Top Banner
RFL 2010-36721 Final Report of Reservoir Fluid Study for VETRA Exploración y Producción Colombia S.A. PENCOR Advanced Fluid Studies A Product of Piñuña Field Piñuña-5 Well 8-Oct-2010 6316 Windfern Rd. Houston, Texas 77040, USA Tel: 713-328-2673 Fax: 713-328-2697 Web: http://www.corelab.com The analyses, opinions or interpretations in this report are based upon observations and material supplied by the client to whom, and for whose exclusive and confidential use, this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories and its officers and employees assume no responsibility and make no warranty or representations, express or implied, as to the productivity, proper operation or profitability of any oil, gas, coal or any other mineral, property, well or sand formation in connection with which such report is used or relied upon for any reason whatsoever.
35
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Piñuna+5

RFL 2010-36721

Final Reportof

Reservoir Fluid Studyfor

VETRA Exploración y Producción Colombia S.A.

PENCOR Advanced Fluid Studies

A Product of

Piñuña FieldPiñuña-5 Well

8-Oct-2010

6316 Windfern Rd. Houston, Texas 77040, USATel: 713-328-2673 Fax: 713-328-2697 Web: http://www.corelab.com

The analyses, opinions or interpretations in this report are based upon observations and material supplied by the client to whom, and forwhose exclusive and confidential use, this report has been made. The interpretations or opinions expressed represent the best judgementof Core Laboratories. Core Laboratories and its officers and employees assume no responsibility and make no warranty or representations,express or implied, as to the productivity, proper operation or profitability of any oil, gas, coal or any other mineral, property, well or sandformation in connection with which such report is used or relied upon for any reason whatsoever.

Page 2: Piñuna+5

Core Laboratories, LPPencor Advanced Fluid Studies

6316 Windfern Rd,Houston, TX. USA 77040

Fax: 713-328-2697Tel: 713-328-2674

Web: http://www.corelab.com

Sincerely,

David McEvoyProject ManagerPENCOR Advanced Fluid Studies Laboratory

October 8th, 2010

VETRA Exploración y Producción Colombia S.A.Carrera 7 No. 71-52 Torre A Piso 10Bogotá, Colombia

Attention : Eng. Javier Aguillon

Subject: Reservoir Fluid Study Field: PiñuñaWell: Piñuña-5File: 2010-36721

Dear Eng. Aguillon;

A series of bottom-hole reservoir fluid samples were collected from the subject well onJune 26, 2010 by Core Laboratories representatives. The samples were received by ourPencor Advanced Fluid Studies Laboratory in Houston, USA on September 14, 2010.Initial sample validation and quality control procedures commenced upon receipt, and thelaboratory received approval to perform the Reservoir Fluid / PVT study on the selectedsample on September 23, 2010.

The final report containing the data for the completed laboratory study is presented in thefollowing pages.

It has been a pleasure to be of service to VETRA Exploración y Producción Colombia S.A.Should any questions arise or if we may be of further service in any way, please do nothesitate to contact us.

Page 3: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Table of Contents

Section A - Summary of Analysis Methods and PVT Data Page

Summary of analysis methods......................................................................................... A.1-A.2

Summary of PVT Data.................................................................................................... A.3

Section B - Summary of Samples Received and Validation Data

Well and sampling information........................................................................................ B.1

Summary of samples received........................................................................................ B.2

Section C - Compositional Analysis of Bottom-hole Reservoir Fluid Sample

Compositional analysis of bottom-hole sample to C36+................................................... C.1-C.2

Section D- Constant Composition Expansion (CCE)

Constant composition expansion data at 203 °F............................................................... D.1-D.2

Graphs of constant composition expansion data at 203 °F............................................... D.3

Section E - Differential Vaporization (DV)

Differential vaporization data............................................................................................ E.1

Graphs from differential vaporization................................................................................ E.2

Produced gas and residual liquid compostions from differential vaporization.................... E.3-E.5

Differential vaporization data converted to production separator conditions...................... E.6

Section F - Separator Test Data

Data from separator test.................................................................................................. F.1

Compositional analysis of produced gases and stocktank oil from separator test............. F.2-F.4

Section G - Reservoir Fluid Viscosity Data

Reservoir fluid viscosity at 203 °F.................................................................................... G.1

Section H - Appendix

Data used in gas compositional calculations.................................................................... H.1

Data used in liquid compositional calculations.................................................................. H.2

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 4: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section A - Summary of Analysis Methods and PVT Data

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 5: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Summary of Analyses Methods

Sample ValidationThe visual bubble point pressure at reservoir temperature, and free water content, weremeasured as initial quality checks for each bottomhole sample. The visual bubble point isobtained by charging a small volume of sample to a PVT cell, and quickly lowering the pressureuntil the first gas bubble is observed. The results for the two samples showed good agreement.The sample is checked for the presence of free water, which is drained and the volumemeasured. The entrained water content was determined by Karl Fischer titration.

Based on the sample evaluations, cylinder no. 818386 was selected for full PVT analysis.

