G�����$��%�/��%-�$��22.���%�1�%�9/�������$��%�.���/���3/2�

�%-�.-%�/��2

D �����!

���������

���� ��

�%*� �%*�2 <�=

� ' �

�.--��=���K

���K��3��-�%1��""�������1/�/���"%������P,��/2����9��%$$-/�1�����3��=���/�%-����$�������"��3��

$/$�-/�����2$��2��"�����3����%6-�$.--��=���-�%1��/������3���������%��/�*�%9�.���3��3��/G���%-�

%�/2�$��$��1/�.-%������3��$/$�-/���%�/2�73��".���/��%-�-�%1�"%������PA��/2����9��%$$-/�1�����3�����%-�

$/$�-/�����2$��2��"�����3��$.--��=���-�%1��/��9��3��3��%�/%-�"�����%�1����������2$��2��"����

�3��$.--��=���-�%1

�/���2/��-�22�3�/*3�K

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

���� ���45<

���������%�� ���%�/��

Page 12: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

D ��(�� ��!(�

D �'��( ��� � ) �

> !��������� �%

�6

D ������ ��!� �!

73����$/�/�%-�"��������""/�/����K

,%-�.-%�/����"�$/$�-/��

73��6%�$�-/���2�/""��22�/2��2�/�%��1�%2K

73��6%�$�2�/""��22��)6��/2��2�/�%��1�%2�)6�D�>M�6 �6��63����>M�6�/2��3��%�/%-�2�/""��22��"��3��6%�$�

%�1��6�/�2�-��*�3��7#$/�%--#���3��6%�$�-/���-��*�3�/2�!����� ���/��2��3��6%����1�$�3�73��6/���

-��*�3�/2���-%�/=�-#�-��*���/��23%--�6�6%����E/��!���/��2�/2�"���1��$�6%����%$$-/�%�/��2F����23�.-1�

9�����2/1���1��3%���6������3���� !����1/%������6/��2�%���������-#�.2�1�%2�6%�$�-/��2�"���

9�%����%6-2

��.�*Q2���1.-�2

5%�$�-/������22�2���/��%-�%��%

D ������ ��!� �!

�6�D 73��6%�$�-/���-��*�3�M�1

)6�D >�M��6

D !��(��((�(� )

D

D !����(���!� )

���������

���� ��

�%*� �%*�2 <�=

' �( �

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

���� ���45<

73��6%�$�-/���-��*�3�/2�!����� ���/��2��3��6%����1�$�3

73���%�/�.��$.--��=���"�����9�����2K

73�������2$��1/�*��%�/�.��1�6�6%�1�%��/�*�"�����9�����2K

���������%�� ���%�/��

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

Page 13: PIPELINE MECHANICAL DESIGN REPORT

���������

���� ��

�.--��=���-�%1�1.�%�/���

�.--��=���1.�%�/��K

D

D ��!�!��(��� 2

,� !

"��'�(�

���""/�/����"���$.--��=���1.�%�/��

73��$/$�-/���3%2����"����2$%����3���"������-#�$%���$�����%�/����"�%�9�%�1�3%2����9�����2/1���1

,%-�.-%�/����"�$/$�-/��

R$�/2��3��1/2$-%��������"��3��$/$��%���3��$�/����"�/����%��/���63/�3�/2�.�)��6��$�/��������2$��2��

2/�.-%�/��2�73���"������3��=%-.���"�R$ C��.2��9��%22.��1�E�*�%2�,7�,A�E�� )6F� ! ��F�%�1��%#�

9����������1�%"������2$��2��2/�.-%�/��2�/��2����2���

�"�/���%�/=��%$$��%�3�&�6�=�����3����2$��2��3%2�����%--#�9����23�6�����9���%�3���/�2��2/�/=��

�����%-/2�/��=%-.�2��"�R$

7�%6-��0./$������%11/�/��%-�1%�%�"���3��)/�*��%-�.-%�/��2K

��%1�"%���� �

�/"�/�*�3�/*3��K

�%�/�.��-/"�/�*�3�/*3�K

D ����'!(

���������

���� ��

�%*� �%*�2 <�=

� ' �

7>,&�,����4,B�>7�7�4��474�������9%-�/����

���.����%�/���%��3/=%-��� ���.����%�/����

���� ���45<

73��$/$�-/���3%2����"����2$%����3���"������-#�$%���$�����%�/����"�%�9�%�1�3%2����9�����2/1���1

���������%�� ���%�/��

>���.�/=��$/$�-/���$��������

;��5?%1#2?%6�6�

��%��;��@�>-�)����/�$?�6�/%�

5?%1#2?%6�6�

Page 14: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 8 of 12

APPENDIX B – CORROSION AND MATERIAL SELECTION REPORT.

