Top Banner

of 43

Physics Experiment Calculations

Apr 14, 2018

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 7/30/2019 Physics Experiment Calculations

    1/43

    This Excel package was created as a teacher's aid in the school laboratory / clas

    1 A teachers demonstration tool to illustrate data handling

    2 A tool for the plotting of graphs both for the experiments themselves or

    3 It may also be used to check and plot student data before leaving the la

    Created By: James Frawley

    Revision: B

    Date: 1/7/2009

    Helpf l Hints

    Copyright James FFor non-commercial

    Please leave feedbacSecond Level Suppor

  • 7/30/2019 Physics Experiment Calculations

    2/43

    Helpful Hints:

    room / computer room. It can be used as:

    past exam questions

    oratory

    awleyurposes only !

    k / suggestions on the PhysicsService Homepage Forum

  • 7/30/2019 Physics Experiment Calculations

    3/43

    To Measure the Focal Length of a Concave Mirror

    Measurement Object Image Focal All data here is measured in units of cm

    Distance Distance 1 1 1 Length

    u v u v f f Remember:

    cm cm cm

    1 15.00 60.50 0.067 0.017 0.083 12.02

    2 20.00 30.00 0.050 0.033 0.083 12.00 1 + 1 = 1

    3 25.00 23.00 0.040 0.043 0.083 11.98 u v f

    4 30.00 20.50 0.033 0.049 0.082 12.18

    5 35.00 18.00 0.029 0.056 0.084 11.89

    6 40.00 17.00 0.025 0.059 0.084 11.93

    7 45.00 16.50 0.022 0.061 0.083 12.07

    8 50.00 15.90 0.020 0.063 0.083 12.06

    9 55.00 15.50 0.018 0.065 0.083 12.09

    10 60.00 15.10 0.017 0.066 0.083 12.06

    Average Focal Length (cm) 12.03

    All data above is measured in units of cm From the Graph we see:

    Intercept = 1/f = 0.083 cm^-1

    Intercept = 1/f = 0.083

    Focal Length = f = 12.05 cm

    Focal Length = f = 12.05 cm

    cm-1 cm-1 cm-1

    cm-1

    0.010

    0.020

    0.030

    0.040

    0.050

    0.060

    0.070

    0.080

    0.090

    f(x) = -0.994x + 0.083

    Focal Length of Concave Mirror

    1/v

  • 7/30/2019 Physics Experiment Calculations

    4/43

    0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080 0.090

    0.000

    1/u

  • 7/30/2019 Physics Experiment Calculations

    5/43

    To Measure the Focal Length of a Convex Lens

    Measurement Object Image Focal

    Distance Distance 1 1 1 Length

    u v u v f f

    cm cm cm

    1 20.00 66.40 0.050 0.015 0.065 15.37

    2 25.00 40.60 0.040 0.025 0.065 15.47

    3 35.00 27.60 0.029 0.036 0.065 15.43

    4 45.00 23.20 0.022 0.043 0.065 15.31

    5 55.00 21.50 0.018 0.047 0.065 15.46

    6 65.00 20.10 0.015 0.050 0.065 15.35

    7 75.00 19.20 0.013 0.052 0.065 15.29

    8 85.00 18.80 0.012 0.053 0.065 15.39

    9 95.00 18.40 0.011 0.054 0.065 15.41

    10 100.00 18.20 0.010 0.055 0.065 15.40

    Average Focal Length 15.39

    All data above is measured in units of cm

    Intercept = 1/f = 0.065

    Focal Length = f = 15.38 cm

    cm-1 cm-1 cm-1

    cm-1

    0.000 0.010 0.020 0 .030 0.040 0.050 0.060 0 .070 0.080

    0.000

    0.010

    0.020

    0.030

    0.040

    0.050

    0.060

    0.070

    0.080

    f(x) = -1.004x + 0.065

    Focal Length of Convex Lens

    1/u

    1/v

  • 7/30/2019 Physics Experiment Calculations

    6/43

    Refractive Index of a Glass Block:

    Measurement Angle of Angle of Angle of Angle of sin i sin r Refractive

    Incidence Refraction Incidence Refraction Index

    i (Degrees) r (Degrees) i (Radians) r (Radians) n

    1 25.0 16.0 0.436 0.279 0.423 0.276 1.53

    2 30.0 19.0 0.524 0.332 0.500 0.326 1.54

    3 35.0 22.0 0.611 0.384 0.574 0.375 1.53

    4 40.0 25.0 0.698 0.436 0.643 0.423 1.52

    5 45.0 28.0 0.785 0.489 0.707 0.469 1.51

    6 50.0 30.0 0.873 0.524 0.766 0.500 1.53

    7 55.0 33.0 0.960 0.576 0.819 0.545 1.50

    Average Refractive Index (n) 1.52

    n = sin i

    sin r

    From the Graph:

    Slope = n = 1.52

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    f(x) = 1.48x + 0.02

    Snells Law - Glass Block

    Sin r

    Sini

  • 7/30/2019 Physics Experiment Calculations

    7/43

  • 7/30/2019 Physics Experiment Calculations

    8/43

    Measurement of the Refractive Index of a Liquid (Water is used here)

    Measurement Real Apparent Refractive

    Depth Depth Index

    cm cm n

    Beaker 1 10.70 8.00 1.34

    Beaker 2 8.10 6.20 1.31

    Beaker 3 7.30 5.50 1.33

    Beaker 4 6.10 4.50 1.36

    Beaker 5 4.90 3.90 1.26

    Average Refractive Index 1.32

    Units of cm are used in the experiment above

    Slope of Graph = n = 1.32

    n = Real Depth

    Apparent Depth

    Ideal Value for the Refractive Index of Water = 1.330.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    12.0

    f(x) = 1.37x - 0.29

    Refractive Index of a Liquid

    Apparent Depth (cm)

    R

    ealDepth(cm)

  • 7/30/2019 Physics Experiment Calculations

    9/43

    To Measure the Wavelength of Monochromatic Light (Sodium Vapour Lamp):

    Diffraction Grating has: 600 lines/mm

    ==> Grating Constant (d): d = 1.67E-06 m REMEMBER 1

    (lines/mm) x 1000

    Spectrometer Zero Error Reading ==> 0.3 Degrees to RHS

    n.A = d.sin(Theta)

    Order of Angle (Theta) Corrected Angle for Sin Theta Wavelength

    Image for nth Image Angle for nth Image

    n Measured nth Image Theta A

    Degrees Degrees Radians m

    LHS2 45.0 45.3 0.791 0.711 5.92E-07

    1 20.4 20.7 0.361 0.353 5.89E-07

    0 0.3 0.0 0.000 0.000 #DIV/0!

    RHS1 20.7 20.4 0.356 0.349 5.81E-07

    2 45.2 44.9 0.784 0.706 5.88E-07

    Average Wavelength 5.88E-07

    ... d =

  • 7/30/2019 Physics Experiment Calculations

    10/43

    A = d.sin(Theta)

    n

    A = Wavelength of Light used

    Slope of Graph = sin(Theta)

    n

    Slope = 0.354

    A = d x (slope)

    A = 5.90E-07 m

    0 0.5 1 1.5 2 2.5

    0.000

    0.100

    0.200

    0.300

    0.400

    0.500

    0.600

    0.700

    0.800

    f(x) = 0.355x - 0.002

    Sin Theta vs. Order of Image

    Column F

    Linear (Column F)

    Order of Image (n)

    SinTheta

  • 7/30/2019 Physics Experiment Calculations

    11/43

    To Investigate the Laws of Equilibrium for a Set of Coplanar Forces:

    Weight of Metre Stick W = 1.20 N

    Position of Centre of Gravity CoG = 0.505 m

    Note: Use the Centre of Gravity as the Axis of rotation in this experiment

    Positions below are read directly from the metre stick

    LHS of CoG RHS of CoG

    Spring Spring Masses Weights Weight Distance Moment Spring Spring Masses Weights Weight Distance Moment

    Balance Balance Position From of Weight Balance Balance Position From of Weight

    Reading Position Fulcrum Reading Position Fulcrum

    N m kg N m m N.m N m kg N m m N.m

    2.0 0.20 0.204 2.00 0.15 0.36 0.71 4.0 0.75 0.183 1.80 0.80 0.30 0.530.00 0.51 0.00 0.122 1.20 0.95 0.45 0.53