Heat TreatmentThe selected sample cylinder was heated to the reservoir temperature of 203 °F prior tosubsampling to avoid potential wax deposition problems and ensure representative sampletransfers at all stages of testing.

Pressurized Fluid CompositionApproximately 25 cc of pressurized fluid was flashed to atmospheric pressure at 120 °F andseparated into its respective gas and oil phases. The evolved gas and residual liquid wereanalyzed separately, using gas-liquid chromatography and recombined on a weight basis toproduce a C36+ weight percent composition.

Gas CompositionsGas compositions were measured using a "one shot" Varian 3800 gas analyzer using methodGPA 2286. The gas chromatograph utilizes 3 columns to clearly identify all the elutedcomponents from N2, CO2 and C1 through C11+.

The chromatograph is calibrated weekly using air and synthetic hydrocarbon gas with a knowncomposition. The resultant calibration data is checked statistically against previous calibrationsprior to performing analyses on unknown samples.

Liquid CompositionResidual / stocktank liquid composition were measured using a Varian 3600 chromatograph.The gas chromatograph utilizes a cold on column, "sandwich injection" technique to ensure thata representative sample is injected and swept onto the column. The sample is run twice; firstthe original fluid and then the fluid spiked with n-tetradecane. This allows the laboratory to takeinto account any heavy end (C36+) losses that may have occurred during the chromatographicrun, and make an accurate correction prior to reporting the liquid composition. The dataobtained from the gas chromatograph is in weight %. Calculations to mole% and the plusfractions properties are described later.

The chromatograph is checked daily, using a gravimetric n-paraffin mix containing a range ofpure components from C8 through C36 and a synthetic gas-oil mix (D2887) with a knowncomposition. The resultant calibration data is checked statistically against previous calibrationsprior to perform analyses on unknown samples.

A.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 6: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Summary of Analyses Methods, continuation

Calculation of Mole% Compositions and Plus Fraction PropertiesThe residue or stocktank liquid whole sample molecular weight and density are measured usinga cryscope and a PAAR densimeter respectively.

The mole% data is calculated using GPSA mole weight and density data, where individualcomponents are identified from carbon dioxide through decanes. Katz and Firoozabadi data areused from undecanes through pentatriacontanes. The residue mole weight and density valuesare calculated so that the pseudo average mole weight and density are the same as themeasured values. This can lead to anomalous residue mole weights and densities where theKatz and Firoozabadi values may not be suitable for the isomer groups detected.

Constant Composition ExpansionA portion of the reservoir fluid sample was charged to a high pressure visual cell at reservoirtemperature. A constant composition expansion was carried out during which the bubble pointpressure at reservoir temperature, and pressure-volume data for the single phase and twophase fluid, were determined. The density of the single phase fluid was measured via an AntonPaar® high-pressure densitometer connected directly to the cell at 5000 psig. Density data forother pressures were calculated using the data from the pressure-volume relationship.

Differential VaporizationThe differential vaporization test was carried out in a high pressure visual cell at reservoirtemperature. Beginning with the fluid sample in a single-phase state above the measuredsaturation pressure, the pressure was lowered to the first depletion stage pressure andthoroughly equilibrated. The evolved gas was displaced from the cell and its volume,compressibility, gravity and molar composition were measured. This process was repeated atsuccessively lower pressure stages until the last stage was reached. The final stage wascarried out at atmospheric pressure when the residual liquid was pumped out of the cell and itsvolume, density, molecular weight and composition were measured.

Separator TestA single-stage separator test was carried out using a pressurized test separator cell. A portionof the recombined reservoir fluid sample was charged to the cell and stabilized at the pressureand temperature required for the first stage of separation. The gas evolved was pumped out ofthe cell and the volume and composition were measured. The final (stocktank) stage wascarried out at atmospheric pressure and 60°F and the density and composition of the residualliquid were determined.

Reservoir Fluid ViscosityLive-oil viscosity was measured in an electromagnetic viscometer at reservoir temperature.Viscosity determinations were carried out over a wide range of pressures from above thereservoir pressure to atmosheric pressure.

The measurements were repeated at each pressure stage until five or more results agreed towithin 0.5%. The densities, obtained from the constant composition expansion and differentialvaporization tests, were used in the calculation of viscosities in centipoise.

A.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 7: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Summary of Laboratory Data

Constant Composition Expansion of Reservoir Fluid at 203 °F

Saturation pressure (bubble-point) 942 psig

Average single phase compressibility 8.07 x 10 -6 psi-1(From 3485 psig to 942 psig)

Density at saturation pressure 0.7996 g cm-3

Differential Vaporization at 203 °F

Solution gas-oil ratio at saturation pressure 262 scf/bbl of residual oil at 60°F

Relative oil volume at saturation pressure 1.216 vol / vol of residual oil at 60°F

Density of residual oil 0.8983 g cm-3 at 60°F

Separator Test Data

Pressure Temperature Formation Volume Total Solution Stocktank Oil(psig) (°F) Factor Gas-oil ratio Density at 60 °F

(Bl sat/bbl) (scf/bbl) (g cm-3)