INTENTIONALLY BLANK

Page 15: PIPELINE MECHANICAL DESIGN REPORT

Coiled Pipe Line Technical Data 

Per API 5LCP 

 

Chemical Requirements by Percentage of Mass 

 

 

 

 

 

Tensile Requirements 

Grade  Yield Strength (min)  Tensile Strength (min)  Tensile Strength (max)  Hardness (max) 

  psi  MPa  Psi  MPa  Psi  MPa  HRC 

X60C  60,000  414  75,000  517  110,000  758  22 

X65C  65,000  448  77,000  530  110,000  758  22 

X70C  70,000  483  80,000  551  110,000  758  22 

X80C  80,000  551  88,000  607  120,000  827  22 

 

 

Tolerances for Diameter of Pipe Body 

Size Designation  Tolerance 

< 2 3/8 + 0.016  ‐ 0.031 in (+ 0.4, ‐ 0.8 mm) 

≥ 2 3/8 and ≥ 6 5/8  ± 0.75% 

 

Tolerances for Wall Thickness 

Size  Tolerance (All Grades) 

All  + 10.0%, ‐ 10.0% 

 

 

Grade  Carbon Max  Manganese Max  Phosphorus Max  Sulphur Max 

X60C  0.15  1.45  0.020  0.010 

X65C  0.15  1.45  0.020  0.010 

X70C  0.15  1.45  0.020  0.010 

X80C  0.15  1.45  0.020  0.010 

Page 16: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 9 of 12

APPENDIX C – COATING AND CP PHILOSOPHY.

INTENTIONALLY BLANK

Page 17: PIPELINE MECHANICAL DESIGN REPORT

Pipe Coating

PRODUCT SELECTION GUIDE

You can find out more about us by visiting our website at: www.lyondellbasell.com

Before using a product sold by one of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS SEPARATELY AGREED BETWEEN THE PARTIES IN WRITING. This product(s) may not be used in the manufacture of any US FDA Class III Medical Device or Health Canada Class IV Medical Device and may not be used in the manufacture of any US FDA Class II Medical Device or Health Canada Class II or Class III Medical Device without the prior written approval by Seller of each specific product or application. Users should review the applicable Material Safety Data Sheet before handling the product.

© LyondellBasell Industries Holdings, B.V. 2010 LB 09 102 e 1210

Polyethylene Topcoat & Adhesive Products

Product Grades Physical Mechanical Thermal Features and Typical Customer Applications

Morphology Color

MFR 190°C/ 2.16kgISO 1133g/10min

Density ISO 1183/Akg/dm3

Modulus of ElasticityISO 178 / ISO 527MPa

Tensile Stress at YieldISO 527-2MPa

Tensile Strain at BreakISO 527-2%

ESCR(3)

ASTM D1693-Ah

Hardness Shore DISO 868

Vicat Softening Point (9.81N)ISO 306/A°C

Melting Point (DSC)ISO 3146°C

LUPOLEN PE TOPCOAT TyPiCAlly used wiTh lucalen Pe Adhesive ProduCTs

Lupolen 4552D BLACK Pellet Black 0.3 0.956 900(2) > 25 > 700 > 1000 62 124 130Multimodal HDPE topcoat used in operating temperatures from -40°C up to 85°C. Optimum thermal ageing resistance and UV protection.

Lupolen 4532D Pellet Natural 0.3 0.949 1000 25 > 600 > 1000 62 124 129Bimodal HDPE topcoat used in operating temperature from -40°C up to 85°C. Optimum thermal ageing resistance. Available in North America only.