    0.00 0.51 0.00 0.00 0.51 0.00

    0.00 0.51 0.00 0.00 0.51 0.00

    0.00 0.51 0.00 0.00 0.51 0.00

    0.00 0.51 0.00 0.00 0.51 0.00

    Upward Downward Clockwise Anti- Note: 1 The Net Force acting is approximately zero

    Forces Forces Moments Clockwise 2 The Sum of the moments about fulcrum is zero

    Moments

    N N N.m N.m

    6.00 6.19 1.67 1.69

  • 7/30/2019 Physics Experiment Calculations

    12/43

    To Show that Acceleration is Proportional to the Force Applied: Scaler Timer Method

    Card Length 0.1 m Card Transit Initial Transit Final Acceleration Mass Weight

    Length Time 1 Velocity Time 2 Velocity of Card Used Used

    Distance Between Gates s = 1.2 m of Card

    L u v a m W

    Acceler. Due to Gravity g = 9.81 m s s kg N

    0.10 0.350 0.29 0.260 0.38 0.03 0.200 1.96

    u = L v = L 0.10 0.310 0.32 0.215 0.47 0.05 0.300 2.94

    0.10 0.260 0.38 0.178 0.56 0.07 0.500 4.91

    a =

    2s

    L =

    t1 t2

    m s-2 m s-1 m s-1 m s-2

    t1

    t2

    v2 - u2

    0.00 1.00 2.00 3.00 4.00 5.00 6.00

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    0.08f(x) = 0.01x + 0.00

    Acceleration vs. Force

    Force (N)

    Ac

    celeration(m.s^-1)

  • 7/30/2019 Physics Experiment Calculations

    13/43

  • 7/30/2019 Physics Experiment Calculations

    14/43

    Measurement of Velocity and Acceleration: Scaler Timer Method

    Velocity:Card Length 0.1 m Card Transit Velocity

    Length Time of Card

    v = L

    t L t v

    m s

    0.10 0.500 0.20

    0.10 0.420 0.24

    0.10 0.350 0.29

    0.10 0.310 0.32

    0.10 0.260 0.38

    Acceleration:

    Card Length 0.1 m Transit Initial Transit Final Acceleration Mass Weight

    Time 1 Velocity Time 2 Velocity Used Used

    Distance Between Gates s = 1.2 m of Card

    Acceleration Due to Gravity: g = 9.81 u v a M W

    s s kg N

    u = L v = L 0.500 0.20 0.370 0.27 0.01 0.100 0.980.420 0.24 0.300 0.33 0.02 0.150 1.47

    0.350 0.29 0.260 0.38 0.03 0.200 1.96

    a = 0.310 0.32 0.215 0.47 0.05 0.300 2.94

    2s 0.260 0.38 0.178 0.56 0.07 0.500 4.91

    L =

    m s-1

    L =

    m s-2 t1 t2

    m s-1 m s-1 m s-2

    t1

    t2

    v2 - u2

  • 7/30/2019 Physics Experiment Calculations

    15/43

    Conservation of Momentum: Linear Air Track

    First Mass 0.3 kg Distance Time for Initial Initial Distance Combined Final Final

    Second Mass 0.2 kg Travelled by Mass 1 Velocity Momentum Travelled by Mass Velocity MomentumDistance L = 0.1 m Mass 1 of Mass 1 Combination Time