942 203 1.163 191

45 100 168

0 60 23 0.8899

Reservoir Fluid Viscosity at 203 °F

Viscosity at reservoir pressure 2.129 centipoise at 3485 psig

Viscosity at saturation pressure 1.637 centipoise at 942 psig

Viscosity at atmospheric pressure 4.544 centipoise at 0 psig

A.3___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

DANIELA M
Highlight
Page 8: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section B - Summary Of Samples Received And Validation Data

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 9: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Reported Well and Sampling Information

Reservoir and well information

Field...................................................................... PiñuñaWell....................................................................... Piñuña-5Reservoir Fluid...................................................... Black Oil

Formation.............................................................. Villeta (U Sand)Current Reservoir Pressure .................................. 3500 psiaReservoir Temperature.......................................... 203 °F

Installation............................................................. *DST....................................................................... *Perforated Interval ................................................ 9,508 - 9,524 ft.; 9,544 - 9,558 ft.;

9,574 - 9,580 ft.

Sampling information

Date sampled........................................................ 26-Jun-10Time sampled ....................................................... 12:00Type of samples.................................................... BHSSampling company................................................ Core LaboratoriesSampling Depth.................................................... 7,650 ft.

Choke.................................................................... *Status of well......................................................... Pumping (ESP)

Bottomhole pressure.............................................. 3283 psia at sampling depthBottomhole temperature........................................ 230 °F at sampling depth (estimated)

Wellhead pressure................................................. *Wellhead temperature........................................... *

Separator pressure ............................................... *Separator temperature .......................................... *

Pressure base........................................................ 14.7 psiaTemperature base ................................................ 60 °F

Separator gas rate................................................. *Separator oil rate .................................................. *Water flowrate....................................................... *Gas gravity (Air = 1).............................................. *Supercompressibility factor.................................... *H2S....................................................................... *BS&W................................................................... *API Oil Gravity ..................................................... *

Comments:

* Data not provided to Core Laboratories

B.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 10: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Summary of Samples Received

Bottomhole samplesEntrained

Sample Cylinder Water Sample Water number number pressure Temp. Pressure Temp. recovered volume Content

(psia) (°F) (psig) (°F) (cc) (cc) (%)

1.1 818408 3283 230 * 820 203 0 600 4.15

1.2 818386 3283 230 * 840 203 7 600 3.03

Notes:

* The temperature at sampling depth is estimated.

Sample cylinder number 818386 was selected for PVT analysis.

The samples were subjected to a dehydration procedure consisting of 48 hours of thermal cycling.Following this period subsamples were removed and measured for entrained water content.Cylinder 818408 was reduced to a 0.76 wt. % water content and cylinder 818386 was reduced to0.05 wt. %.

Laboratory visualSampling bubble point

B.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 11: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section C - Compositional Analysis of Bottom-hole Reservoir Fluid Sample

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 12: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Bottomhole Sample to C36 plus

Component Mole % Weight %H2 Hydrogen 0.00 0.00H2S Hydrogen Sulphide 0.00 0.00CO2 Carbon Dioxide 1.59 0.37N2 Nitrogen 1.02 0.15C1 Methane 13.86 1.19C2 Ethane 4.33 0.70C3 Propane 7.95 1.88iC4 i-Butane 1.72 0.53nC4 n-Butane 4.20 1.31C5 Neo-Pentane 0.02 0.01iC5 i-Pentane 2.00 0.77nC5 n-Pentane 1.93 0.74C6 Hexanes 2.55 1.17

Methyl-Cyclopentane 1.06 0.48Benzene 0.17 0.07Cyclohexane 0.42 0.19

C7 Heptanes 2.85 1.53Methyl-Cyclohexane 1.07 0.56Toluene 0.47 0.23

C8 Octanes 3.31 2.02EthylBenzene 0.47 0.26M/P-Xylene 0.48 0.27O-Xylene 0.28 0.16

C9 Nonanes 2.87 1.97TrimethylBenzene 0.32 0.20

C10 Decanes 3.21 2.45C11 Undecanes 2.95 2.32C12 Dodecanes 2.59 2.23C13 Tridecanes 2.96 2.77C14 Tetradecanes 2.38 2.41C15 Pentadecanes 2.35 2.59C16 Hexadecanes 1.95 2.32C17 Heptadecanes 1.79 2.27C18 Octadecanes 1.90 2.55C19 Nonadecanes 1.80 2.54C20 Eicosanes 1.34 1.97C21 Heneicosanes 1.23 1.91C22 Docosanes 1.14 1.87C23 Tricosanes 1.06 1.81C24 Tetracosanes 0.98 1.73C25 Pentacosanes 0.93 1.71C26 Hexacosanes 0.82 1.57C27 Heptacosanes 0.82 1.65C28 Octacosanes 0.76 1.57C29 Nonacosanes 0.76 1.63C30 Triacontanes 0.72 1.61C31 Hentriacontanes 0.68 1.57C32 Dotriacontanes 0.58 1.39C33 Tritriacontanes 0.54 1.32C34 Tetratriacontanes 0.51 1.30C35 Pentatriacontanes 0.48 1.24C36+ Hexatriacontanes + 7.83 32.94