LUCALEN PE ADHESIVE TyPiCAlly used wiTh lupolen Pe ToPCoAT ProduCTs

Lucalen G3710E Pellet Natural 1.5 0.931 400(2) 12 > 700 51 100 125Benchmark PE grafted adhesive selected for three-layer systems at low and elevated service temperatures from -40°C up to +85°C. Typically used with PE topcoat LP 4552D BLACK.

Lucalen G3710E P Powder Natural 1.5 0.931 400(2) 12 > 700 51 100 125

PE grafted adhesive powder selected for three-layer systems at low and elevated service temperatures from -40°C up to +85°C. Typically used with PE topcoat LP 4552D Black. The particle size distribution is mainly in the 90–500 µm range.

Lucalen A3110M Pellet Natural 7 0.928 74(1) 5 600 32 65 99LDPE copolymer adhesive selected for three-layer systems based on ethylene acrylate acrylic acid polymer for operating temperatures from -40°C up to +70°C.

Lucalen A2910M Pellet Natural 7 0.927 84(2) 6 550 38 72 97LDPE copolymer adhesive selected for two-layer systems based on ethylene acrylate acrylic acid polymer for operating temperatures from -25°C up to +60°C.

Values shown are not to be considered as product specifications

(1) Flexural modulus properties (2) Tensile modulus properties (3) ESCR – Environmental Stress Crack Resistance

Page 18: PIPELINE MECHANICAL DESIGN REPORT

Pipe Coating

PRODUCT SELECTION GUIDE

You can find out more about us by visiting our website at: www.lyondellbasell.com

Before using a product sold by one of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS SEPARATELY AGREED BETWEEN THE PARTIES IN WRITING. This product(s) may not be used in the manufacture of any US FDA Class III Medical Device or Health Canada Class IV Medical Device and may not be used in the manufacture of any US FDA Class II Medical Device or Health Canada Class II or Class III Medical Device without the prior written approval by Seller of each specific product or application. Users should review the applicable Material Safety Data Sheet before handling the product.

© LyondellBasell Industries Holdings, B.V. 2010 LB 09 102 e 1210

Product Grades Physical Mechanical Thermal Features And Typical Customer Applications

Morphology Color

MFR 230°C / 2.16kgISO 1133g/10min

Density ISO 1183/Akg/dm3

Modulus of ElasticityISO 178 /ISO 527MPa

Tensile Stress at Yield(3)

ISO 527-2MPa

Notched Izod Impact ESCR(5)

50°CASTM D1693-Ah

Hardness Shore DISO 868

Vicat Softening Point (9.81N)ISO 306/A °C

Melting Point (DSC)ISO 3146 °C

23°C -20°C

ISO 180/1AkJ/m2

MOPLEN COAT PP TOPCOAT TyPiCAlly used wiTh Hifax PP Adhesive

Moplen Coat EP/60 BIANCO Pellet White 0.8 0.91 1000(1) 26 50 4 > 3000 >/= 60 145 164 PP topcoat selected for very high operating temperatures from -20°C up to

+140°C. Optimum thermal ageing resistance and UV protection.

Moplen Coat EPR/60 BIANCO(4) Pellet White 4 0.91 900(1) 20 70 10 > 3000 135 164

PP topcoat with very high impact resistance selected for low laying temperatures and very high operating temperatures from -30°C up to +130°C. Optimum thermal ageing resistance and UV protection.

HIFAX PP ADHESIVE TyPiCAlly used wiTh Moplen CoAT PP ToP CoAT

Hifax EPR 60/BIANCO Pellet White 4 0.91 900(1) 20 60 135 164 PP grafted adhesive selected for very high operating temperatures from -20°C up to +140°C.

Hifax EPR 60/M BIANCO Powder(6) White 4 0.91 900(1) 20 60 135 164 PP grafted adhesive powder selected for very high operating

temperatures from -20°C up to +140°C.

Hifax EP2 015/60 Pellet Natural 10 0.90 700(1) 22 55 125 148 PP grafted adhesive selected for high operating temperatures from -20°C up to +120°C.

Hifax EP2 015/60M Powder(6) Natural 10 0.90 700(1) 22 55 125 148 PP grafted adhesive powder selected for high operating temperatures from -20°C up to +120°C.

