Top Banner
Piotr Bednarczyk Piotr Bednarczyk 1,2 1,2 and and Adam Maj Adam Maj 2 for for the RISING Collaboration the RISING Collaboration 1 GSI Darmstadt, Germany 2 IFJ PAN Kraków, Poland Remarks Remarks on the background on the background radiation radiation in the RISING fast beam campaign in the RISING fast beam campaign * * HISPEC/DESPEC MEETING Valencia (Spain) 15th-16th June * ) Based on discussions with and contributions from: A.Bürger (Bonn), F.Camera (Milano), P.Doornenbal (GSI), J.Gerl (GSI), M.Górska (GSI), M.Kmiecik (Kraków), Zs. Podolyak (Surrey), M. Taylor (York), H.J.Wollersheim (GSI), Q. Zhong (Legnaro)
54

Piotr Bednarczyk 1,2 and Adam Maj 2 for the RISING Collaboration

Jan 01, 2016

Download

Documents

Victor Turner

Remarks on the background g radiation in the RISING fast beam campaign *. Piotr Bednarczyk 1,2 and Adam Maj 2 for the RISING Collaboration. 1 GSI Darmstadt, Germany 2 IFJ PAN Kraków, Poland. * ) Based on discussions with and contributions from: - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Piotr BednarczykPiotr Bednarczyk1,21,2 and and Adam MajAdam Maj22

forfor the RISING Collaboration the RISING Collaboration

1GSI Darmstadt, Germany2IFJ PAN Kraków, Poland

Remarks Remarks on the background on the background radiation radiation

in the RISING fast beam campaignin the RISING fast beam campaign**

HISPEC/DESPEC MEETING Valencia (Spain)

15th-16th June

*) Based on discussions with and contributions from:A.Bürger (Bonn), F.Camera (Milano), P.Doornenbal (GSI), J.Gerl (GSI), M.Górska (GSI), M.Kmiecik (Kraków), Zs. Podolyak (Surrey), M. Taylor (York), H.J.Wollersheim (GSI), Q. Zhong (Legnaro)

Page 2: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

FRS

HECTORHECTOR8 BaF2 scintillators

CATE: CATE: Position Sensitive Position Sensitive CaCalorimeter lorimeter TeTelescopelescope

Relativistic CoulombE2 or E1 excitation of projectile, break-up

EUROBALL15 cluster Ge-detectors

POV-Ray animation: R. Maj

Layout of the fast-RISING experimentLayout of the fast-RISING experiment

Page 3: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

HECTOR SPECTRA

Page 4: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration
Page 5: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Hector time spectra (100 MeV/u 84Kr beam)

142o

142o

142o142o

142o142o

90o

TotFloor

Page 6: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Prompt (target)

8-1

2 n

s aft

er

5 n

s b

efo

re

15 n

s aft

er

(CA

TE)

Page 7: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

100 MeV/u 84Kr beam

0

20

40

60

80

100

120

140

140 145 150 155 160 165 170 175 180ns

baf#1

baf#4

0

5

10

15

20

25

30

35

40

45

50

55

60

145 150 155 160 165 170 175 180 185

ns

baf#4 thick

baf#4 thin

baf#4 frame

0

5

10

15

20

25

30

35

40

45

50

55

60

140 145 150 155 160 165 170 175 180

ns

baf#1 thick

baf#1 thin

baf#1 frame

0

50

100

150

200

250

300

350

400

450

500

140 145 150 155 160 165 170 175 180

ns

baf#1 thick

baf#1 thin

baf#1 frame

142o

0

50

100

150

200

250

145 150 155 160 165 170 175 180 185ns

baf#4 thickbaf#4 thinbaf#4 frame

90o

Adam Maj
Page 8: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

time4 no wall

0

50

100

150

200

250

300

350

400

450

500

50 55 60 65 70 75 80 85 90ns

time4 no wall

time2 no w all

0

100

200

300

400

500

600

700

800

900

40 45 50 55 60 65 70 75 80

ns

time2 no w all

Thick (0.2 g/cm2) Au target, 150 MeV/u 132Xe beam

At the very beginning…

142o 90o

0

50

100

150

200

250

300

350

400

450

500

50 55 60 65 70 75 80 85 90ns

time4 no wall

time4 wall

0

100

200

300

400

500

600

700

800

900

40 45 50 55 60 65 70 75 80ns

time2 no w all

time2 w all

Simple wall

142o 90o

Page 9: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration
Page 10: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration
Page 11: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