_____ _____Totals : 100.000 100.000

C.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 13: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Bottomhole Sample to C36 plus

Calculated Residue Properties

C7 plus Mole % 58.83Mole Weight (g mol-1) 290Density at 60°F (g cm-3) 0.9047

C11 plus Mole % 41.85Mole Weight (g mol-1) 361Density at 60°F (g cm-3) 0.9323

C20 plus Mole % 21.18Mole Weight (g mol-1) 519Density at 60°F (g cm-3) 0.9788

C36 plus Mole % 7.83Molecular Weight (g mol-1) 786Density at 60°F (g cm-3) 1.0617

Calculated Whole Sample Properties

Average mole weight (g mol-1) 187Density at 60°F (g cm-3) 0.8444

C.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 14: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section D- Constant Composition Expansion (CCE)

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 15: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Constant Composition Expansion at 203°F

Single-phase Fluid Properties

Saturation pressure (bubble-point pressure) 942 psig

Average single phase compressibility(From 3485 psig to 942 psig) 8.07 x 10 -6 psi-1

Density at saturation pressure 0.7996 g cm-3

Mean Single-phase Compressibilities

Pressure Range MeanInitial Pressure Final Pressure Compressibility

(psig) (psig) (psi-1) (1)

5000 4000 6.51 x 10 -6

4000 3000 7.01 x 10 -6

3000 2000 7.71 x 10 -6

2000 942 8.84 x 10 -6

(1) Mean compressibility = (V2-V1) / [(V1+V2)/2] x 1/(P1 - P2)

D.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 16: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Constant Composition Expansion at 203°F

Pressure Relative Density Instantaneous Y-Function (3)(psig) Volume (1) (g cm-3) Compressibility

(psi-1 x 10-6) (2)

5000 0.9699 0.8245 6.314500 0.9730 0.8218 6.514000 0.9762 0.8191 6.743485 Reservoir pressure 0.9797 0.8162 7.013000 0.9831 0.8134 7.312500 0.9868 0.8104 7.692000 0.9907 0.8072 8.171500 0.9949 0.8037 8.771300 0.9967 0.8023 9.061100 0.9985 0.8008 9.381000 0.9994 0.8001 9.54942 Saturation pressure 1.0000 0.7996939 1.0011935 1.0025931 1.0039927 1.0053924 1.0064920 1.0079905 1.0136885 1.0216857 1.0335806 1.0581 2.851724 1.1071 2.756610 1.2034 2.613472 1.3995 2.417337 1.7856 2.190290 2.0199 2.098248 2.3152 2.009216 2.6268 1.935193 2.9211 1.877175 3.2102 1.829159 3.5262 1.784146 3.8370 1.746135 4.1491 1.712127 4.4114 1.686

(1) Relative Volume = V / Vsat ie. volume at indicated pressure per volume at saturation pressure.(2) Instantaneous compressibility = (V2-V1) / V1 x 1/(P1-P2)(3) Y-function = (Psat - P ) / ((Pabs)(V/Vsat - 1)).

D.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 17: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Graphs of Constant Composition Expansion Data

Relative Volume vs Pressure

Y Function vs Pressure

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

0 1000 2000 3000 4000 5000 6000

Pressure (psig)

Rel

ativ

e V

olum

e, V

/Vsa

t

0.000

0.500

1.000

1.500

2.000

2.500

3.000

0 100 200 300 400 500 600 700 800 900

Pressure (psig)

Y-F

unct

ion

D.3___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 18: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section E - Differential Vaporization (DV)

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 19: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Differential Vaporization at 203°F

Solution Relative Relative Deviation Gas IncrementalPressure Gas-Oil Oil Total Density Factor Formation Gas Gravity

(psig) Ratio Volume Volume (g cm-3) (Z) Volume (Air = 1.000)Rs(1) Bod(2) Btd(3) Factor (4)

942 262 1.216 1.216 0.7996 Saturation Pressure800 238 1.207 1.295 0.8021 0.908 0.02089 0.823600 205 1.193 1.474 0.8061 0.918 0.02797 0.851400 168 1.177 1.878 0.8111 0.931 0.04208 0.904200 121 1.156 3.239 0.8167 0.952 0.08309 1.049100 87 1.135 6.057 0.8235 0.969 0.15838 1.281

0 0 1.065 0.8432 1.902

At 60°F = 1.000

Residual Oil Properties

Density of residual oil 0.8983 g cm-3 at 60°F

API 25.9

(1) GOR in cubic feet of gas at 14.696 psia and 60°F per barrel of residual oil at 60°F.(2) Volume of oil at indicated pressure and temperature per volume of residual oil at 60°F.(3) Volume of oil plus liberated gas at indicated pressure and temperature per volume of residual oil at 60°F.(4) Volume of gas at indicated pressure and temperature per volume at 14.696 psia and 60°F.