    Final Mass 0.5 kg

    u v

    m s m s

    0.10 0.20 0.50 0.15 0.10 0.35 0.29 0.14

    0.10 0.25 0.40 0.12 0.10 0.42 0.24 0.12

    0.10 0.32 0.31 0.09 0.10 0.55 0.18 0.09

    0.10 0.43 0.23 0.07 0.10 0.75 0.13 0.07

    0.10 0.51 0.20 0.06 0.10 0.92 0.11 0.05

    0.10 0.70 0.14 0.04 0.10 1.25 0.08 0.04

    0.10 0.80 0.13 0.04 0.10 1.63 0.06 0.03

    M1 =

    M2 =

    Mf=

    s1 t1 PFINAL s2 t2 PFINAL

    m s-1 kg m s-1 m s-1 kg m s-1

    0.04

    0.06

    0.08

    0.10

    0.12

    0.14

    0.16

    Conservation of Momentum

    Column H

    Column L

    Momentum

  • 7/30/2019 Physics Experiment Calculations

    16/43

  • 7/30/2019 Physics Experiment Calculations

    17/43

    Measurement of g: Freefall Method

    Height Period Period Period Lowest Period Acceleration

    #1 #2 #3 Period Squared Due to

    Gravity

    H T1 T2 T3 T g

    m s s s s

    1.20 0.497 0.496 0.496 0.496 0.246 9.76

    1.10 0.474 0.474 0.473 0.473 0.224 9.83

    1.00 0.451 0.452 0.452 0.451 0.203 9.83

    0.90 0.432 0.429 0.428 0.428 0.183 9.83

    0.80 0.407 0.407 0.405 0.405 0.164 9.75

    0.70 0.378 0.379 0.378 0.378 0.143 9.80

    0.60 0.349 0.350 0.349 0.349 0.122 9.85

    0.50 0.320 0.322 0.320 0.320 0.102 9.77

    0.40 0.287 0.286 0.286 0.286 0.082 9.78

    0.30 0.248 0.247 0.247 0.247 0.061 9.83

    0.20 0.203 0.203 0.203 0.203 0.041 9.71

    Average 9.79

    g = 2 x h / t^2 slope = 4.90

    g = 2 x slope of graph g = 9.80

    h = 0.5 x g x t2

    T2

    s2 m.s-2

    m.s-2

    m.s-2

    0.00 0.05 0.10 0.15 0.20 0.25 0.30

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4 f(x) = 4.90x - 0.00

    Measurement of g: H vs. T2

    Square of Period (T2, s2)

    Height(H,m)

  • 7/30/2019 Physics Experiment Calculations

    18/43

    The Simple Pendulum

    Page 18

    The Simple Pendulum: Measurement of g

    30 Oscillations 1 Oscillation L L g

    30 x T (s) T (s) cm m

    14.80 0.49 0.24 6.0 0.06 9.73

    17.20 0.57 0.33 8.0 0.08 9.61

    18.80 0.63 0.39 10.0 0.10 10.05

    21.00 0.70 0.49 12.0 0.12 9.67

    22.80 0.76 0.58 14.0 0.14 9.57

    23.90 0.80 0.63 16.0 0.16 9.95

    26.20 0.87 0.76 18.0 0.18 9.32

    26.70 0.89 0.79 20.0 0.20 9.97

    30.30 1.01 1.02 25.0 0.25 9.6832.60 1.09 1.18 30.0 0.30 10.03

    Average 9.76

    Slope = 4.03

    g = 9.80 m/s/s

    T2 (s2) m.s-2

    s2/m

    0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    f(x) = 3.97x + 0.01

    Simple Pendulum: T^2 vs. L

    Length (L, m)

    Sq

    uareofPeriod(T^2,s^2)

  • 7/30/2019 Physics Experiment Calculations

    19/43

    The Simple Pendulum

    Page 19

  • 7/30/2019 Physics Experiment Calculations

    20/43

    Verification of Boyle's Law

    Pressure (P) Volume (V) 1/V P.V

    1.50 14.85 0.067 22.3

    1.40 15.90 0.063 22.3

    1.35 16.50 0.061 22.3

    1.30 17.20 0.058 22.4

    1.25 17.80 0.056 22.3

    1.20 18.60 0.054 22.3

    1.15 19.40 0.052 22.3

    1.10 20.30 0.049 22.3

    1.05 21.20 0.047 22.31.01 22.10 0.045 22.3

    Average 22.3

    P x V = constant

    where k is a constant

    V

    k = slope = 22.3 for this mass of gas at this specific temperature

    105 Pa cm3 cm-3 105 Pa.cm3

    P = k x 1

    Pa.cm-3

    0.000 0.010 0.020 0.030 0.040 0.050 0.060 0.070 0.080

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6f(x) = 22.2x + 0.0

    Boyle's Law

    Inverse of Volume (cm-3)

    Pr

    essure(105Pa)

