Top Banner

of 200

Physics Concepts and Connections, Book Two - Solutions Manual[1]

Apr 06, 2018

Download

Documents

ihack_101
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    1/200

    BOOK TWO

    Brian Heimbecker

    Igor Nowikow

    Christopher T. Howes

    Jacques Mantha

    Brian P. Smith

    Henri M. van Bemmel

    Solutions Manual

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    2/200

    Physics: Concepts and ConnectionsBook Two Solutions Manual

    AuthorsBrian Heimbecker

    Igor NowikowChristopher T. Howes Jacques ManthaBrian P. SmithHenri M. van Bemmel

    NELSONDirector of PublishingDavid Steele

    PublisherKevin Martindale

    Project EditorLina Mockus-OBrien

    EditorKevin Linder

    First Folio Resource GroupProject ManagementRobert Templeton

    CompositionTom Dart

    Proofreading and Copy EditingChristine SzentgyorgiPatricia Trudell

    IllustrationsGreg DuhaneyClaire Milne

    COPYRIGHT 2003 by Nelson, adivision of Thomson Canada Limited.

    Printed and bound in Canada.1 2 3 4 05 04 03 02

    For more information contact Nelson,1120 Birchmount Road Toronto,Ontario, M1K 5G4. Or you can visit our Internet site at http://www.nelson.com

    ALL RIGHTS RESERVED.No part of thiswork covered by the copyright hereonmay be reproduced, transcribed, or usedin any form or by any meansgraphic,electronic, or mechanical, includingphotocopying, recording, taping, Webdistribution, or information storage andretrieval systemswithout the writtenpermission of the publisher.

    For permission to use material from thistext or product, contact us byTel 1-800-730-2214Fax 1-800-730-2215www.thomsonrights.com

    Every effort has been made to traceownership of all copyrighted material andto secure permission from copyrightholders. In the event of any questionarising as to the use of any material, wewill be pleased to make the necessarycorrections in future printings.

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    3/200

    Table of Contents iii

    Table of Contents

    Chapter 1Section 1.3 1

    1.4 11.6 11.7 31.8 31.11 41.12 51.13 61.14 61.15 7

    Chapter 2Section 2.1 8

    2.2 92.3 102.4 112.5 122.6 132.7 142.8 15

    Chapter 3Section 3.3 17

    3.4 183.5 183.6 203.7 213.8 223.9 22

    Chapter 4Section 4.2 24

    4.3 24

    4.4 254.5 254.6 26

    Chapter 5Section 5.2 28

    5.3 285.4 295.5 295.6 305.7 31

    Chapter 6Section 6.1 33

    6.2 336.3 34

    Chapter 7Section 7.2 36

    7.3 367.4 367.5 37 7.6 387.7 387.8 387.9 397.10 39

    7.11 40Chapter 8Section 8.4 41

    8.5 418.6 428.7 438.8 448.9 44

    Chapter 9Section 9.5 45

    Chapter 10Section 10.2 47

    10.3 47 10.4 4810.5 48

    Chapter 11Section 11.4 49

    11.5 4911.6 4911.8 4911.9 5011.10 51

    Chapter 12Section 12.2 52

    12.3 5212.4 5212.5 5312.6 5312.8 54

    Chapter 13Section 13.1 55

    13.2 5513.3 5513.4 5613.5 5613.6 57

    13.7 57 13.8 58

    Chapter 14Section 14.1 59

    14.2 5914.3 5914.4 5914.5 5914.6 6014.7 60

    14.8 60

    I Solutions to Applying the Concepts Questions II Answers toEnd-of-chapterConceptualQuestions

    Chapter 1 61Chapter 2 63Chapter 3 65Chapter 4 66Chapter 5 67 Chapter 6 68Chapter 7 69Chapter 8 71Chapter 9 75

    Chapter 10 77 Chapter 11 79Chapter 12 80Chapter 13 81Chapter 14 83

    III Solutions to End-of-chapterProblems

    Chapter 1 87 Chapter 2 95Chapter 3 107 Chapter 4 120Chapter 5 126Chapter 6 134Chapter 7 140Chapter 8 151Chapter 9 160Chapter 10 165Chapter 11 170Chapter 12 178Chapter 13 183Chapter 14 191

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    4/200

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    5/200

    Solutions to Applying the Concepts 1

    Section 1.3

    1. (30 days) 2.6 106 s (units cancel to give answer in

    seconds)

    2. (7 furlongs) 1.4 km(units cancel to give answer in kilometres)

    3. (1 quart) 5.5 102 mL (units cancel to give answer

    in millilitres)

    Section 1.41. Since the question is asking for velocity, the

    answer must include a direction. Since thedirection in which the train travels isconstant,

    v

    avg

    v

    avg

    v

    avg 14 m/s [N]2. a) Since the question is asking for average

    speed, direction is not required.vavg

    vavg

    vavg 1.6 km/h b) Since the question is asking for average

    velocity, direction is required.

    v

    avg

    v

    avg

    v

    avg

    v

    avg

    v

    avg 0.40 km/h [E]

    3. a) Since the question asks for the carsvelocity, direction is important. Since thedirection is constant,

    v

    avg

    v

    avg

    v

    avg 1.1 m/s [E] b) The cars instantaneous velocity at 5 s can

    be approximated by the difference betweenthe distance travelled after 6 s and thedistance travelled after 5 s, divided by thetime during that interval:

    v

    avg

    v

    avg

    v

    avg 0 m/s

    Section 1.61. v22 v12 2a d

    d

    d

    d 9.4 103 m2. 10 cm 1.0 10 1 m

    d

    v1 v2

    v1 0.05 m/s

    v1 1.7 10 2 m/s

    3. a) Igor: dI vI t Brian: dB

    12

    a B t 2

    If they meet, dI dB 8.0 m

    vI t 8.0 m12

    a B t 2

    0 12

    (2.8 m/s 2) t 2 (7.0 m/s) t 8.0 m

    0 (1.4 m/s 2) t 2 (7.0 m/s) t 8.0 m

    2(1.0 10 1 m)3.0 s

    2 dt

    (v1 v2) t 2

    (600 m/s) 2 (350 m/s) 2

    2(12.6 m/s 2)

    v22 v12

    2a

    8.0 m [E] 8.0 m [E]6.0 s 5.0 s

    d

    t

    9.0 m [E] 0 m [E]8.0 s

    d

    t

    2.0 km [E]5.0 h

    3.0 km [E] 5.0 km [E]5.0 h

    3.0 km [W] 5.0 km [E]5.0 h

    d

    t

    8.0 km5.0 h

    dt

    2.5 104 m [N]1.8 103 s

    d

    t

    27.5 mL1 oz

    20 oz1 quart

    1 km0.63 mile

    1 mile8 furlong

    60 s1 min

    60 min1 h

    24 h1 day

    PART 1 Solutions to Applying the ConceptsIn this section, solutions have been provided only for problems requiring calculation.