E.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 20: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Graphs of Differential Vaporization

Solution Gas-Oil Ratio v Pressure

Relative Oil Volume v Pressure

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800 900 1000

Pressure (psig)

Gas

-Oil

Rat

io (s

cf /

bbl)

1.000

1.050

1.100

1.150

1.200

1.250

0 100 200 300 400 500 600 700 800 900 1000

Pressure (psig)

Rel

ativ

e O

il V

olum

e (V

/Vr)

E.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 21: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Differential Vaporization Gases to C11+

Sample I.D.

Test Stage 1 2 3 4 5 6Stage Pressure (psig) 800 600 400 200 100 0

Component (Mole%)

H2 Hydrogen 0.00 0.00 0.00 0.00 0.00 0.00H2S Hydrogen Sulphide 0.00 0.00 0.00 0.00 0.00 0.00CO2 Carbon Dioxide 4.58 5.10 5.77 6.32 5.77 1.59N2 Nitrogen 10.34 7.26 4.09 1.51 0.40 0.04C1 Methane 66.37 65.34 61.73 49.42 30.89 4.33C2 Ethane 7.42 8.70 10.83 14.63 17.87 9.64C3 Propane 6.81 8.22 10.77 17.05 26.05 31.63iC4 i-Butane 0.91 1.11 1.45 2.45 4.01 7.64nC4 n-Butane 1.72 2.11 2.74 4.71 7.94 18.74C5 Neo-Pentane 0.01 0.01 0.01 0.02 0.04 0.09iC5 i-Pentane 0.59 0.68 0.77 1.26 2.32 7.72nC5 n-Pentane 0.43 0.52 0.66 1.00 1.85 6.66C6 Hexanes 0.37 0.42 0.53 0.73 1.35 5.69

M-C-Pentane 0.08 0.10 0.13 0.18 0.33 1.46Benzene 0.00 0.01 0.01 0.02 0.03 0.16Cyclohexane 0.04 0.05 0.06 0.09 0.17 0.69

C7 Heptanes 0.14 0.16 0.19 0.28 0.48 1.94M-C-Hexane 0.04 0.05 0.06 0.08 0.14 0.53Toluene 0.01 0.01 0.01 0.02 0.03 0.15

C8 Octanes 0.07 0.08 0.10 0.13 0.21 0.76E-Benzene 0.00 0.00 0.01 0.01 0.01 0.05M/P-Xylene 0.00 0.00 0.00 0.00 0.01 0.03O-Xylene 0.00 0.00 0.00 0.00 0.00 0.02

C9 Nonanes 0.04 0.05 0.06 0.06 0.08 0.291,2,4-TMB 0.00 0.00 0.00 0.00 0.00 0.01

C10 Decanes 0.02 0.02 0.02 0.02 0.02 0.12C11+ Undecanes plus 0.01 0.00 0.00 0.01 0.00 0.09

_____ _____ _____ _____ _____ _____Totals : 100.00 100.00 100.00 100.00 100.00 100.00

Calculated Gas Properties

Gas Gravity 0.823 0.851 0.904 1.049 1.281 1.902(Air = 1.000)

Note: 0.00 means less than 0.005.

E.3___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 22: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Differential Vaporization Residue to C36+

Component Mole % Weight %H2 Hydrogen 0.00 0.00H2S Hydrogen Sulphide 0.00 0.00CO2 Carbon Dioxide 0.00 0.00N2 Nitrogen 0.00 0.00C1 Methane 0.00 0.00C2 Ethane 0.02 0.00C3 Propane 0.50 0.08iC4 i-Butane 0.35 0.07nC4 n-Butane 1.31 0.27C5 Neo-Pentane 0.00 0.00iC5 i-Pentane 1.21 0.31nC5 n-Pentane 1.36 0.35C6 Hexanes 2.70 0.84

M-C-Pentane 1.30 0.40Benzene 0.21 0.06Cyclohexane 0.50 0.15

C7 Heptanes 3.89 1.40M-C-Hexane 1.57 0.56Toluene 0.70 0.23

C8 Octanes 4.94 2.03E-Benzene 0.71 0.27M/P-Xylene 0.75 0.29O-Xylene 0.43 0.17

C9 Nonanes 4.48 2.071,2,4-TMB 0.50 0.22

C10 Decanes 5.07 2.59C11 Undecanes 4.73 2.50C12 Dodecanes 4.16 2.41C13 Tridecanes 4.74 2.98C14 Tetradecanes 3.82 2.61C15 Pentadecanes 3.82 2.83C16 Hexadecanes 3.14 2.51C17 Heptadecanes 2.88 2.46C18 Octadecanes 3.06 2.76C19 Nonadecanes 2.90 2.75C20 Eicosanes 2.14 2.12C21 Heneicosanes 2.00 2.09C22 Docosanes 1.86 2.04C23 Tricosanes 1.75 2.00C24 Tetracosanes 1.57 1.87C25 Pentacosanes 1.49 1.84C26 Hexacosanes 1.37 1.76C27 Heptacosanes 1.27 1.71C28 Octacosanes 1.24 1.73C29 Nonacosanes 1.21 1.75C30 Triacontanes 1.17 1.75C31 Hentriacontanes 1.10 1.71C32 Dotriacontanes 0.96 1.53C33 Tritriacontanes 0.90 1.49C34 Tetratriacontanes 0.81 1.38C35 Pentatriacontanes 0.76 1.33C36+ Hexatriacontanes plus 12.65 35.73_____ _____