  • 7/30/2019 Physics Experiment Calculations

    21/43

    Measurement of the Speed of Sou

    Page 21

    Measurement of the Speed of Sound in Air D = 0.049 m0.3*D = 0.015 m

    Frequency Antinode 1 Antinode 2 Wavelength 1/Wavelength Speed of Sound End Correction Revised c = f

    F (Hz) L1 (m) L2 (m) (m) c (m/s) e (m) m/s

    512.0 0.152 0.491 0.678 1.47 347.14 0.167 341.34

    480.0 0.162 0.522 0.720 1.39 345.60 0.177 339.21

    426.6 0.185 0.587 0.804 1.24 342.99 0.200 340.72

    384.0 0.204 0.657 0.906 1.10 347.90 0.219 335.88

    341.3 0.236 0.744 1.016 0.98 346.76 0.251 342.21

    320.0 0.251 0.794 1.086 0.92 347.52 0.266 340.06

    288.0 0.283 0.888 1.210 0.83 348.48 0.298 342.92

    256.0 0.318 0.980 1.324 0.76 338.94 0.333 340.65

    AVERAGE 345.67 340.37

    Note:

    m-1

    The graph is plottedfrom the data prior to theend-correctioncalculation

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

    0

    100

    200

    300

    400

    500

    600

    f(x) = 347.77x - 2.13

    Frequency vs. 1/Wavelength

    Inverse of Wavelength (m^-1)

    Frequenc

    y(Hz)

  • 7/30/2019 Physics Experiment Calculations

    22/43

    To Plot the Calibration Curve for an Alcohol Thermometer using a Mercury Thermometer as Standard

    Standard Length of

    Thermometer Column of

    Reading AlcoholL

    C cm

    0.0 40.0

    10.0 54.0

    20.0 70.0

    30.0 98.0

    40.0 112.0

    50.0 135.0

    60.0 155.0

    70.0 180.0

    80.0 198.0

    90.0 220.0

    100.0 240.0

    0 50 100 150 200 250 300

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    110f(x) = 0.49x - 16.46

    Alcohol Thermometer Calibration Curve

    Alcohol Column Length (cm)

    Tem

    perature(C)

  • 7/30/2019 Physics Experiment Calculations

    23/43

  • 7/30/2019 Physics Experiment Calculations

    24/43

    Specific Heat Capacity of Water

    Page 24

    To Measure the Specific Heat Capacity of Water (Electrical Method)

    1 Mass of Calorimeter Mc 0.453 kg

    Mass of Calorimeter and Water Mcw 0.512 kgMass of Water Mw 0.059 kg

    2 Initial Temperature of Calorimeter and Water Tiw 7.5 C

    Final Temperature of Calorimeter and Water Tfw 18.3 C

    Temperature Change DT 10.8 C

    Joulemeter Reading (Energy Supplied) Q 4550.0 J

    3 Specific Heat Capacity of Copper Cc 385.0 J/kg/C

    Heat Gained By Calorimeter Mc.Cc.dT 1883.6 J

    Heat Gained By Water Mw.Cw.dT 2666.4 J (BY CONSERVATION OF ENERGY)

    4 Specific Heat Capacity of Water Cw 4184.6 J/kg/C

    Heat Energy Supplied = Heat Gained by Calorimeter + Heat Gained by Water

    Q = Mc.Cc.dT + Mw.Cw.dT

  • 7/30/2019 Physics Experiment Calculations

    25/43

    To Measure the Specific Heat Capacity of Copper (Mechanical Method)Copper filings were used here

    1 Mass of Copper Calorimeter Mc 0.425 kg

    Mass of Calorimeter and Cold Water Mcw 0.525 kg

    Mass of Cold Water Mw 0.100 kg

    2 Initial Temperature of Calorimeter and Water Tiw 8.7 C

    Final Temperature of Cal., Water and Filings Tfw 12.3 C

    Temperature Increase of cal + water dTw 3.6 C

    Initial Temperature of Copper Filings Ticf 98.4 CTemperature Decrease of Copper Filings dTcf 86.1 C