Hifax EP2A53 Pellet Natural 10 0.91 600(1) 15 > 50 110 148PP grafted adhesive selected for thick coating or for low laying temperatures and standard operating temperatures from -30°C up to +110°C.

Hifax EP5 10/60M BIANCO Powder(6) White 9 0.91 700(1) 16 55 110 140 PP grafted adhesive powder selected for standard operating temperatures

from -20°C up to 110°C.

Values shown are not to be considered as product specifications

(1) Flexural modulus properties (2) Tensile modulus properties (3) Tensile strain at Break: ≥ 400% for all listed products (ISO 527-2) (4) Izod notched at -30°C: 6 KJ/m² (ISO 180/1A) (5) ESCR – Environmental Stress Crack Resistance (6) Powder particle size distribution range= 90–500 µm (ASTM D1921)

Polypropylene Topcoat & Adhesive Products

11mboga1
Podświetlony
Page 19: PIPELINE MECHANICAL DESIGN REPORT

Pipe Coating

PRODUCT SELECTION GUIDE

You can find out more about us by visiting our website at: www.lyondellbasell.com

Before using a product sold by one of the LyondellBasell family of companies, users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. SELLER MAKES NO WARRANTY; EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS SEPARATELY AGREED BETWEEN THE PARTIES IN WRITING. This product(s) may not be used in the manufacture of any US FDA Class III Medical Device or Health Canada Class IV Medical Device and may not be used in the manufacture of any US FDA Class II Medical Device or Health Canada Class II or Class III Medical Device without the prior written approval by Seller of each specific product or application. Users should review the applicable Material Safety Data Sheet before handling the product.

© LyondellBasell Industries Holdings, B.V. 2010 LB 09 102 e 1210

Product Grades Physical Mechanical Thermal Features and Typical Customer Applications

Morphology Color

MFR 230°C / 2.16kgISO 1133g/10min

DensityISO 1183/Akg/dm³

Modulus of ElasticityISO 178 / ISO 527MPa

Tensile Stress at YieldISO 527-2MPa

Tensile Strain at BreakISO 527-2%

Notched Izod Impact

Hardness Shore DISO 868

Vicat Softening Point (9.81 N)ISO 306/A °C

Melting Point (DSC)ISO 3146 °C

23°C -20°C

ISO 180/1AkJ/m2

FIELD JOINT

Hifax EPR 60/M BIANCO Powder(4) White 4.0 0.91 900(1) 20 > 400 60 135 164 Grafted PP powder selected for field joint coating applied by flame spray under very high operating temperatures ≤140°C.

Hifax EP5 10/60M BIANCO Powder(4) White 9.0 0.91 700(1) 16 > 400 55 110 140 Grafted PP powder selected for field joint coating applied by

flame spray under standard operating temperatures ≤110°C.

Hifax CA197J WHITE Pellet White 0.8 0.91 500(1) 16 > 400 18 55 105 140 PP resin selected for field joint coating using injection molding under standard operating temperatures ≤100°C.

Hifax EYS 292D WHITE Pellet White 28 0.91 500(1) 16 > 400 16 > 50 105 140High-flow PP resin selected for field joint coating using thin-wall injection molding under standard operating temperatures ≤100°C.

MULTILAYER COATING FOR DEEP WATER APPLICATION

Hifax EBS153D NAT Pellet Natural 4.5 0.90 650(1) 13 > 400 60 50 115 >140 PP compound selected for improved thermal insulation in multilayer syntactic coating.

Hifax EKS157D NAT Pellet Natural 6.0 0.90 1300(1) 17.0 > 150 10 5 60 140 > 160 PP compound selected for improved thermal insulation in multilayer syntactic coating.

Hifax TBD 100 DZ Pellet Brown 4.5 2.3(3) 400(1) 4.5 > 200 NB 140 High density PP selected for weight coating.

Moplen EP340K Pellet Natural 4.0 0.90 1100(2) 20 > 50 66 13 46 140 165 PP impact copolymer selected for improved thermal insulation in multilayer syntactic coating.