Totals : 100.00 100.00

E.4___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 23: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Differential Vaporization Residue to C36+

Calculated Residue Properties

C7+ Mole% 92.55Molecular Weight (g mol-1) 295Density at 60°F (g cm-3) 0.9061

C11+ Mole% 67.50Molecular Weight (g mol-1) 361Density at 60°F (g cm-3) 0.9316

C20+ Mole% 34.25Molecular Weight (g mol-1) 518Density at 60°F (g cm-3) 0.9775

C36+ Mole % 12.65Molecular Weight (g mol-1) 786Density at 60°F (g cm-3) 1.0593

Calculated Whole Sample Properties

Average mole weight (g mol-1) 278Density at 60°F (g cm-3) [Measured] 0.8983API 25.9

E.5___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 24: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Differential Vaporization Data Converted to Production Separator Conditions

Oil Solution Formation Gas FormationPressure Density Gas/Oil Volume Volume

(psig) (g cm-3) (scf / bbl) Factor FactorRs(1) Bo(1) Bg(2)

5000 0.8244 1.1284500 0.8218 1.1324000 0.8191 1.1353485 Reservoir pressure 0.8162 1.1393000 0.8133 1.1432500 0.8103 1.1482000 0.8071 1.1521500 0.8037 1.1571300 0.8023 1.1591100 0.8008 1.1611000 0.8001 1.162942 Saturation pressure 0.7996 191 1.163800 0.8021 168 1.154 0.02089600 0.8061 137 1.141 0.02797400 0.8111 102 1.126 0.04208200 0.8167 56 1.105 0.08309100 0.8235 24 1.085 0.15838

Notes:

(1) Differential data corrected to surface separator conditions of :-

Stage 1 45 psig and 100°FStage 2 0 psig and 60°F

Rs = Rsfb - (Rsdb - Rsd) x (Bofb / Bodb)

Bo = Bod x (Bofb/Bodb)

(2) Volume of gas at indicated pressure and temperature per volume at 14.696 psia and 60°F.

E.6___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 25: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section F - Separator Test Data

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 26: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Separator Test Data

Gas-Oil Gas-Oil Oil Formation Separation Gas GravityPressure Temperature Ratio Ratio Density Volume Volume of flashed gas

(psig) (°F) Rsfb (g cm-3) Factor Factor (Air = 1.000)(1) (2) Bofb (3) (4)

942 203 - 191 0.7996 1.163 Saturation Pressure

45 100 164 168 0.8736 1.027 1.0400 60 23 23 0.8899 1.000 1.421

Residual Oil Properties **

Density of residual oil 0.8899 g cm-3 at 60°F

API gravity 27.3 °

Note :

* Evolved gas collected and analyzed to C10+.** Stocktank oil collected and analyzed to C36+.

(1) GOR in cubic feet of gas at 14.696 psia and 60°F per barrel of oil at indicated pressure and temperature.(2) GOR in cubic feet of gas at 14.696 psia and 60°F per barrel of stocktank oil at 60°F.(3) Volume of saturated oil at 942 psig and 203°F per volume of stocktank oil at 60°F.(4) Volume of oil at indicated pressure and temperature per volume of stocktank oil at 60°F.

F.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 27: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Separator Test Gases to C10+

Sample I.D.

Test Stage 1 2Stage Pressure (psig) 45 0

Component (Mole%)H2 Hydrogen 0.00 0.00H2S Hydrogen Sulphide 0.00 0.00CO2 Carbon Dioxide 4.87 4.23N2 Nitrogen 3.20 0.27C1 Methane 49.54 17.98C2 Ethane 12.92 18.20C3 Propane 18.49 35.80iC4 i-Butane 2.56 5.70nC4 n-Butane 5.05 10.68C5 Neo-Pentane 0.02 0.05iC5 i-Pentane 1.17 2.89nC5 n-Pentane 1.00 2.07C6 Hexanes 0.56 1.17

M-C-Pentane 0.16 0.26Benzene 0.02 0.02Cyclohexane 0.07 0.11

C7 Heptanes 0.14 0.30M-C-Hexane 0.06 0.08Toluene 0.02 0.03

C8 Octanes 0.09 0.11E-Benzene 0.00 0.00M/P-Xylene 0.00 0.00O-Xylene 0.00 0.00

C9 Nonanes 0.04 0.04C10+ Decanes plus 0.02 0.01

_____ _____Totals : 100.00 100.00

Calculated Gas Properties

Gas Gravity 1.040 1.421(Air = 1.000)

Note: 0.00 means less than 0.005.