    Mass of Copper Filings Added Mcf 0.063 kg

    3 Specific Heat Capacity of Water Cc 4180.0 J/kg/C

    Heat Gained By Water Mw.Cw.dT 1504.8 J

    4 Specific Heat Capacity of Copper Cc 386.4 J/kg/C (BY CONSERVATION O

    Heat Energy Lost by Copper Filings = Heat Gained by Calorimeter + Heat Gained by Water

    Mcf.Cc.dTcf = Mc.Cc.dTw + Mw.Cw.dTw

  • 7/30/2019 Physics Experiment Calculations

    26/43

    Measuring the Latent Heat of Fusion of Ice

    1 Mass of Calorimeter Mc 0.453 kg

    Mass of Calorimeter and Warm Water Mcw 0.532 kg

    Mass of Warm Water at Start Mw 0.079 kg

    Initial Temperature of Calorimeter and Water Tiwc 79.4 C

    Final Temperature of Calorimeter, Water and Ice Tfwci 12.6 C

    Temperature Fall of Cal and Water DTcw 66.8 C

    2 Temperature Rise of Ice DTI 12.6 C

    Final Mass of Calorimeter + Water + Ice Mcwi 0.542 kg

    Mass of Ice Added Mi 0.010 kg

    3 Specific Heat Capacity of Copper Cc 385.0 J/kg/C

    Heat Lost By Calorimeter Mc.Cc.dT 11650.3 J

    Specific Heat Capacity of Water Cw 4180.0 J/kg/C

    Heat Lost By Warm Water Mw.Cw.dT 22058.7 J

    Mi.Cw.Dti 526.7 J (BY CONSERVATION OF ENERGY)

    4 Latent Heat of Fusion of Water/Ice 3.32E+06 J/kg

    Mw.Cw.dT + Mc.Cc.dT = Mi.Cw.Dti + Mi.Lf

    Heat Gained By Water at 0 C to raise to T F

    Lf

  • 7/30/2019 Physics Experiment Calculations

    27/43

  • 7/30/2019 Physics Experiment Calculations

    28/43

    Heat of Vaporisation of Water

    Page 28

    Measuring the Latent Heat of Vaporisation of Water

    1 Mass of Calorimeter Mc 0.453 kg

    Mass of Calorimeter and Cooled Water Mcw 0.532 kg

    Mass of Water at Start Mw 0.079 kg

    Initial Temperature of Calorimeter and Water Tiw 7.5 C

    Final Temperature of Calorimeter and Water Tfw 43.3 C

    Temperature Rise of Cal and Water Dtcw 35.8 C

    2 Temperature Fall of Steam DTs 56.7 C

    Final Mass of Calorimeter + Water + Steam Mcws 0.539 kg

    Mass of Steam Added Ms 0.007 kg

    3 Specific Heat Capacity of Copper Cc 390.0 J/kg/CHeat Gained By Calorimeter Mc.Cc.dT 6324.8 J

    Specific Heat Capacity of Water Cw 4180.0 J/kg/C

    Heat Gained By Cold Water Mw.Cw.dT 11821.9 J

    Heat Lost By Steam Ms.Cw.DTs 1635.3 J (BY CONSERVATION OF ENERGY)

    4 Latent Heat of Vaporisation of Water 2.39E+06 J/kg

    Mc.Cc.dT + Mw.Cw.dT = Ms.Lv + Ms.Cw.DTs

    Lv

  • 7/30/2019 Physics Experiment Calculations

    29/43

    Heat of Vaporisation of Water

    Page 29

  • 7/30/2019 Physics Experiment Calculations

    30/43

    Joules Law

    Page 30

    Joule's Law: The Heating Effect of an Electric Current

    Initial Temp Final Temp Current Temp Change Current Squared

    I (A)

    22.3 23.4 0.50 1.1 0.25

    23.4 27.7 1.00 4.3 1.00

    27.7 35.7 1.50 8.0 2.25

    34.4 48.3 2.00 13.9 4.00

    48.3 68.2 2.50 19.9 6.25

    66.5 97.8 3.00 31.3 9.00

    T1

    (C) T2

    (C) T2

    T1

    (C) I2 (A2)