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    6/200

    t

    t

    t

    t 3.2 s or t 1.8 sWe will take the lower value: t 1.8 s.

    b) dB12

    (2.8 m/s 2)(1.8 s) 2

    dB 4.4 m4. 8.0 cm 8.0 10 2 m

    v22 v12 2a d

    a

    a

    a 7.7 105 m/s 25. t total t 1 t 2 t 3

    t total 3.0 s 6.0 s 10 st total 19.0 s

    In the first 3.0 s, the truck travels a distanceof:

    d112

    (v1 v2) t 1

    d112

    (0 m/s 8.0 m/s)(3.0 s)

    d1 12 mSince the truck travels at a constant speedover the second interval,

    d2 v2 t 2d2 (8.0 m/s)(6.0 s)d2 48 m

    For the final interval,

    d3 v1 t 312

    a t 32

    d3 (8.0 m/s)(10 s)12

    (2.5 m/s 2)(10 s) 2

    d3 2.1 102

    mdtotal d1 d2 d3dtotal 12 m 48 m 2.1 102 mdtotal 2.7 102 m

    vavg

    vavg

    vavg 14 m/s

    6. 100 km/h 27.8 m/s

    d v1 t 12

    a t 2

    500 m (27.8 m/s) t 12

    (30 m/s 2) t 2

    0 (15 m/s 2) t 2 (27.8 m/s) t 500 m

    t

    t 4.9 s

    7. a) d v1 t 12

    a t 2

    80 m (17 m/s) t 12

    (9.8 m/s 2) t 2

    0 (4.9 m/s 2) t 2 (17 m/s) t 80 m

    t

    t 2.7 s b) v22 v12 2a d

    v2 v12 2 a d v2 (17 m /s) 2 2(9.8 m/s 2) (80 m ) v2 43 m/s

    8. a) a

    t (eq.1)

    d t (eq. 2)Substituting equation 1 into equation 2,

    d 2a d v22 v12 v2v1 v1v2v22 v12 2a d

    b) a

    v1 v2 a t (eq. 1)

    d t (eq. 2)Substituting equation 1 into equation 2,

    d

    t

    d v2 t 12

    a t 2

    v2 v2 a t

    2

    v2 v12

    v2 v1t

    v2 v1a

    v2 v12

    v2 v12

    v2 v1a

    v2 v1t

    17 m/s (17 m /s) 2 4(4.9 m/s 2) ( 80 m) 2(4.9 m/s 2)

    27.8 m/s (27.8 m/s) 2 4(1 5 m/s 2 )( 50 0 m) 2(15 m/s 2)

    2.7 102 m19.0 s

    d totalt total

    (0 m/s) 2 (350 m/s) 2

    2(8.0 10 2 m)

    v22 v12

    2 d

    7.0 m/s 2.05 m/s2.8 m/s 2

    7.0 m/s ( 7.0 m/s) 2 4(1 .4 m/s 2)(8.0 m) 2(1.4 m/s 2)

    b b2 4 ac 2a

    2 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    7/200

    Section 1.71. a) v22 v12 2a d

    Assuming up is positive,

    d

    d

    d 330 m b) v2 v1 a t

    t

    t

    t 8.16 sc) 2(8.16 s) 16.3 s

    2. a) d v1 t 12

    a t 2

    Assuming down is positive,30.0 m (4.0 m/s) t 1

    2(9.8 m/s 2) t 2

    0 (4.9 m/s 2) t 2 (4.0 m/s) t 30.0 m

    t

    t

    t

    t 2.1 s

    b) d v1 t 12a t 2

    Assuming down is positive,

    30.0 m ( 4.0 m/s) t 12

    (9.8 m/s 2) t 2

    0 (4.9 m/s 2) t 2 ( 4.0 m/s) t 30.0 m

    t

    t

    t

    t 2.9 s

    3. d v1 t 12

    a t 2

    Assuming down is positive,

    35 m v1(3.5 s)12

    (9.8 m/s 2)(3.5 s) 2

    v1 7.2 m/s or 7.2 m/s [up]

    Section 1.8

    1. a) a t 7.0s

    a t 7.0s

    a t 7.0s 2.0 m/s 2

    a t 12s

    a t 12s 0 m/s 2

    a t 3.0s

    a t 3.0s 12 m/s 2

    b) The distance travelled by Puddles fromt 5.0 s to t 13 s can be found byfinding the area under the curve betweenthose times. We must consider two

    separate intervals: between 5.0 s and 10 s,and between 10 s and 13 s. The area underthe graph in the first interval can beexpressed as the sum of the areas of atriangle and a rectangle:

    d1 t 1 v1

    d1

    (10 s 5.0 s)(50 m/s)

    d1 275 mThe area under the graph in the secondinterval can be expressed as a rectangle:d2 t 2 v2d2 (13 s 10 s)(60 m/s 0 m/s)d2 180 mdT d1 d2dT 275 m 180 mdT 455 m

    2. a) For Super Dave, Sr.,

    vavg

    t

    t

    t 5.0 s

    50 m10 m/s

    dvavg

    dt

    (10 s 5.0 s)(60 m/s 50 m/s)2

    t 1 v12

    32.0 m/s 8.0 m/s4.0 s 2.0 s

    60 m/s 60 m/s13 s 11 s

    55.0 m/s 51.0 m/s8.0 s 6.0 s

    vt2 vt1t 2 t 1

    4.0 m/s 24.6 m/s9.8 m/s 2

    4.0 m/s ( 4.0 m/s) 2 4(4 .9 m/s 2)( 30 .0 m) 2(4.9 m/s 2)

    b b2 4 ac 2a

    4.0 m/s 24.6 m/s9.8 m/s 2

    4.0 m/s (4.0 m /s) 2 4(4.9 m/s 2) ( 30. 0 m) 2(4.9 m/s 2)

    b b2 4 ac 2a

    0 80.0 m/s9.8 m/s 2

    v2 v1a

    0 (80.0 m/s) 2

    2( 9.8 m/s 2)

    v22 v12

    2a

    Solutions to Ap ply in g the Con ce pts3

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    8/200

    We can find the acceleration of SuperDave, Jr. from the slope of his v

    t graph:

    a

    a

    a 3 m/s 2

    d v1 t

    But v1 0 m/s, so

    d

    t t t 6 s

    b) Super Dave, Sr. wins the race by 1 s.c) Super Dave, Sr.:

    vavg

    t

    t

    t 10 sSuper Dave, Jr.:

    d v1 t , where v1 0 m/s, so

    d

    t t t 8 s

    Super Dave, Jr. wins.3. a) For segment 1,

    d1 2.0 m 0.5 md1 1.5 mt 1 0.6 s 0.0 st 1 0.6 s

    vavg1

    vavg1

    vavg1 2.5 m/s

    For segment 2,d2 2.0 m 2.0 md2 0 m

    vavg2 0 m/sFor segment 3,

    d3 1.0 m 2.0 md3 1.0 mt 3 1.8 s 1.0 st 3 0.8 s

    vavg3

    vavg3

    vavg3 1.25 m/sFor segment 4,

    d4 2.2 m 1.0 md4 1.2 mt 4 2.6 s 1.8 st 4 0.8 s

    vavg4

    vavg4

    vavg4 1.5 m/s

    b) vavg

    vavg

    vavg 0.65 m/s

    Section 1.111. a) Forces are unbalanced as

    the force provided by thekicker, F k, will cause the ball to accelerate.