F.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 28: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Stocktank Oil to C36+

Component Mole % Weight %H2 Hydrogen 0.00 0.00H2S Hydrogen Sulphide 0.00 0.00CO2 Carbon Dioxide 0.00 0.00N2 Nitrogen 0.00 0.00C1 Methane 0.02 0.00C2 Ethane 0.25 0.03C3 Propane 2.48 0.43iC4 i-Butane 1.07 0.25nC4 n-Butane 3.35 0.76C5 Neo-Pentane 0.00 0.00iC5 i-Pentane 2.16 0.61nC5 n-Pentane 2.16 0.61C6 Hexanes 3.45 1.17

M-C-Pentane 1.52 0.50Benzene 0.24 0.07Cyclohexane 0.55 0.18

C7 Heptanes 4.19 1.65M-C-Hexane 1.59 0.61Toluene 0.67 0.24

C8 Octanes 4.88 2.19E-Benzene 0.67 0.28M/P-Xylene 0.69 0.29O-Xylene 0.40 0.17

C9 Nonanes 4.23 2.131,2,4-TMB 0.52 0.25

C10 Decanes 4.63 2.58C11 Undecanes 4.30 2.48C12 Dodecanes 3.73 2.35C13 Tridecanes 4.28 2.94C14 Tetradecanes 3.43 2.55C15 Pentadecanes 3.42 2.76C16 Hexadecanes 2.81 2.44C17 Heptadecanes 2.57 2.39C18 Octadecanes 2.74 2.70C19 Nonadecanes 2.57 2.65C20 Eicosanes 1.94 2.10C21 Heneicosanes 1.78 2.03C22 Docosanes 1.64 1.96C23 Tricosanes 1.54 1.92C24 Tetracosanes 1.40 1.82C25 Pentacosanes 1.33 1.80C26 Hexacosanes 1.22 1.72C27 Heptacosanes 1.12 1.65C28 Octacosanes 1.09 1.66C29 Nonacosanes 1.06 1.68C30 Triacontanes 1.02 1.67C31 Hentriacontanes 0.97 1.64C32 Dotriacontanes 0.85 1.47C33 Tritriacontanes 0.79 1.42C34 Tetratriacontanes 0.72 1.33C35 Pentatriacontanes 0.67 1.28C36+ Hexatriacontanes plus 11.29 34.59_____ _____

Totals : 100.00 100.00

F.3___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 29: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Compositional Analysis of Stocktank Oil to C36+

Calculated Residue Properties

C7+ Mole% 85.06Molecular Weight (g mol-1) 288Density at 60°F (g cm-3) 0.9028

C11+ Mole% 60.28Molecular Weight (g mol-1) 360Density at 60°F (g cm-3) 0.9305

C20+ Mole% 30.43Molecular Weight (g mol-1) 517Density at 60°F (g cm-3) 0.9764

C36+ Mole % 11.29Molecular Weight (g mol-1) 783Density at 60°F (g cm-3) 1.0569

Calculated Whole Sample Properties

Average mole weight (g mol-1) 255Density at 60°F (g cm-3) [Measured] 0.8899API 27.3

F.4___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 30: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section G - Reservoir Fluid Viscosity Data

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 31: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Reservoir Fluid Viscosity Data at 203°F

Pressure Oil Calculated Oil/Gas(psig) Viscosity Gas Viscosity Viscosity

(cP) (cP) (1) Ratio

5000 2.4114000 2.2253485 Reservoir pressure 2.1293000 2.0372000 1.8461500 1.7481000 1.648942 Saturation pressure 1.637800 1.826 0.0139 131.755600 2.054 0.0133 154.039400 2.259 0.0127 177.260200 2.534 0.0119 213.858100 2.831 0.0109 259.783

0 4.544

Reservoir Fluid Viscosity v Pressure at 203°F

(1) Calculated using the method of Lee, Gonzales and Eakin, JPT, Aug 1966.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 1000 2000 3000 4000 5000 6000

Pressure (psig)

Vis

cosi

ty (c

P)

G.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 32: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Section H - Appendix

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 33: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Data Used in Gas Compositional Calculations

Component Mole Weight Density Component Mole Weight Density(g mol-1) (g cm-3 at 60°F) (g mol-1) (g cm-3 at 60°F)