    H = I2x R x t

    0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

    0.0

    5.0

    10.0

    15.0

    20.0

    25.0

    30.0

    35.0

    f(x) = 3.34x + 0.43

    Joule's Law

    TemperatureChange(*C)

  • 7/30/2019 Physics Experiment Calculations

    31/43

    Joules Law

    Page 31

    Square of Current (A^2)

  • 7/30/2019 Physics Experiment Calculations

    32/43

    To Measure the Resistivity of Nichrome Wire

    Wire Micrometer Corrected Corrected Cross Measured Lead / Meter Corrected Wire Rc / L Resistivity

    Diameter Zero Error Diameter Diameter Sectional Resistance Resistance Resistance Length (L)

    mm mm mm m Area (m^2) Rm () Rc () m /m .m

    1.324 0.012 1.312 1.31E-03 1.35E-06 1.06 0.86 0.20 0.25 0.80 1.08E-06

    1.295 0.012 1.283 1.28E-03 1.29E-06 1.30 0.86 0.44 0.50 0.88 1.14E-06

    1.312 0.012 1.300 1.30E-03 1.33E-06 1.50 0.86 0.64 0.75 0.85 1.13E-06

    1.306 0.012 1.294 1.29E-03 1.32E-06 1.70 0.86 0.84 1.00 0.84 1.10E-06

    1.291 0.012 1.279 1.28E-03 1.28E-06 1.83 0.86 0.97 1.25 0.78 9.97E-07

    1.317 0.012 1.305 1.31E-03 1.34E-06 2.10 0.86 1.24 1.50 0.83 1.11E-06

    1.320 0.012 1.308 1.31E-03 1.34E-06 2.30 0.86 1.44 1.75 0.82 1.11E-06

    1.295 0.012 1.283 1.28E-03 1.29E-06 2.60 0.86 1.74 2.00 0.87 1.12E-061.293 0.012 1.281 1.28E-03 1.29E-06 2.87 0.86 2.01 2.25 0.89 1.15E-06

    1.314 0.012 1.302 1.30E-03 1.33E-06 3.08 0.86 2.22 2.50 0.89 1.18E-06

    AVERAGE 1.307 1.295 1.29E-03 1.32E-06 0.85 1.11E-06

    p = R x A / L

  • 7/30/2019 Physics Experiment Calculations

    33/43

    Resistance vs Temperature for M

    Page 33

    Resistance vs. Temperature Characteristic for a Metallic Conductor

    Resistance Temperature

    R (Ohms) T (*C)

    9.93 13.7

    10.28 22.4

    10.51 31.6

    10.76 43.1

    11.32 52.8

    11.32 63.2

    11.70 71.7

    12.23 83.4

    12.78 92.5

    0 10 20 30 40 50 60 70 80

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    20

    f(x) = 0.03x + 9.43

    Resistance vs. Temperature for a Metallic Conductor

    Temperature (*C)

    Resistance

    (Ohms)

  • 7/30/2019 Physics Experiment Calculations

    34/43

    Resistance vs Temperature for M

    Page 34

  • 7/30/2019 Physics Experiment Calculations

    35/43

    Resistance vs Temperature for M

    Page 35

    90 100

  • 7/30/2019 Physics Experiment Calculations

    36/43

    Resistance vs Temperature for M

    Page 36

  • 7/30/2019 Physics Experiment Calculations

    37/43

    Resistance vs. Temperature Characteristic for a Thermistor

    Resistance Temperature

    R (Ohms) T (*C)

    176.0 11.0

    152.0 14.5

    83.0 29.0

    49.0 41.0

    36.0 49.0

    24.0 58.0

    16.0 68.0

    13.0 76.0

    9.0 90.0

    0 10 20 30 40 50 60 70 80 90 100

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    200

    f(x) = 254.3472534815 exp( -0.0390537077 x )

    Resistance vs. Temperature Curve for a Thermistor

    Temperature (*C)

    Resistance(Ohms)

  • 7/30/2019 Physics Experiment Calculations

    38/43

    To Investigate the Variation of Fundamental Frequency vs Length for a Stretched String

    The Resonance Point is found for a series of tuning forks by varying the Length of the wire