    Ball

    F n

    F k

    F g

    2.2 m 0.5 m

    2.2 s 0.0 s

    d totalt total

    1.2 m0.8 s

    d4t 4

    1.0 m0.8 s

    d3t 3

    1.5 m0.6 s

    d1t 1

    2(100 m)3 m/s 2

    2 da

    a t 2

    2

    a t 2

    2

    100 m10 m/s

    dvavg

    dt

    2(50 m)3 m/s 2

    2 da

    a t 2

    2

    a t 22

    6 m/s2 s

    vt

    4 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    9/200

    b) The forces are balanced. Theforce he provideson the gun, F m,will balance theforce of the bullet.

    c) The forces are not balanced, asthe penny still acceleratesdownward, but at a slower rate.

    d) These forces are balanced, andthe soldier falls downward at aconstant speed.

    Section 1.121. a) F 1 m1a 1

    a 1

    a 1

    a 1 5.0 m/s 2

    b) F 1 2m1a 2

    a 2

    a1

    a 2

    a 2

    a 2 2.5 m/s 2

    c) m1a 3

    F 1 2m1a 3

    a 3

    a 3

    a 3 2.5 m/s 22. F ma

    F g F f ma F f m( g a) F f (90 kg)(9.8 m/s 2 6.8 m/s 2) F f 270 N

    3. v22 v12 2a d

    a

    a

    a 2.5 104 m/s 2

    F ma F (8.0 10 2 kg)( 2.5 104 m/s 2) F 2000 N

    4. For the first kilometre,

    d v1 t 12

    a 1 t 2

    d 12

    a 1 t 2

    a 1

    a 1

    a 1 4.54 m/s 2

    v22 v12 2a dv2 2a d v2 2(4.54 m/s 2) (1000 m) v2 95.3 m/s

    For the last 1.4 km, the cars acceleration is:v22 v12 2a 2 d

    a 2

    a 2

    a 2 3.24 m/s 2

    F f ma 2 F f (600 kg)( 3.24 m/s 2) F f 1.94 103 N

    (0 m/s) 2 (9.53 m/s) 2

    2(1.40 103 m)

    v22 v12

    2 d

    2(1000 m)(21.0 s) 2

    2 dt 2

    (0 m/s) 2 (15 m/s) 2

    2(4.5 103

    m)

    v22 v12

    2 d

    5.0 m/s 2

    2

    a 12

    F 12

    5.0 m/s 2

    2

    a 12

    F 1m1

    F 12m1

    10 N2.0 kg

    F 1m1

    Soldier

    F parachute

    F g

    Penny

    F buoyant

    F g

    Gun

    F support

    F m F B

    F g

    Solutions to Ap ply in g the Con ce pts5

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    10/200

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    11/200

    b) F f k F n F n mg F f kmg

    k

    k

    k 0.172. a) Since the toy duck is travelling at a

    constant velocity, it is not being acted upon by an unbalanced force. Therefore, theforces must have equal magnitudes andopposite directions.

    b) From a), we know that the applied force, F app, is equal in magnitude to the force dueto friction, F f . F n mg

    F app F f F app k F n F app kmg

    a

    a k g a (0.15)(9.8 m/s 2)a 1.5 m/s 2

    3. F f mak F n ma

    kmg maa k g

    v22 v12 2a d

    d

    d

    d 42 m

    Section 1.15

    1. F g

    F g

    F g 5.5 10 67 N

    2. F g

    F g

    F g

    F g 2.1 1020 N

    3. a) F g1

    F g2 F g2 ( F g1)

    b) F g2

    F g2 F g2 ( F g1)

    c) F g2

    F g2

    F g2 F g1

    4. ( F gEarth) F g2

    r 22 2r Earth r 2 r Earth 2 0

    r 2

    r 2 2.6 106 m

    5. F g

    myou g Jupiter

    g Jupiter

    g Jupiter

    g Jupiter 24 m/s 2

    (6.67 10 11 N m2 kg2)(1.9 1027 kg)(7.2 107 m)2

    Gm Jupiterr Jupiter 2

    Gm youm Jupiterr Jupiter 2

    Gm youm Jupiterr Jupiter 2

    2r Earth (2r Earth )2 4 (1)( r Earth 2) 2

    1r Earth 2 2r Earth r 2 r 22

    12(r Earth 2)

    Gm youmEarth(r

    Earthr

    2)2

    Gm youmEarthr

    Earth

    212

    12

    Gm 1m2r 2

    G 4m1m2(2r )2

    29

    Gm 1m2r 2

    29

    G (2m1)m2(3r )2

    18

    Gm 1m2r 2

    18

    Gm 1m2r 2

    (6.67 10 11 N m2 kg2)(0.013)(5.97 1024 kg)2

    (3.82 108 m)2

    G (0.013) mEarth 2

    r 2

    Gm Earth mMoonr 2

    (6.67 10 11 N)(9.11 10 31 kg)2

    (0.01 m) 2

    Gm 1m2r 2

    (0 m/s) 2 (22.2 m/s) 2

    2(0.60)( 9.8 m/s 2)

    v22 v12

    2 k g

    F appm

    6.7 103 N(4000 kg)(9.8 m/s 2)

    F f mg

    Solutions to Ap ply in g the Con ce pts7

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    12/200

    Section 2.11. dA [E35N] or [N55E]

    dB [S12E] or [E78S]dC [S45W] or [W45S]dD [W80N] or [N10W]

    2. a) In the N-S direction,dy d cosd

    y (50 m) cos 14 [S]d

    y 49 m [S]In the E-W direction,

    dx d sind

    x (50 m) sin 14 [E]d

    x 12 m [E] b) In the N-S direction

    vy v sinv

    y (200 m/s) sin 30 [S]v

    y 100 m/s [S]In the E-W direction,vx v cosv

    x (200 m/s) cos 30 [W]v

    x 173 m/s [W]c) In the N-S direction,

    a y a sina

    y (15 m/s 2) sin 56 [N]a

    y 12 m/s 2 [N]In the E-W direction,a x a cosa

    x (15 m/s 2) cos 56 [E]a

    x 8.4 m/s 2 [E]3. Horizontally,

    vx v cosvx (5.0 m/s) cos 25vx 4.5 m/sVertically,vy v sinvy (5.0 m/s) sin 25vy 2.1 m/s

    4. v

    g v

    w v

    b

    v

    g 4.0 m/s [forward] 3.0 m/s [upward]Since vw and v b are perpendicular,

    vg vw2 v b2 vg (4.0 m /s) 2 (3.0 m /s) 2 vg 5.0 m/s

    tan

    tan 1 53

    v

    g 5.0 m/s [up 53 forward]5. a) Component Method:

    v

    f v

    1 v

    2

    For the x components,v

    fx v

    1x v

    2x

    v

    fx (50 m/s) cos 36 [W](70 m/s) cos 20 [E]

    vfx ( 50 m/s) cos 36(70 m/s) cos 20

    v

    fx 25.3 m/s [E]For the y components,v

    fy v

    1y v

    2y

    v

    fy (50 m/s) sin 36 [N](70 m/s) sin 20 [S]

    vfy (50 m/s) sin 36(70 m/s) sin 20

    v

    fy 5.45 m/s [N]vf vf x

    2 vf y2 vf (25.3 m/s) 2 (5.4 5 m/s) 2 vf 26 m/s

    tan

    tan 1 78

    v

    f 26 m/s [N78E]Sine/Cosine Method:

    54 90 54 20 16

    vf 2 v12 v22 2v1v2 cosvf 2 (50 m/s) 2 (70 m/s) 2

    2(50 m/s)(70 m/s) cos 16vf 26 m/s

    To find direction,

    32

    25.9 m/ssin 16

    50 m/ssin

    vf sin

    v1sin

    25.3 m/s5.45 m/s

    vf xvf y

    4.0 m/s3.0 m/s

    vwv b

    8 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    13/200

    To find , 180 54 78

    v

    f 26 m/s [N78E]

    b) 37 (parallel line theorem) 180 53 37 (supplementary

    angles theorem) 90

    Sine/cosine Method:df 2 d12 d22 2 d1 d2 cosdf 2 (28 m) 2 (40 m) 2

    2(28 m)(40 m) cos 90df 49 m

    To find direction,

    sin

    35

    To find , 180 37 18d

    f 49 m [W18N]

    c) Component Method: F

    net F

    1 F

    2 F

    3

    For the x components, F

    netx F

    1x F

    2x F

    3x

    F

    netx 140 N [W] (200 N) cos 30 [E](100 N) sin 35 [W]

    F netx 140 N (200 N) cos 30(100 N) sin 35

    F netx 24.15 N F

    netx 24.15 N [W]

    For the y components, F

    nety F

    1y F

    2y F

    3y

    F

    nety (200 N) sin 30 [N](100 N) cos 35 [S]

    F nety (200 N) sin 30(100 N) cos 35

    F

    nety 18.08 N [N] F net F net x2 F net y2 F net (24.15 N)2 (18.0 8 N) 2 F net 30.1 N

    tan

    tan 1 53

    F

    net 30.1 N [N53W]6. vx v2 sin 40 v1 sin 15

    v

    x 25.8 m/s [W]vy v2 cos 40 ( v1 cos 15)v

    y 1.17 m/s [N]v (25.8 m/s) 2 (1.1 7 m/s) 2 v 26 m/s

    tan 1 87v

    26 m/s [N87W]

    Section 2.21. a) v

    og v

    mg v

    om

    cos

    cos

    76The ships heading is [S76E].

    b) v2og v2om v2mgvog (20 km /h) 2 (5.0 k m/h) 2 v

    og 19 km/h [E]

    c) t dv

    t

    t 5.2 h

    100 km19 km/h

    5.0 km/h20 km/h

    vmgvom

    25.8 m/s1.17 m/s

    24.15 N18.08 N

    F net x F net y

    d

    f

    d

    2

    d

    1

    53 37

    28 m49 m

    28 msin

    49 msin 90

    d1sin

    df sin

    20

    36

    v

    2

    v

    1

    v

    f

    Solutions to Ap ply in g the Con ce pts9

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    14/200

    2. a) sin

    sin 1 9.6

    The girls heading is [N9.6E]. b) The girl:

    vg (3.0 m /s) 2 (0.50 m/s) 2 v

    g 2.96 m/s [N]

    t

    t

    t 169 sThe boy:

    t

    t

    t 167 sc) The boy travels an extra distance west of

    the girls landing point, caused by the horizontal component of his velocity (equalto the rivers current).d vt d (0.50 m/s)(167 s)d 83 m

    d) The time required for the boy to run theextra 83 m at 5.0 m/s is 17 s. The boystotal time is 167 s 17 s 184 s. Thegirls time was 169 s. She wins the race.

    3. v

    pw v

    sw v

    ps

    v2pw v2sw v2psv2pw (10 km /h) 2 (6.0 k m/h) 2 vpw 12 km/h

    tan

    59v

    pw 12 km/h [N59E]4. a) v

    og v

    om v

    mg

    cos

    cos 1 76

    Terry must throw at [S76E].

    b) vom (2.0 m /s) 2 (0.50 m/s) 2 v

    om 1.9 m/s [E]

    t

    t

    t 2.6 s

    Section 2.3

    1. a) dy viy t a y t 2

    15 m (0 m/s) t (9.8 m/s 2) t 2

    t 2

    t 1.7 s

    b) dx vix t a x t 2

    dx (25 m/s)(1.7 s) (0 m/s 2) t 2

    dx 43 m

    2. a) a y

    t

    t

    t 2.3 s b) Since the curve Blasto travels is

    symmetrical (a parabola), the time he takesto reach maximum height is the same asthe time he takes to reach the ground.t total 2(2.3 s)t total 4.6 sSolving for horizontal distance,

    dx vix t a x t 2

    dx (35 m/s) cos 40(4.6 s)

    dx 120 m3. a) To find the time required for the bomb toreach the ground,

    dy viy t a y t 2

    200 m (97.2 m/s) cos 25 t

    (9.8 m/s 2) t 2

    200 m (88.1 m/s) t (4.9 m/s 2) t 2

    12

    12

    12

    0 m/s (35 m/s) sin 409.8 m/s 2

    v2y v1ya

    v2y v1yt

    12

    1

    2

    30 m9.8 m/s 2

    12

    12

    5.0 m1.9 m/s

    dvom

    0.50 m/s2.0 m/s

    vmgvog

    10 km/h6.0 km/h

    500 m3.0 m/s

    dv

    500 m2.96 m/s

    dv

    0.50 m/s3.0 m/s

    vmgvom

    10 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    15/200

    0 (88.1 m/s) t (4.9 m/s 2) t 2

    200 m

    t

    t 2.0 sTo calculate the horizontal distance,

    dx vix t a x t 2

    Since there is no horizontal acceleration,dx vix t dx (97.2 m/s) sin 25(2.0 s)dx 82 m

    b) The y component of the final velocity, vfy, isvf y

    2 viy2 2a d

    vf y2 [(97.2 m/s) cos 25] 2

    2(9.8 m/s 2)(200 m)vf y 108 m/svf x (97.2 m/s) sin 25vf x 41.1 m/svf (108 m /s) 2 (41.1 m/s) 2 vf 115.6 m/s

    tan

    21v

    f 116 m/s inclined at 21 to the vertical4. Since the time it takes for the ball to hit the

    green is not given, we can find two time-

    related equations (one for the horizontalcomponent and one for the verticalcomponent), for the golf balls velocity, equate both equations, and solve for horizontalvelocity. For the vertical component,

    dy viy t 12

    a y t 2

    Since the change in height is 0 m,

    0 (vig sin ) t 12

    ( 9.8 m/s 2) t 2

    (4.9 m/s 2) t vig sin

    t (eq. 1)

    For the horizontal component,

    dx vix t 12

    a x t 2

    250 m (vig cos ) t

    t (eq. 2)

    Equating equations 1 and 2,

    vig2

    vig2

    vig 66 m/sv

    ig 66 m/s, 17 above the horizontal

    Section 2.41. F

    p F

    1 F

    2

    F

    p 200 N [N] 300 N [W] F p F 12 F 22 F p (200 N )2 (3 00 N) 2 F p 361 N

    tan

    tan

    56

    F

    p 361 N [N56W]For the frictional force, F f kmg F f 0.23(200 kg)(9.8 m/s 2) F f 451 N

    This is the maximum force of friction betweenthe stove and the floor. However, friction onlyacts to oppose motion, so F

    f 361 N [S56E]. F

    net F

    p F

    f

    F

    net 361 N [N56W] 361 N [S56E] F

    net 361 N[N56W] 361 N [N56W] F net 0 N F net ma

    a

    a20

    0

    0

    N

    kga 0 m/s 2

    Since the frictional force is stronger than theforce provided by the peoples pushing, thestove does not move.

