Top Banner
Physics of Physics of Supernovae Supernovae Konstantin Postnov, Konstantin Postnov, Sternberg Astronomical Sternberg Astronomical Institute, Moscow, Russia Institute, Moscow, Russia Erice 2004, July 3 Erice 2004, July 3
83

Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Dec 17, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Physics of Physics of SupernovaeSupernovaeKonstantin Postnov, Konstantin Postnov,

Sternberg Astronomical Sternberg Astronomical Institute, Moscow, RussiaInstitute, Moscow, Russia

Erice 2004, July 3Erice 2004, July 3

Page 2: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Outlook

• Introduction• Core collapse supernovae (SN II, Ib, Ic). • Asymmetry: magnetorotational explosion• Thermonuclear supernovae (SN Ia). • SN Ia light curve modeling • Conclusions

Page 3: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Pre-SN: eta Carinae (LBV-star)M~100 M, L~106L

Page 4: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Pre-SN: rho Cassiopeae

3 AU

Page 5: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

SN 1987A in LMC

Page 6: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 7: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

SNR Cas A in X-ray (Chandra)

Page 8: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

I. Core collapse supernovae (SNII, Ib, Ic)

• Hydrogen lines in spectra, variety of light curves

• End products of evolution of stars with M>8 M

• Core collapse Proto neutron star formation @ ρ~2x1014g/cm3

• Bounce shock (Colgate & White 1965) stalls @ R~150-200 km above neutrinosphere and does not lead to explosion due to

• A) electron deleptonization • B) kinetic bounce shock energy spending to

nuclear dissociation • Need for additional heating (Wilson & Bethe

1985) – neutrino convection (delayed explosion)

Page 9: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 10: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 11: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 12: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 13: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 14: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 15: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 16: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 17: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Delayed SN explosion. Basic picture

Proto NST~10 MeV

RPNS~50-80 kmτν~ 2/3neutrinosphere

Neutrinocooling layer

(Gain region):Q+ ~(Lv/r2)ε2

v

ΔM~0.01-0.1M

Stalled bounce shockRs~150-200 km

Rg~100 km

MassaccretionNeutrino

heating layer

Q-~T6 ~1/r6

Page 18: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Initial energy of explosion: ΔE~(ΔM/mb) Q+ Δth

heating time: Δth~(GMmb/rQ+)~ 40 ms

This energy triggers outward explosion

After shock revival, most additional energy comes from nuclear recombination from nucleons (~8 MeV per nucleon that recombines)

Heating ΔM~0.01-0.1 M yields correct energy of SN explosion!

The only problem is how to heat this mass

Page 19: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 20: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 21: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 22: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 23: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 24: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 25: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 26: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 27: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 28: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 29: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

One-dimensional models with detailed neutrino physics fail to

explode!

Page 30: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Further modifications

• Accurate treatment of neutrino transport

• 1D 2D3D

• Inclusion of rotation • Inclusion of magnetic fields

Page 31: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

EOS effects (1D calculations)

(Janka, Buras, Kifonidis, Marek, Rampp 2004)

Page 32: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Comparison of models with Boltzmann neutrino transport (in 1D, 15 M with relativistic gravity,

no explosion)(Liebendoerfer et al. 2004)

Page 33: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 34: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 35: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 36: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 37: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Multidimensional calculations

Page 38: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

a) Grid effects

Janka et al. 2004

90o wedge, no explosion180owedge, weak explosion

Page 39: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

1200 km

11.2M:1017flopseveral monthsweak explosion…

15M ,simplifiedneutrino transp.:ΔE~6x1050erg

b) 2D models are about to make explosion…

Page 40: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

c) 2D recovers high NS kicks(Scheck et al.2004)

NS acceleration bygravitational and hydroforces in direction opposite to low-mode (l=1,2) large-scale convection bubbles

Page 41: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

First 3D calculations (Scheck et al. 2004)

Surf. of const. mass accretion rate per unit area

Page 42: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

2D, time-dependent, multi-group, multi-angle radiation hydrodynamics

(VULCAN/2D code)(Livne, Burrows, Walder, Lichtenstadt,

Thompson 2004). • Solves 2D Boltzmann transport equation for neutrino

using multi-group energy method along discrete set of representative angular directions

• Couples radiation field to matter through emission, absorption, scattering and radiation pressure

• Limitations: no energy redistribution, no velocity-dependence terms

• Test simulations (only electron neutrinos): 22ms post-bounce,11 M progenitor (Woosley & Weaver 1995) (no explosion…)

• Important finding: emergent neutrino spectrum should be angle-dpendent

Page 43: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=10.2 msVelocity vectorsLepton number

420 km

Page 44: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=10.2 msNeutrino fluxvectors

Page 45: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=10.2 msVelocityvectors.Neutrino energy density map240x240 km

Page 46: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=22ms

Velocity vec.