Hydrogen * 2.016 N/A 33DMC5 * 100.20 0.6954Oxygen/(Argon) ** 31.999 1.1410 Cyclohexane * 84.16 0.7827Nitrogen (Corrected) ** 28.013 0.8086 2MC6/23DMC5 * 100.20 0.6917Methane ** 16.043 0.2997 11DMCYC5/3MC6 * 99.20 0.7253Carbon Dioxide ** 44.010 0.8172 t13DMCYC5 * 98.19 0.7528Ethane ** 30.070 0.3558 c13DMCYC5/3EC5 * 99.20 0.7262Hydrogen Sulphide ** 34.080 0.8006 t12DMCYC5 * 98.19 0.7554Propane ** 44.097 0.5065 Heptanes (nC7) * 100.20 0.6875i-Butane ** 58.123 0.5623 22DMC6 * 114.23 0.6994n-Butane ** 58.123 0.5834 MCYC6 * 98.19 0.7740Neo-Pentane * 72.15 0.5968 ECYC5 * 98.19 0.7704i-Pentane ** 72.150 0.6238 223TMC5/24&25DMC6 * 114.23 0.7060n-Pentane ** 72.150 0.6305 ctc124TMCYC5 * 112.21 0.751122DMC4 * 86.18 0.6529 ctc123TMCYC5 * 112.21 0.757423DMC4/CYC5 * 78.16 0.7129 Toluene * 92.14 0.87342MC5 * 86.18 0.6572 Octanes (nC8) * 114.23 0.70633MC5 * 86.18 0.6682 E-Benzene * 106.17 0.8735Hexanes (nC6) * 86.18 0.6631 M/P-Xylene * 106.17 0.867122DMC5 * 100.20 0.6814 O-Xylene * 106.17 0.8840M-C-Pentane * 84.16 0.7533 Nonanes (nC9) * 128.26 0.721224DMC5 * 100.20 0.6757 Decanes *** 134 0.778223TMC4 * 100.20 0.6947 Undecanes *** 147 0.789Benzene * 78.11 0.8820 Dodecanes *** 161 0.800

Data Source Refs :

* ASTM Data Series Publication DS 4B (1991) - Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.

** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas, GPA 2145-96.

*** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655. Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients - D.L. Katz & A. Firoozabadi.

Note :The gas mole % compositions were calculated from the measured weight % compositions using themost detailed analysis results, involving as many of the above components as were identified. Thereported component mole % compositions were then sub-grouped into the generic carbon numbercomponents.

H.1___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 34: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Data Used in Oil Compositional Calculations

Component Mole Weight Density Component Mole Weight Density(g mol-1) (g cm-3 at 60°F) (g mol-1) (g cm-3 at 60°F)

Hydrogen * 2.016 N/A Undecanes *** 147 0.789Hyd. sulphide ** 34.080 0.8006 Dodecanes *** 161 0.800Carbon Dioxide ** 44.010 0.8172 Tridecanes *** 175 0.811Nitrogen ** 28.013 0.8086 Tetradecanes *** 190 0.822Methane ** 16.043 0.2997 Pentadecanes *** 206 0.832Ethane ** 30.070 0.3558 Hexadecanes *** 222 0.839Propane ** 44.097 0.5065 Heptadecanes *** 237 0.847i-Butane ** 58.123 0.5623 Octadecanes *** 251 0.852n-Butane ** 58.123 0.5834 Nonadecanes *** 263 0.857i-Pentane ** 72.150 0.6238 Eicosanes *** 275 0.862n-Pentane ** 72.150 0.6305 Heneicosanes *** 291 0.867Hexanes ** 86.177 0.6634 Docosanes *** 305 0.872Me-cyclo-pentane * 84.16 0.7533 Tricosanes *** 318 0.877Benzene * 78.11 0.8820 Tetracosanes *** 331 0.881Cyclo-hexane * 84.16 0.7827 Pentacosanes *** 345 0.885Heptanes ** 100.204 0.6874 Hexacosanes *** 359 0.889Me-cyclo-hexane * 98.19 0.7740 Heptacosanes *** 374 0.893Toluene * 92.14 0.8734 Octacosanes *** 388 0.896Octanes ** 114.231 0.7061 Nonacosanes *** 402 0.899Ethyl-benzene * 106.17 0.8735 Triacontanes *** 416 0.902Meta/Para-xylene * 106.17 0.8671 Hentriacontanes *** 430 0.906Ortho-xylene * 106.17 0.8840 Dotriacontanes *** 444 0.909Nonanes ** 128.258 0.7212 Tritriacontanes *** 458 0.9121-2-4-T-M-benzene * 120.19 0.8797 Tetratriacontanes *** 472 0.914Decanes ** 142.285 0.7334 Pentatriacontanes *** 486 0.917

Data Source Refs :

* ASTM Data Series Publication DS 4B (1991) - Physical Constants of Hydrocarbon and Non-Hydrocarbon Compounds.

** GPA Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural GasGPA 2145-96.

*** Journal of Petroleum Technology, Nov 1978, Pages 1649-1655. Predicting Phase Behaviour of Condensate/Crude Oil Systems Using Methane Interaction Coefficients - D.L. Katz & A. Firoozabadi.

Note :The residue mole weight and density values ( eg heptanes plus, undecanes plus, eicosanes plus) arecalculated so that the calculated average mole weights and densities correspond with the measuredvalues. This can lead to anomalous residue mole weights and densities where the Katz andFiroozabadi values may not be suitable for the isomer groups detected.

H.2___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies

Page 35: Piñuna+5

VETRA Exploración y Producción Colombia S.A.Piñuña-5 Well___________________________________________________________________________________________RFL 2010-36721

Report prepared by Report approved by

David McEvoy Richard M. (Rikki) FyfeProject Manager Operations ManagerPENCOR Advanced Fluid Studies PENCOR Advanced Fluid Studies

___________________________________________________________________________________________Core Laboratories LPPencor Advanced Fluid Studies