    F netm

    300 N200 N

    F

    2

    F

    f

    F

    1

    F

    p

    F 2

    F 1

    1225 m2/s 2

    sin 17cos 17

    (250 m)(4.9 m/s 2)sin cos

    250 mvig cos

    vig sin4.9 m/s 2

    250 mvigcos

    vig sin4.9 m/s 2

    41.1 m/s108 m/s

    12

    88.1 m/s (88.1 m/s) 2 4(4 .9 m/s 2)( 20 0 m) 2(4.9 m/s 2)

    Solutions to Ap ply in g the Con ce pts11

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    16/200

    2. a) F

    net F

    1 F

    2 F

    3

    F

    net 25 N [S16E] 35 N [N40E]45 N [W]

    Adding the x components, F

    netx F

    1x F

    2x F

    3x

    F

    netx (25 N) sin 16 [E](35 N) sin 40 [E] 45 N [W]

    F netx (25 N) sin 16(35 N) sin 40 45 N

    F netx 15.6 N F

    netx 15.6 N [W]Adding the y components, F

    nety F

    1y F

    2y F

    3y

    F

    nety (25 N) cos 16 [S](35 N) cos 40 [N]

    F nety ( 25 N) cos 16(35 N) cos 40

    F

    nety 2.78 N [N] F net F net x

    2 F net y2 F net (15.6 N)2 (2.78 N)2 F net 15.8 N

    tan

    tan

    80 F

    net 15.8 N [N80W]

    b) F

    net ma

    a

    a

    a

    0.20 m/s 2 [N80W]3. F

    net ma

    F

    net (0.250 kg)(200 m/s 2 [W15S]) F

    net 50.0 N [W15S] F

    net F

    1 F

    2

    F

    2F

    netF

    1 F

    2 50.0 N [W15S] 100 N [N25W] F

    2 50.0 N [W15S] 100 N [S25E]Adding the x components, F

    2x (50.0 N) cos 15 [W](100 N) sin 25 [E]

    F

    2x 6.03 N [W]

    Adding the y components, F

    2y (50.0 N) sin 15 [S] (100 N) cos 25 [S] F

    2y 103.6 N [S] F 2 F 2x

    2 F 2y2 F 2 (6.03 N)2 (103.6 N)2 F 2 104 N

    tan

    tan

    86.7 90 86.7 3.3

    F

    2 104 N [S3.3W]4. The only two forces in the x direction are F x

    and F f . F

    net F

    x F

    f

    F x F cos 45 F x (250 N) cos 45 F x 177 N F f k F n F

    n F

    g F

    y

    F n mg F sin 45 F n (20 kg)( 9.8 m/s 2) 177 N F n 372 N F f (0.40)( 372 N) F f 149 N

    F net 177 N 149 N F net 27.9 N F net ma

    a

    a

    a 1.38 m/s 2

    Section 2.51. The only two unbalanced forces are F || and F f .

    F net F || F f (eq. 1) F || F g sin 25 (eq. 2) F f F n F f F g cos 25 (eq. 3)

    27.9 N20 kg

    F netm

    103.6 N6.03 N

    F 2y F 2x

    16 N [N80W]80 kg

    F

    net

    m

    15.6 N2.78 N

    F net x F net y

    12 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    17/200

    Substituting equations 2 and 3 into equation 1, F net F g sin 25 F g cos 25 F net F g(sin 25 cos 25) F net (2.0 kg)(9.8 m/s 2)(sin 25 cos 25) F net (19.6 N)(sin 25 cos 25) F net 6.51 N F net ma6.51 N (2.0 kg)a

    a 3.26 m/s 2

    d vi t a t 2

    4.0 m (3.26 m/s 2) t 2

    t t 1.6 s

    2. Since there is no friction, the only force that

    prevents the CD case from going upward isthe deceleration due to gravity, F || . F net F || F net F g sin 20Since F net ma ,ma mg sin 20

    a g sin 20a 3.35 m/s 2

    a

    t

    t

    t 1.2 s3. To find the distance the skateboarder travels

    up the ramp, we need to find the velocity of the skateboarder entering the second ramp atv1. Since there is no change in velocity on the horizontal floor, v1 v2.For the acceleration on ramp 1, F net F ||ma mg sin 30

    a g sin 30a 4.9 m/s 2

    v22 v12 2adv22 0 m/s 2(4.9 m/s 2)(10 m)v2 9.9 m/s

    For the deceleration on ramp 2, F net F || F nma mg sin 25 (0.1)mg cos 25

    a 5.02 m/s 2

    For d,v32 v22 2a d

    (0 m/s) 2 (9.9 m/s) 2 2( 5.02 m/s 2) dd 9.8 m

    4. F net m(0.60 g ) F net also equals the sum of all forces in theramp surface direction:

    F

    net F

    || F

    f F

    engine

    m(0.60 g ) mg sin 30 F n F enginem(0.60 g ) mg sin 30 (0.28)mg cos 30

    F engine F engine (0.60)mg mg sin 30

    (0.28)mg cos 30 F engine mg (0.60 sin 30

    (0.28) cos 30) F engine 3.36m N

    Section 2.61. a) For m1,

    F net m1aT m1 g m1a (eq. 1)

    For m2, F net m2a

    m2 g T m2a (eq. 2)Adding equations 1 and 2,m2 g m1 g a(m1 m2)

    a

    a

    a

    5.1 m/s 2 [right]Substitute a into equation 2:T m2 g m2aT 71 N

    b) For m1, F net m1a

    T m1 g sin 35 m1 g cos 35 m1a(eq. 1)For m2,

    F net m2am2 g T m2a (eq. 2)

    (15 kg)(9.8 m/s 2) 0.20(10 kg)(9.8 m/s 2)25 kg

    m2 g m1 g m1 m2

    4.0 m/s3.35 m/s 2

    v2 v1a

    v2 v1t

    8.0 m3.26 m/s 2

    12

    12

    Solutions to Ap ply in g the Con ce pts13

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    18/200

    Adding equations 1 and 2,m2 g m1 g sin 35 m1 g cos 35

    a (m1 m2)

    a

    a

    a

    3.5 m/s 2 [right]Substitute a into equation 2:T m2 g m2aT (5.0 kg)(9.8 m/s 2) (5.0 kg)(3.5 m/s 2)T 32 N

    c) For m1, F net m1a

    T m1 g sin 40 1m1 g cos 40 m1a(eq. 1)For m2,

    F net m2am2 g sin 60 T 2m2 g cos 60 m2a(eq. 2)Adding equations 1 and 2,m2 g sin 60 2m2 g cos 60m1 g sin 40 1m1 g cos 40

    a (m1 m2)

    a

    a

    a

    1.1 m/s 2 [right]Substitute a into equation 1:T m1a m1 g sin 40 1m1 g cos 40T (20 kg)(1.1 m/s 2) (20 kg)(9.8 m/s 2)

    sin 40 (0.20)(20 kg)(9.8 m/s 2)cos 40

    T 1.8 102 Nd) For m1,

    F net m1am1 g sin 30 T 1 m1a (eq. 1)For m2,

    F net m2aT 1 T 2 m2a (eq. 2)