Moplen EP240H Pellet Natural 2.0 0.90 1100(2) 23 > 50 60 8 148 165 PP impact copolymer selected for improved thermal insulation in foamed multilayer coating.(5)

Values shown are not to be considered as product specifications

(1) Flexural modulus properties (2) Tensile modulus properties (3) Density of Hifax TBD100DZ natural resin= 0.9 kg/dm³ (4) Powder particle size distribution range= 90–500 µm (ASTM D1921) (5) Alternative impact copolymers for improved thermal insulation in foamed multi-layer coating are Moplen EP310D, and the high stiffness Hostalen H2464 and Hostalen H2483 impact copolymer products.

Polypropylene for Special Coating Applications

Page 20: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 10 of 12

APPENDIX D – EXPANSION AND FREE SPAN EVALUATION.

INTENTIONALLY BLANK

Page 21: PIPELINE MECHANICAL DESIGN REPORT

��������������� �����������������������������

���

���

�� �������������������

��� ��������������

�!���"�#

� $$%�&

������������������ !�� ���"��!#$�

'

()�� *������ �������

������������������)*��+�� )��) ��

����,���������������*�**�*

������ ��

"��) ��- �.)�������������

�"���//0���*12���$$��+)�*������*��� �������������3�����+����� ���������������������+

�.)������4

5�*)�)��������������

2��*��+����������� �����

��������� 6

����������������3�*���*������

�*)��*������������������ �)�*

�������*�����*3�4

�%�

�+� �+��

/ 7%

�%&'� &�$���&#!%���� ���$����������(���)�����

���)���������� ������"�# ���)���������"�# ��#

� $$%�&�(8 $

�!������� 9������� �!���"�#

%�)��*������������+�)����,-./��0 /�1�1�� ������,�2�%��3���)��/�1���./��0 /�1�1� ��44567

6�� ������,��������+����3������������*�� �)���� ���������������������� ���������+��������� �

�������3��*)������*�����)�������*��� ��������������:������3�*���*������4��� ��� �,���� ������

��� ����������)*��+��*����������)�)��������3��*����*#

"��) ��- �.)�������������

� ������� ��

6�� *� ��������.#���,�����)�*3� ������*3��� ��:���**��+� �.)����������* ��������#6�����

�� *�,�������"��) ��- �.)����3���*���������*�����:� ����*��4

Page 22: PIPELINE MECHANICAL DESIGN REPORT

�;�,

<����������������� ������3�����)����*��4

��� ����������)���*�*������ ��*� ������� ���*������ #

<�����)���%#$�� ��� �*)��*�����������.#�%������������ �����*��������������+ �������4

<������������������������*�����������������)�����������,������+������*� ����� ��*��*�)�

�����:� ����*��=+>�#����)���������������)*����������*�������*������� *)���3)�������� ���#

?51�-9�<����:��)�������3��� ���������+��@

�6���� ��:6�*)��*��3 ������

�� ��:���*)��*��3 ���������) ����� ��)������ ��*�����**��+���� ������ �������������#1������ ��:

���**��+� �.)������� ����������������) ��� �.)����,���� �������3�+����� �������,��������

��)���� ���*������������) �#<������������3���*������������+��� �*)��*��������� �)�*�����������

����������%#$A&#$,������� �����*��������������6�#

<�� �*)��*����������+����3��.)��������,���������������� ���*������ ����)*��+������+�� ��#

�����*��+������ ��������*��:���,������������+��� ������=�����#&;�� �������)��� ��*��*���*

%#&$�� �)�����:�*��*�,3)�)�)�������� ��������*�����3��� ��������:�*,������� �+����)����#&���

�)++����*�� �������)������#

�!���"�#

!�"�$�% �������(0�8�������� ������0 9

� $$%�&

�&�,

�B�,

�7�,

�0�

�+� �+��

�$ 7%

��� �������+��3����������������*������� #

<����������)������ 51-�9���3��3�����*3��)3����)���+

�.#�%������.#�&����������4

�!���"�#

%�)��*������������+�)����,-./��0 /�1�1��

�!���"���

��� ���������� ��:���**��+� �.)������������3�����)����*3���*�����

�� �)���")�3� 4

��� ������������ ������������������+�� �������������4

<�����)���%#$�� ��� �*)��*�����������.#�%������������ �����*��������������+ �������4