    Fundamental Length

    Frequencyf L 1 / L f x L

    Hz m m.Hz

    173.0 0.80 1.25 138.40

    193.0 0.70 1.43 135.10

    230.0 0.60 1.67 138.00

    273.0 0.50 2.00 136.50

    335.0 0.40 2.50 134.00455.0 0.30 3.33 136.50

    675.0 0.20 5.00 135.00

    Slope = 135.6 Hz.m

    Product of f x L should be a constant

    m-1

    0.0 1.0 2.0 3.0 4.0 5.0 6.0

    0

    100

    200

    300

    400

    500

    600

    700

    800

    f(x) = 134.4x + 3.6

    Fundamental Freq vs Length for Stretched String

    1/Length

    F

    requency(Hz)

  • 7/30/2019 Physics Experiment Calculations

    39/43

    Stretched String vs Tension

    Page 39

    To Investigate the Variation of Fundamental Frequency vs Tension for a Stretched String

    The Resonance Point is found for a series of tuning forks by varying the Tension of the string

    Fundamental Tension Sq. Root

    Frequency Tension

    F T

    Hz N

    264.0 15.0 3.87

    304.0 20.0 4.47

    342.0 25.0 5.00

    371.0 30.0 5.48

    402.0 35.0 5.92

    431.0 40.0 6.32

    456.0 45.0 6.71

    Slope = 68.03

    T0.5

    0 1 2 3 4 5 6 7 8

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    f(x) = 67.79x + 1.34

    Fundamental Freq vs. Tension

    SQ. Root of Tension

    Frequenc

    y(Hz)

  • 7/30/2019 Physics Experiment Calculations

    40/43

    Current vs Voltage Curve for a Metallic Conductor:

    Voltage Current Resistance

    Volts Amps Ohms

    V I R

    2.00 0.25 8.03

    4.00 0.50 7.94

    6.00 0.75 7.97

    8.00 0.99 8.06

    10.00 1.26 7.96

    Average 7.99

    Resistance = 1 / slope

    Slope = 0.13 A/V

    R = 7.69 Ohms

    1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40f(x) = 0.13x - 0.00

    Metallic Conductor

    Voltage (V)

    Curren

    t(Amps)

  • 7/30/2019 Physics Experiment Calculations

    41/43

    Current vs Voltage Curve for a Filament Bulb:

    Voltage Current Resistance

    Volts Amps Ohms

    V I R

    0.00 0.00 #DIV/0!

    1.00 0.20 5.00

    2.00 0.30 6.67

    3.00 0.35 8.57

    4.00 0.38 10.53

    5.00 0.39 12.82

    6.00 0.40 15.19

    0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    Filament Bulb

    Voltage (V)

    Current

    (Amps)

  • 7/30/2019 Physics Experiment Calculations

    42/43

    Current vs Voltage Curve for a Copper Sulfate Solution with Copper Electrodes:

    Voltage Current Resistance

    Volts Amps Ohms

    V I R

    0.00 0.00 #DIV/0!

    2.00 0.64 3.12

    4.00 1.24 3.23

    6.00 1.97 3.05

    8.00 2.53 3.16

    10.00 3.26 3.0712.00 3.81 3.15

    The electrodes take part in the chemical

    reaction (anode is consumed here)

    This process is called Active Electrolysis

    0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.00.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5f(x) = 0.32x - 0.00

    Copper Sulfate Solution

    Voltage (V)

    Current(Amps)

  • 7/30/2019 Physics Experiment Calculations

    43/43

    Current vs Voltage Curve for a Semiconductor Diode:

    Forward Bias Reverse Bias

    Voltage Current Voltage Current

    Volts milliamps Volts microamps

    V mA V uA

    0.00 0.00 0.00 0.00

    0.10 0.70 -0.40 -0.50

    0.20 1.30 -0.80 -0.60

    0.30 2.30 -1.20 -1.20

    0.40 4.10 -1.60 -1.38

    0.50 10.00 -2.00 -1.90

    0.60 22.00 -2.40 -2.23

    0.70 47.00 -2.80 -2.51

    0.80 100.00 -3.20 -2.87

    -4 -3 -2 -1 0 1 2

    -20

    0

    20

    40

    60

    80

    100

    Semiconductor Diode

    Voltage (V)

    Current(milliAmps)