    For m3, F net m3a

    T 2 m3 g m3a (eq. 3)

    Adding equations 1, 2, and 3,m1 g sin 30 m3 g a(m1 m2 m3)

    a

    a

    a

    0.82 m/s 2 [left]Substitute a into equation 3:T 2 m3a m3 g T 2 (10 kg)(0.82 m/s 2) (10 kg)(9.8 m/s 2)T 2 106 NSubstitute a into equation 2:T 1 m2a T 2T 1 106 N (20 kg)( 0.82 m/s 2)T 1 122 N

    Section 2.7

    1. a c

    a c

    a c 21 m/s 2

    2. v dt

    v 25 a c

    a c

    a c

    a c 8.9 m/s 2

    3. a c

    a) If v is doubled, a c increases by a factor of 4. b) If the radius is doubled, a c is halved.c) If the radius is halved, a

    cis doubled.

    4. a) v 2T

    r , where

    r 3.8 105 kmr 3.8 108 mT 27.3 daysT 2.36 106 s

    v2

    r

    2500 2(1.3 m)(60 s) 2

    2500 2r t 2

    v2

    r

    2 r t

    (25 m/s) 2

    30 m

    v2

    r

    (30 kg)(9.8 m/s 2)sin 30 (10 kg)(9.8 m/s 2)60 kg

    m1 g sin 30 m3 g m1 m2 m3

    (9.8 m/s 2)[(30 kg) sin 60 0.30(30 kg) cos 60 (20 kg) sin 40 0.20(20 kg) cos 40]50 kg

    g (m2 sin 60 2m2 cos 60 m1 sin 40 1m1 cos 40)m1 m2

    (9.8 m/s 2)[5.0 kg (3.0 kg) sin 35 0.18(3.0 kg) cos 35]8.0 kg

    g (m2 m1 sin 35 m1 cos 35)m1 m2

    14 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    19/200

    a c

    a c

    a c

    a c 2.7 10 3 m/s 2

    b) The Moon is accelerating toward Earth.c) The centripetal acceleration is caused by

    the gravitational attraction between Earthand the Moon.

    5. r 60 mmr 0.06 ma c 1.6 m/s 2

    a c

    v a cr

    v 0.31 m/s6. Since d 500 m, r 250 m

    v

    f T 1

    v 2 rf a c g

    a c

    g 4 2rf 2

    f f f 0.0315 rotations/s f (0.0315 rotations/s)

    f 2724 rotations/day

    Section 2.81. a) v d

    t

    v

    v 3.5 m/s

    b) F c ma c

    F c (10 kg)

    F c 24 Nc) Friction holds the child to the merry-go-

    round and causes the child to undergocircular motion.

    2. Tension acts upward and the gravitationalforce (mg ) acts downward. F c F net andcauses Tarzan to accelerate toward the pointof rotation (at this instant, the acceleration isstraight upward).

    F c ma c

    T mg

    T m g

    T (60 kg) 9.8 m/s 2

    T 9.7 102 N3. Both tension and gravity act downward.

    F c ma c

    T mg

    When T 0,

    mg

    v gr

    v (9.8 m /s 2)(1. 2 m) v 3.4 m/s

    4. a)

    b) F c mg tan 20

    mg tan 20

    v rg tan 20 v (100 m )(9.8 m /s 2) ta n 20 v 19 m/s

    c) The horizontal component of the normalforce provides the centre-seeking force.

    mv2r

    N

    N

    cos 20

    N

    sin 20

    20

    mg

    mv2

    r

    mv2

    r

    (4 m/s)2

    2.5 m

    v2

    r

    mv2

    r

    v2

    r

    20(2 r )180 s

    24 h1 day

    60 min1 h

    60 s1 min

    9.8 m/s 2

    4 2(250 m)

    g 4 2r

    v2

    r

    2 r T

    v2

    r

    4 2(3.8 108 m)(2.36 106 s)2

    4 2r T 2

    v2

    r

    Solutions to Ap ply in g the Con ce pts15

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    20/200

    d) If the velocity were greater (and the radiusremained the same), the car would slide upthe bank unless there was a frictional forceto provide an extra centre-seeking force.The normal force would not be sufficientto hold the car along its path.

    e) Friction also provides a centre-seekingforce.

    5. G 6.67 10 11 Nm 2/kg2, mE 5.98 1024

    kg F c mMa c

    Gm E v2r

    Gm E , where v

    T

    T T 1.97 106 sT 22.8 days

    6. G 6.67 10 11 Nm 2/kg2,mE 5.98 1024 kg, r E 6.37 106 m

    F c mHa c

    Gm E v2

    r v r height of orbit r Er 6.00 105 m 6.37 106 mr 6.97 106 m

    v v v 7.57 103 m/s

    7. G 6.67 10 11 Nm 2/kg2

    mM (0.013) mEmM 7.77 1022 kgr M 1.74 106 m

    F c mApolloa c

    Gm M v2r

    Gm M , where v

    r height of orbit r Mr 1.9 105 m 1.74 106 mr 1.93 106 m

    T T T 7.4 104 s

    400 2(1.93 106 m)3

    (6.67 10 11 N m2/kg2)(7.77 1022 kg)

    400 2r 3

    Gm M

    10(2 r )T

    400 2r 3

    T 2

    mApollov2

    r Gm MmApollo

    r 2

    (6.67 10 11 N m2/kg2)(5.98 1024 kg)6.97 106 m

    Gm Er

    Gm Er

    mHv2

    r Gm EmH

    r 2

    4 2(3.4 108 m)3

    (6.67 10 11 N m2/kg2)(5.98 1024 kg)

    4 2r 3

    Gm E

    2 r T

    4 2r 3

    T 2

    mMv2

    r Gm EmM

    r 2

    16 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    21/200

    Section 3.31.

    Horizontal:T h T cos 60T h (1.0 104 N) cos 60T h 5.0 103 NVertical:T v T sin 60T v (1.0 104 N) sin 60T v 8.7 103 N

    2.

    F net T v T A T A F net ma F net 0T v T A T AT v 2T AT v 2( 100.0 N) cos 70T v 68.4 N

    3. a)

    b) dv (1.5 m) sin 1.5dv 0.039 mdv 3.9 cm

    c) F net 2T v F g F net ma F net 0 F g 2T vm

    m

    m 0.45 kg4. a)

    tan 71.1

    F net mg 2FBv F net ma F net 0

    0 mg 2 F B sin

    F B

    F B

    F B 20.7 N b) F h F B cos

    F h (20.7 N) cos 71.1 F h 6.71 N

    c) F v F B sin F v (20.7 N) sin 71.1 F

    v 19.6 N [down] (not including theweight of the beams)

    6.