�%&'� &�$���&#!%���� ���$����������(���)�����

���)���������� ������"�# ���)���������"�#

� $$%�&�(8

��44567

��#

9�������

$

������,�2�%��3���)��/�1���./��0 /�1�1�

Page 23: PIPELINE MECHANICAL DESIGN REPORT

��C $,��;% ���

��=C $,$$B%& ���

��C $,�$�B ���

��C $,��&7 ���

�����)�C $,$$&7 ���

��C �B,/� �=+>��

D�C �$�$ �=+>�%�

D�C %,/ �=+>�%�

D�C /B$ �=+>�%�

'C $,%0 ��>��

�C �$%,;& �E ��

6C %,�;70��$B ��;�

�C %,& ��� �� ��������*��:������������������������ �)�����:�*�

������)���*�*������

�������������=����

��$#� ����"�%:#�� ��

6" '<�1<1

�!���"�#

� $$%�&

��) ����������������������������

�F�)�+G�5�*)�)�

���������������� ���,

��������3�����)����*��4

�*������������������������+���

�*������������ ���������+

��������� ���*������

���� ���*������ ����)*��+������+

�������+����=����

����������� ����

�*���������������

�C $,0 ���

�+� �+��

�� 7%

%�)��*������������+�)����,-./��0 /�1�1�� ������,�2�%��3���)��/�1���./��0 /�1�1�

���)���������"�#

� $$%�&�(8

�%&'� &�$���&#!%���� ���$����������(���)�����

���)���������� ������"�# ��#

��44567

�!���"�#

$

�!���"��� 9�������

�+��3����������������*�������

Page 24: PIPELINE MECHANICAL DESIGN REPORT

��C $,�%/$%� ��>��

��C $,$7/$B/

5C �=+>��

�'2�<6<'<6("6"<(<H�-(5'91

�!���"�#

� $$%�&

0,&%0

9I ���

�+� �+��

�� 7%

9�������

%�)��*������������+�)����,-./��0 /�1�1�� ������,�2�%��3���)��/�1���./��0 /�1�1�

���)���������"�#

� $$%�&�(8

�%&'� &�$���&#!%���� ���$����������(���)�����

���)���������� ������"�# ��#

$

�!���"�#

��44567

�!���"���

&�,/0�

Page 25: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 13 73 0

3 Calculations with the use of AutoPIPE

To determine the maximum unsupported length of the pipeline, proper calculations were performed. The

pipeline model included mounted 8-ton stabilizing mats. Calculations showed that maximum acceptable

unsupported length of the pipeline is 50 meters.

Pic. 3.1. Model view

In case of pipeline scouring on the length of 50 meters, the maximum stress ratio of the material is 0.72.

The maximum deflection of the pipe occurs midway between mats and is 2182 mm.

Analyzing the geotechnical data provided by Lotos Petrobaltic it was found that, maximum scouring depth

may be up to 800mm. To modeled this case, possibility of pipeline deflection in unsupported point was

limited up to 800 mm in vertical axis. In case of total scouring on entire analysis lengths (50m), pipeline

will be laid on scouring seabed. Maximum stress ratio will be 0.54. The highest value of stress will take

place at the end of the mat. (as is marked on picture 3.2)

Page 26: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 14 73 0

Pic. 3.2. Stress in the described system

Pic.3.3. Displacements in the described system

Page 27: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 15 73 0

After the calculation of the maximum unsupported length of the pipeline, strength calculations for pipeline

were performed taking into account the trawl impact. Forces related with the trawl impact were calculated

in section 1.

Strength calculations have shown that maximum distance between mats is 50 meters, for the section

where pipeline scouring and trawl impact may occur. The 8-ton mats were assumed in the calculation.

Pic. 3.4. Model view

If unsupported section will be hit by trawl ( what is the most worst case in all analysis) the value of

maximum stress ratio will be 0.8. The highest value of stress will take place at the end of the mat. ( as is

marked on picture 3.5). When trawl will hook pipeline, pipeline will move 2789 mm in the direction of the

force caused from trawl. This is shown on picture 3.6.

Page 28: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 16 73 0

Pic. 3.5. Stress in the described system

Pic.3.6. Displacements in the described system

Page 29: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 17 73 0

Strength calculation taking into account initial temperature of fluid service was performed. Analysis

contained in description DP00315 point 7 shows that temperature of 4 stC will be reached in point

located 1500 m from riser flange (for maximum value of the flow). Initial temperature of fluid service was

introduced to the model according to the chart below.