Page 47: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=22 msVelocityvectors.Neutrino energy density map 420 km

Page 48: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=22 msNeutrino flux vectorsEntropy map420x420 km

Page 49: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=22 msNeutrino fluxVectorsEnergy density map

Page 50: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Simple physical conditions for thermal SN explosion

1. Advective timescale across pressure scale: τAdv=H/Vr

2. Net neutrino heating: τqν=(P/ρ)/(dqν/dt), dqν/dt=Hν-Cν

Necessary condition for explosion: matter is heated in the gain region faster than is advected from the accreting envelop

Sufficient condition for explosion:net heating holds enough time to deposit the binding energy of the overlying mantle (~1051ergs)

bindE q dVdt

Adv q

Page 51: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

In pure thermal neutrino-driven 1D-models explosions fail because necessary condition τAdv > τqv is violated (fresh matter is advected more rapidly than is neutrino-heated). To make an explosion, moderate 25% to 50% increase in the energy deposition rate in the gain region is required

Page 52: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

No MRI heating

(Thompson, Quataert andBurrows 2004)

τadv< τqv

Page 53: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Rotation and viscosity (Thompson, Quataert, Burrows 2004)

• Rotation is naturally amplified during core collapse• Differential rotation may store substantial fraction of

gravitational energy released

• Viscosity in the region of differential rotation (1) transports angular momentum (2) dissipate energy stored in shear on viscous timescale

• Sources of viscosity: (1) neutrino (found ineffective) (2) turbulence (induced by (a) MRI and (b) hydrodynamic convection )

2 252

3~10

1 50 10 /PNS

shear

M RE erg

M km rad s

Page 54: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Role of instabilities

Main goal: to increase effective neutrino heating

• Double-diffusion instability inside neutrinosphere (Bruenn et al. 2004)

• Magneto-rotational instability (MRI) exterior to proto-neutron star (Thomson et al. 2004)

q

Page 55: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Double-diffusion instability: a) Neutron fingers

• “salt” gradient, destabilizing, slow diffusion

• “heat” gradient, stabilizing, rapid duffusion

• In PNS: “salt”neutron richness (Ye)

“heat” entropy• Unlikely to occur below

ν-sphere

Gravity gradient

Page 56: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Double-diffusion instability: b) lepton semi-convection

Gravity gradient

• “salt” gradient, destabilizing, slow diffusion

• “heat” gradient, stabilizing, rapid duffusion

• In PNS: “salt”neutron richness (Ye)

“heat” entropy

• Can produce convection in PNS, increase neutrino luminosity and help explosion

Page 57: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Magneto-rotational instability

• Idea: Velikhov (1959), Chandrasekhar (1960)

• Applied to accretion disk turbulence by Balbus & Howley (1991-1998)

• Condition: dΩ2/d(lnr) < 0 (ignoring • Increment: ΓMRI~Ω

• Turbulent viscosity (α-prescription, Shakura & Sunyaev 1973):

ηMRI=α Vt Lt =α (ΩH) H = αΩH2 ,(α~0.1)

• Heat generation rate: qMRI=ηMRI(r(dΩ/dr))2

Page 58: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

MRI heating included, stalledshock revived

Page 59: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.
Page 60: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Possible signatures of rotation in post-bounce neutrino spectra

Page 61: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Asymmetric explosions• Evidence: a) strong

polarisation of SN emission (esp. type Ib/c without hydrogen shell, e.g 1997X)b) high space velocity (up to 1000 km/s) of young pulsars

c) SN1987A: substantial mixing of Ni56, line profiles asymmetry, light polarisation, direct HST picturesd) young SNR Cas A: asymmetric motion of O-rich clouds, iron-rich layers external to silicon-rich (Chandra), peculiar velocity wrt local ISM (also in other young SNR N132D, E0102.2-7219 etc.)