    F || mg sin F f mg cos F net T F f F || F net ma

    F fF n

    F ||F

    T

    boat

    (4.0 kg)( 9.8 N/kg)2 sin 71.1

    mg 2 sin

    1.90 m0.650 m

    pail

    F BF B

    mg

    +

    F g

    1.90 m

    0.65 m

    =

    2(85 N) sin 1.59.8 N/kg

    2T sin g

    bag

    F g mg

    +

    55

    =

    T T = 85 N = 85 N

    T v

    T a T a

    +

    70 70 = 100.0 N= 100.0 N

    60

    T v

    T h

    T h = 1.0 10 4 N

    Solutions to Applying the Concepts 17

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    22/200

    F net 0T F || F f T mg sin mg cosT mg (sin cos )T (400.0 kg)(9.8 N/kg)

    (sin 30 (0.25) cos 30)T 1.11 103 N

    Section 3.41. a)

    b) rF sin rmg sin (1.50 m)(45.0 kg)(9.8 N/kg) sin 40 425 Nm

    2. a) 2.0 103 Nmr 1.5 m

    90 F ?

    rF sin

    F

    F

    F 1.3 103 N3.

    a) V w 10.0 L

    w 1000 kg/m 3

    V w (10.0 L)

    V w 0.0100 m 3

    mw w V wmw (1000 kg/m 3)(0.0100 m 3)mw 10.0 kg F g mg F g (10.0 kg)(9.8 N/kg) F g 98.0 N

    b) Position B provides the greatest torque because the weight is directed at 90 to thewheels rotation.

    c) A rF sinA (2.5 m)(10.0 kg)(9.8 N/kg) sin 45A 1.7 102 NmB rF sinB (2.5 m)(10.0 kg)(9.8 N/kg) sin 90B 2.4 102 NmC AC 1.7 102 Nm

    d) A larger-radius wheel or more and largercompartments would increase the torque.

    Section 3.5

    1.

    90r 1 ?m1 45.0 kg

    m2 20.0 kg m2 5.0 kgr 2

    r 2 0.375 mm3 20.0 kg m2m3 15.0 kg

    0.75 m2

    0.753.0

    20.0 kg P

    0.75 m3.0 m

    1 m3

    1.00 106 cm3

    1000 cm3

    1 L

    10.0 L

    2.5 m

    B

    C

    A

    2.0 103 Nm(1.5 m) sin 90

    r sin

    1.50 m

    50

    45.0 kg

    F g mg =

    18 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    23/200

    r 3

    r 3 1.12 m0 1 2 30 r 1 F 1 sin 1 r 2 F 2 sin 2 r 3 F 3 sin 3

    r 1

    r 1

    r 1 0.332 m2. a)

    t-t rF sin

    t-t

    t-t 147 NmThis torque applies to both sides of theteeter-totter, so the torques balance eachother.

    b)

    H L 0L H

    r L

    r L

    r L 2.63 mc)

    cos

    75.5At the horizontal position:

    H (1.75 m)(45 kg)(9.8 N/kg)H 7.7 102 Nm

    At maximum height:H (1.75 m)(45 kg)(9.8 N/kg) sin 75.5H 7.5 102 Nm

    % 100

    % 2.6%3.

    a)

    1

    2 0r 1 F 1 sin r cm F g sin

    F 1

    F 1

    F

    1 24.5 N b) F rv F v2 0

    F rv F v2 F rv (5.00 kg)( 9.8 N/kg) F

    rv 49 N [up] F rh F h1 0

    F rh F h1 F rh 24.5 N F

    rh 24.5 N [left]The vertical reaction force is 49 N [up]and the horizontal reaction force is 24.5 N[left].

    4.

    1

    2

    3 0r 1 F 1 r 2 F 2 r 3 F R3 0

    r 1

    r 1 0.375 m

    0.75 m2

    F 4 F 3

    F 2

    P

    0.4 m1.6 m

    F 1

    (0.375 m)(5.00 kg)(9.8 N/kg)0.75 m

    r cm F g sinr 1 sin

    40

    50

    40

    P

    F gF 1

    (7.7 102 Nm 7.5 102 Nm)7.7 102 Nm

    0.5 m2.0 m

    2.0 m

    0.50 m

    (1.75 m)(45.0 kg)30.0 kg

    r HmH g mL g

    r h = 1.75 m r l = ?

    (1.0 m)(30.0 kg)(9.8 N/kg)2

    1.7 m

    4.0 m

    (1.12 m)(15.0 kg)(9.8 N/kg) (0.375 m)(5.0 kg)(9.8 N/kg)(45.0 kg)(9.8 N/kg)

    r 3 F 3 r 2 F 2 F 1

    3.0 m 0.75 m2

    Solutions to Applying the Concepts 19

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    24/200

    r 2

    r 2 1.0 mr3 1.60 m

    90sin 1

    F 3

    F 3

    F

    3 306 N [up] F 4 F 1 F 2 F 3 F 4 (120.0 kg)(9.8 N/kg)

    (5.0 kg)(9.8 N/kg) 306 N F

    RP 919 N [up]Left saw horse: 919 N [up]Right saw horse: 306 N [up]

    Section 3.61.

    45r w 48.0 cmr w 0.480 mmw 10.0 kg

    r L

    r L 24.0 cmr L 0.240 mmL 5.00 kg

    w

    L 0 w L ( r w F w sin 45)

    ( r L F L sin 45) (0.480 m)(10.0 kg)(9.8 N/kg)

    sin 45 (0.240 m)(5.00 kg)(9.8 N/kg) sin 45

    41.6 Nm [clockwise]

    2.

    1

    2 02 12 1

    r 2 F 2 sin 2 r 1 F 1 sin 1

    F 2

    F 2

    F 2 529.2 N F 2 5.3 102 N

    The angle makes no difference it cancelsout.

    3.

    a)

    m

    b

    s 0m b s 0

    m b sr m F m sin m r b F b sin b r s F s sin s

    F m

    F m

    F m

    F m

    F m 5.57 103 N (tension)

    (75 102 m)(9.8 N/kg) sin 75[(0.57)85 kg 19.0 kg](45 102 m) sin 11

    rg sin (m b m s)

    r m sin m

    r bm b g sin b r sm s g sin sr m sin m

    r b F b sin b r s F s sin sr m sin m

    15 11

    30 cm

    45 cm

    P F gs

    F m F gb

    (8.0 10 2 m)(27 kg)(9.8 N/kg) sin(4.0 10 2 m) sin

    r 1 F 1 sin 1r 2 sin 2

    2

    1

    F 1 F n

    F 2

    P

    +8 cm

    4 cm=

    48.0 cm2

    F w

    F L

    +45 48 m

    (0.375 m)(120.0 kg)(9.8 N/kg) (1.0 m)(5.0 kg)(9.8 N/kg)1.60 m

    r 1 F 1 r 2 F 2r 3

    2.0 m2

    20 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    25/200

    Reaction forces:0 F

    py F

    my F

    by F

    sy

    F py F my F by F sy F py ( 5.57 103 N)(sin 4)

    (19.0 kg)( 9.8 N/kg)(0.57)(85 kg)( 9.8 N/kg)