Page 30: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 18 73 0

Pic. 3.7 Displacements in the described system

Pic. 3.8 Displacements in the described system

Page 31: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 19 73 0

The performed analysis show that set temperature in pipeline does not affected on exceeding of

allowable stressed. The highest deflection in analysis system equal 4.67 mm.

Strength analysis and deflation analysis for point where pipeline outlet on surface of seabed from HDD

drilling was performed. For 12st angle of outlet pipeline from HDD drilling occurs pipeline deflection.

Deflection cause laying the pipeline on the seabed right behind outlet point. With such a deflection stress

ration equal 0.96.

Pic. 3.9 � HDD Model View

Page 32: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 20 73 0

Pic. 3.10 - Displacements in the described system

Page 33: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 11 of 12

APPENDIX E – ON BOTTOM STABILITY AND PROTECTION DESIGN.

INTENTIONALLY BLANK

Page 34: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 21 73 0

4 Division of the pipeline sections

Because of variable characteristic of Batlic seabed and different various load ranges, pipeline has been

divided into six section:

The section 1 is 6328 meters long. The starting point is located in P1 point. The finishing point of the section

one I located 36,8 meters before the V-217/14 point. In this section 113 mats will be laid every 50 meters .

The mats are 6 meters long.

Loads included in the calculations:

- scouring

- see current velocity of 0,75 kn

- waving

Section 1 consist of bearing ground.

The section 2 is 12656 meters long. The starting point is located 36,8 meters before V-217/14 point. The

finishing point of the section 2 is located 1,6 meters before V-178/14 point. In this section 226 mats will be laid

every 50 meters. The mats are 6 meters long.

Loads included in the calculations:

- scouring

- see current velocity of 0,75 kn

- waving

- trawl impact

Section 2 consist of bearing ground.

The section 3 is a 7114,1 meters long. The starting point is located 1.6 meters before V-178/14 point. The

finishing point of the section 3 is located 68 meters before V157/14 point. In this section 85 mats will be laid

every 50 meters. The mats are 6 meters long. Section 3 consist of bearing and non-bearing ground.

Loads included in the calculations:

- scouring

- see current velocity of 0,75 kn

- waving

- trawl impact

Page 35: PIPELINE MECHANICAL DESIGN REPORT

Project No.

DP00315

CALCULATION OF PIPELINE

Project name Executive pipeline project B8-W�adys�awowo.

Location Seam B8 � Elektrociep�ownia W�adys�awowo

Project No. DP00315

TECHNICAL DOCUMENTATION LOTOS Petrobaltic S.A.

Documentation archival No. Documentation No. Page Pages Rev.

DP00315-OWR 22 73 0

The section 4 is 23555,2 meters long. The starting point is located 68 meters before V157/14 point., The

finishing point of the section 4 is located 136 meters beyond V-083/14 point. There are no mats located in

this section because of non-bearing ground. The pipeline is submerged in the non-bearing ground.

The section 5 is 6500,8 meters long. The starting point is located 136 meters beyond the V-083/14 point.

The finishing point of the section 5 is located 54,4 meters before the V-062/14 point. In this section 25 mats

will be laid every 50 meters . The mats are 6 meters long. Section 5 consist of bearing and non-bearing

ground.

Loads included in the calculations:

- scouring

- see current velocity of 0,75 kn

- waving

- trawl impact

The section 6 is 19475,2 meters long. The starting point is located 54,4 meters before V-062/14 point. The

finishing point of the section 6 is located in B8-2/5 point. There are no mats located in this section because of

non-bearing ground. The pipeline is submerged in the non-bearing ground. From point B8 2/5 occurs

temperature different from 4 degrees according to chapter DP00315-OSC picture 4.

Page 36: PIPELINE MECHANICAL DESIGN REPORT

PIPELINE MECHANICAL DESIGN REPORT

Z12/112996-ENG-RPT-00002 Rev 02 02.082016 Page 12 of 12

APPENDIX F – TIE-IN DESIGN.

INTENTIONALLY BLANK