A/Q - 37Ca, CATE -K (mainly 36K)

37Ca beam @196MeV/u;

A/Q - 37Ca, CATE - Ca

Page 12: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

ConclusionsConclusionsPrompt radiation from target, increasing with the target thickness

Early gamma radiation, coming from the beam line, caused by the light particles, ranging to very high energies (0-20 MeV)

Late gamma radiation (neutrons?)

Gamma radiation from the interaction of heavy ions in CATE

Page 13: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Ge Cluster detectors

BaF2 HECTOR detectors

beambeam

Target Target chamberchamber

CATE

MINIBALL detectors

Ge SPECTRA15*7 crystals

Page 14: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

1000 2000 3000

1000

10000

510 596

834 846

10141040 1461

180926142211

3004

1369

• Natural radioactivity: 40K, 208Pb,…• 27Al,56Fe(n,n’) with fast neutrons, Doppler broadened • 27Al(p,2p)26Mg; with Ep~Ebeam/u• Ge n capture

A single gamma spectrum, no condition;86Kr primary beam, 100MeV/u 54Cr secondary beam on Au target

Page 15: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

55Ni@165 MeV/uBe-target; gates on CATE

129Sn@165 MeV/uBe-target; gates on CATE

Page 16: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Time structure of an in-beam Ge spectrumTime structure of an in-beam Ge spectrumselection: selection: 132132Xe primary beam on Au target & Xe outgoing Xe primary beam on Au target & Xe outgoing particleparticle

350

400 800 1200 1600 2000 2400

50ns

off-time, randomRadioactivity lines

prompt Coulex target, projectile 27Al(p,2p)26Mg

delayedn induced

Conclusion : A lot of high energy particles (protons) is emitted in the fragmentation reactions

Page 17: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

4300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 5300

600

1400

x 0.25 ns

200 s

2 V

Huge amplitude (>> 20MeV), overshooting signals due to charged particles directly hitting the Ge crystal (?)

“normal” gammas

In-beam (spill-on) pre-amplified Ge signal

In-beam Ge time distribution @ 1st EB ring

If only low amplitudes accepted(DGF filtering)

Page 18: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Ge multiplicity distributionGe multiplicity distribution

0

good signals (central time peak position)

bad signals (satellite time peaks )

Number of fired crystals in a cluster

Number of clusters involved

1 71 15

Conclusion: Radiation/particles of high energy irradiate several Ge detectors (mainly central) in the same time

5 clusters in the central ring

Page 19: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Around: 196Os 200-201Pt 206Hg

Surviving ions

Destroyed ions

Zs. Podolyak et al, Nucl. Phys. A722 (2003) 273c

Page 20: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

4300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 53004300 4500 4700 4900 5100 5300

600

1400

Solution: Multiplicity filtering, when the number of crystals in a cluster is 1-3(physically correct condition to detect the Compton scattering)

Page 21: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

1850 1950 2050 2150 2250

3000

7000

11000

1500

3500

600

1400

A BaF2 (HECTOR) time distribution in coincidence with a cluster

BaF-GeMGe=1-3

BaF-GeMGe=5-7

BaFsingle

Radiation emitted downstream

target

neutrons

CATE

Conclusion: the source of the high multiplicity, and high amplitude signals is situated downstream in the FRS area

Page 22: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Some other properties of the “bad” signals:• For the outer rings the number of saturated signals is reduced• With a primary beam (no fragmentation before a target) the bad signals contribute

less • The higher beam energy and the current the bigger contribution of the bad signals• No matter if a reaction target is used or not

A general conclusion on that point:A fragmentation in the FRS area is a source of the intensive backgroundradiation seen by the Ge detectors. Its nature could be high energy particles* (protons) affecting mainly detectors close to the beam line.