• Mechanisms: a) neutrino asymmetry (parity violation in strong magnetic fields ~1014 -1016 G (Chugai 1984). Reproduces pulsar kicks 100-150 km/s b) magnetorotational explosion (Bisnovaty-Kogan 1970)c) SN explosions in binary systems (Blinnikov et al. 1984). Imshennik (1992): rotational instability of rapidly rotating core binary NS coalescence explosion of light NS large kick velocity of 2d NS

Page 62: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Asymmetric models: magnetorotational SN explosion

• Idea: G.S.Bisnovatyj-Kogan 1970• First successful 2D-calculations (B-K,

Moiseenko, Ardeljan 2003-2004)• Differential rotation increases toroidal

magnetic field compression MHD wave forms and moves through envelope with steeply decreasing density

• Initial poloidal magnetic field: Emag~10-6Egrav

• Initial NS spin period: P~0.001 s

Page 63: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Velocity field @ t=0.191 safter mag.field turn-on

Specific ang. momentum j=vφr

MHD-shock

Page 64: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Ejected/rotational energy(~1.12x1051ergs)

Ejected/total mass(~0.11 M)

Page 65: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

II. Thermonuclear supernovae (SNIa)

• No hydrogen in spectra; similar light curves• Rate: 1/100 yrs both in spiral and elliptic galaxies• Progenitors: C+O white dwarf with M~MCh~1.4 M

(Hoyle & Fowler 1960)• “Standard candles” in cosmology (Riess et

al.1999,2004)• Main problem (until recently): how to obtain

explosion and correct nucleosynthetic products? prompt detonation (Arnett 1969) incinerates carbon to iron, deflagration (flame) is too slow (in 1D and 2D), Machflame~0.01, star expands and cools

• How to speed up deflagration? Blinnikov & Sasorov (1996) – Landau-Darrieus flame instability fractalization of flame front wrinkles and folds increases front area

Page 66: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

3D calculations (Hillebrandt et al.2002-2004, MPA group) of turbulent deflagration, no deflagration-detonation transition is required for successful explosion

Ignition conditions: density 2-9x109g/cm3, temperature >1.5x109K

a) 3D model c3_3d_256 (Travaglio et al. 2004)(256x256x256 cells), central ignition; Minit(C12)=0.475 M, O16=0.5 M, Ne22=0.025 M

Page 67: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0s

107cm

Initial frontfrom 2D

Page 68: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.2s

Page 69: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.4s

Page 70: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.6s

Page 71: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

b) Model b30_3d_768 (Travaglio et al. 2004)(768x768x768 cells), ignition in bubbles within ~100 km (Woosley et al. 2004)

Page 72: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0s

Page 73: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.1s

Page 74: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.14s

Page 75: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

T=0.2s

40% remainsunburned

Page 76: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Total energy increases in 3D models!

Page 77: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Nucleosynthesis yields

Page 78: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

III. SNIa light curves

• Form: Radioactive decay of Ni56

• Empirical relation max. brightness – decay rate (Pskovsky 1968)

• Used in modern cosmology as “standard candles”

• Sensitive to how degenerate core ignites, Ni56 yield, rotation, mass …

• Can probe explosion models! (Sorokina, Blinnikov et al. 2002-2005, multi-group radiation hydrocode STELLA)

Page 79: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

2D-models

Page 80: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Model: c3_2d_256, Ni56 mass dependence

MB

Page 81: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Comparison of 2D – 3D models

Sorokina, Blinnikov, Hillebrandt et al. 2004

Page 82: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

Conclusions

• Core collapse SN: about to explode in 2D. • Neutrino-driven convection models:

(a) increase in neutrino luminosity by 20-30% due to accurate neutrino transport (Janka et al. 2004)(b) differential rotation and viscosity (convective + MRI turbulence) (Thompson et al.2004)(c) 3D?

• Magnetorotational mechanism is shown to work in 2D (Bisnovaty-Kogan & Moiseenko 2004)

Page 83: Physics of Supernovae Konstantin Postnov, Sternberg Astronomical Institute, Moscow, Russia Erice 2004, July 3.

• Thermonuclear SN: (a) Turbulent deflagration in 3D produces

explosion and correct nucleosynthetic yields (Travaglio et al. 2004). No transition to detonation is required.

(b) Light curves (in different colors) are successfully reproduced (STELLA code, Sorokina et al 2004)

• Neutrino spectra are sensitive to rotation, EOS… and will be invaluable for SN physics