*However a pileup of several hundred gammas irradiating the whole array cannot be excluded (i.e. a very intense bremsstrahlung)

Page 23: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

30

70

511

150 250 350 450 550 650 750

30

70

134Cs secondary beam on Au target

projectile in-fragments out

projectile in-out outTarget Coulex projectile Coulex

a few gammas, mainly elastic scattering=> enhanced background (correlated with a beam)gammas from excited fragments emitted in flight

electronbremsstrahlung ?

Low energy background in a Ge gamma spectrum

Z

A/Q

CATE

Page 24: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

511

200 400 600 800 1000 1200

548

~600MeV/u 68Ni secondary beam

~100MeV/u 54Cr secondary beam

~200MeV/u 132Xe primary beam

Incoming-outgoing projectile selection, Au target

197Au Cx line(~35mb)?

Page 25: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration
Page 26: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

4600 4700 4800 49004600 4700 4800 49004600 4700 4800 4900

300

700

300

700

300 500 700 900 1100300 500 700 900 1100

150

150

~600MeV/u 68Ni secondary beam

•target•no target•difference

Presence of the Au target enhances the prompt low energy gammas.

Gamma-time Gamma-energy

Page 27: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

200 400 600 800 1000200 400 600 800 1000

6000

200 400 600 800 1000

14000

200 400 600 800 1000200 400 600 800 1000200 400 600 800 1000

1500

3500

20 40 60 80 10020 40 60 80 100

132Xe primary beam -single

• prompt gammas •~100ns delayed

134Cs secondary beam -single

The prompt and delayed distributions are shifted in energy

There is (almost) no prompt background bump if only a primary beam is of use

Spectra normalized according to the 400-1000 keV range

Page 28: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

150

350

30

70

110

40 80 120 160 200 240

15

35EB Ring#1 ~15deg

EB Ring#2,3 ~30deg

MB Ring#4,5 ~90deg

134Cs secondary beam -particle

Position of the (prompt) bump very little depends on a detector angle

Page 29: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

At ~60 and~ 120 degrees

Zs. Podolyak et al, Nucl. Phys. A722 (2003) 273c

Page 30: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Bremsstrahlung componentsRadiative electron Capture of target electrons into bound states of the projectilePrimary Bremsstrahlung of target electrons produced by the collision with the projectileSecondary Bremsstrahlung of high energy knock-out electrons re-scattering in the target

atomic~ 10000 * (nuclear)

Page 31: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

Conclusion: •The prompt background may result from the (secondary ?) bremsstrahlung of electrons slowing down in the secondary target (Au). These electrons would be produced by fragments scattered on the FRS components. (suppressed if there is no primary or secondary target) •The delayed component may be than related to the bremsstrahlung of the electrons in CATE (CsI) or in the environment. (In this case the electrons could be also emitted from the secondary target)

Page 32: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.000v/c = 0.000

What happens to the spectral shape, when one applies Doppler corrections?

„662 keV”

Page 33: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.100v/c = 0.100

Page 34: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.200v/c = 0.200

Page 35: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.300v/c = 0.300

Page 36: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.320v/c = 0.320

Page 37: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.330v/c = 0.330

Page 38: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.340v/c = 0.340

Page 39: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.345v/c = 0.345

Page 40: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.350v/c = 0.350

Page 41: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.355v/c = 0.355

Page 42: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.360v/c = 0.360

Page 43: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.370v/c = 0.370

Page 44: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.380v/c = 0.380

Page 45: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.390v/c = 0.390

Page 46: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.400v/c = 0.400

Page 47: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.410v/c = 0.410

Page 48: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.420v/c = 0.420

Page 49: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.430v/c = 0.430

Page 50: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.440v/c = 0.440

Page 51: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.450v/c = 0.450

Page 52: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration

132132Xe (662 keV) Xe (662 keV) v/c = 0.355v/c = 0.355

This is NOT bremmstrahlung!This IS compressed nearly constant background.

Page 53: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration
Page 54: Piotr Bednarczyk 1,2  and  Adam Maj 2 for  the RISING Collaboration