    F py 1049.6 N F

    py 1.05 103 N [up]0 F

    px F

    mx F

    bx F

    sx

    F px F mx F bx F sx F px (5.57 103 N)(cos 4) 0 0 F

    px 5.55 103 N [right]Horizontal force: 1.49 103 N [right]; verticalforce: 7.65 102 N [up]

    Section 3.7

    1. a) sin 43

    htipped

    htipped 49.8 cm

    b) tan 43

    hstraight

    hstraight 36.5 cm2. Four-wheeled ATV:

    tan T

    T 31.0

    Three-wheeled ATV:

    tan

    25.64

    sin

    x (0.55 m)(sin 25.64) x 0.237 m

    tan T

    tan T 13.3

    0.237 m1.00 m

    x0.55 m

    0.60 m1.25 m

    1.25 m

    0.6 m

    0.6 m

    0.7 m

    0.55 m

    1.0 m

    Back View

    x

    x

    T

    T

    Top View

    0.60 m1.0 m

    1 . 0

    m

    0.6 m

    34.0 cmtan 43

    34.0 cmhstraight

    34.0 cmsin 43

    34.0 cm

    htipped

    Solutions to Applying the Concepts 21

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    26/200

    Section 3.81. k 16.0 N/m

    x 30.0 cm x 30.0 10 2 ma) F k x

    F (16.0 N/m)(30.0 10 2 m) F 4.80 N

    b) F ma

    am F

    a

    a 1.78 103 m/s 2

    2. F g (67.5 kg)(9.8 N/m) F g 661.5 N F kx

    k

    k

    k 66150 N/mk 6.61 104 N/m F g-truck mg F g-truck (2.15 103 kg)(9.8 N/kg) F g-truck 2.1 104 NThis weight is distributed equally over foursprings.

    F s

    F s 5267.5 N/spring

    x

    x

    x 0.0796 m x 8.0 10 2 m

    3. F kx F (120 N/m)(30.0 10 2 m) F 36 N

    Section 3.91. d 0.29 mm

    L 0.90 m L 0.22 mm Esteel 200 109 N/m 2

    A

    E

    E

    F

    F

    F

    F 0.807 NFor nylon, Enylon 5 109 N/m 2

    d 2 d 2 d 1.83 mmd 1.83 10 3 m

    2. Emarble 50 109 N/m 2

    A 3.0 m2m 3.0 104 kg

    a) Stress A F

    Stress

    Stress 9.8 104 N/m 2

    b) E

    Strain

    Strain

    Strain 2.0 10 6

    9.8 104 N/m 2

    50 109 N/m 2

    Stress

    E

    StressStrain

    (3.0 104 kg)(9.8 N/kg)3.0 m2

    4(0.807 N)(0.90 m)(5 109 N/m 2)(0.22 10 3 m)

    4 FL E L

    0.29210 3 m 2(200 109 N/m 2)(0.22 10 3 m)

    4(0.90 m)

    d2

    2 E L

    4 L

    AE L L

    FL A L

    A F

    L L

    d2

    2

    4

    5267.5 N/spring6.6150 104 N/m

    F sk

    2.1 104

    N4 springs

    661.5 N1.0 10 2 m

    F

    x

    4.80 N2.7 10 3 kg

    22 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    27/200

    c) L 15 m L ?

    Strain L L

    L L(Strain) L (15 m)(2.0 10 6) L 3.0 10 5 m

    3. a) Compressive strength of bone17 107 N/m 2

    d bone 4.0 10 2 mBone cross-sectional area is: A r2

    A (2.0 10 2 m)2

    A 1.26 10 3 m2

    F b

    F b

    Breakage occurs if Strength

    Strength

    m

    m

    m 4.4 104 kg

    2(17 107 N/m 2)(1.26 10 3 m2)9.8 N/kg

    2(Strength) A g

    m2 g

    A

    m2 g

    A F b A

    F b A

    mg 2

    F g2

    F g F g

    200 kg

    2

    2

    Solutions to Applying the Concepts 23

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    28/200

    Section 4.21. p

    mv

    p

    (8 kg)(16 m/s [W20N])p

    128 kgm/s [W20N]p

    1.3 102 kgm/s [W20N]2. p

    9.0 104 kgm/s [E]

    v

    (72 km/h [E]) v 20 m/s [E]m

    m

    m 4.5 103 kg3. a) p

    mv

    p

    (0.5 kg)(32 m/s [S])p

    16 kgm/s [S]Using a scale factor of 1 mm 1 kgm/s,

    b) p

    mv

    p

    (0.5 kg)(45 m/s [N])p

    22.5 kgm/s [N]

    c) p

    p

    2 p

    1

    p

    22.5 kgm/s [N] 16 kgm/s [S]p

    22.5 kgm/s [N] 16 kgm/s [N]p

    38.5 kgm/s [N]

    Section 4.31. a) J

    F

    t J

    (3257 N [forward])(1.3 s) J

    4234.1 Ns [forward] J

    4.2 103 Ns [forward] b) J

    F

    t J

    ma

    t

    J

    m t J

    m(v

    2 v

    1) J

    (0.030 kg)(200 m/s 0 m/s) J

    6.0 Ns [out of gun]c) J

    F

    t J

    ma

    t J

    (0.500 kg)(9.8 N/kg [down])(3.0 s) J

    14.7 Ns [down] J

    15 Ns [down]2. p

    p

    2 p

    1

    p

    mv

    2 mv

    1

    p

    m(v

    2 v

    1)p

    (54 kg)(20 m/s [up] 25 m/s [down])p

    (54 kg)(20 m/s [up] 25 m/s [up])p

    (54 kg)(45 m/s [up])p

    2.4 103 Ns [up]

    3. a) F

    F

    F 1.3 104 N b) v1 0

    v2 120 km/hv2 33.3 m/s

    a

    a

    a 166.7 m/s 2

    d v1 t 12 a t 2

    d (0 m/s)(0.2 s) 12

    (166.7 m/s 2)(0.2 s) 2

    d 3.3 m

    33.3 m/s 0 m/s0.2 s

    v2 v1t

    2.5 103 Ns0.2 s

    J t

    v

    2 v

    1

    t

    p = 38.5 kg m/s [N]

    p = 22.5 kg m/s [N]

    p = 16 kg m/s [S]

    9.0 104 kgm/s20 m/s

    pv

    1 h3600 s

    1000 m1 km

    24 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    29/200

    4. a) J 12 bh

    J 1

    2(5 s)(25 N [S])

    J

    62.5 Ns [S] b) J Area under triangle rectangle

    J 1

    2(500 250 N [W])(3 s)

    (250 N [W])(6 s) J

    1875 Ns [W]c) J Area above area below (counting the

    squares: approximately) J (13 squares above) (4 squares

    below) J 9 squaresMultiplying 9 by the length and width of each square, J

    9(0.05 s)(100 N [E]) J

    45 Ns [E]

    Section 4.41. m1 1.2 kg, v1o 6.4 m/s, v1f 1.2 m/s,

    m2 3.6 kg, v2o 0, v2f ?po pf

    m1v1o m2v2o m1v1f m2v2f (1.2 kg)(6.4 m/s) (1.2 kg)( 1.2 m/s)

    (3.6 kg)v2f v

    2f 2.5 m/s [forward]2. m1 30 g 0.03 kg, v1o 0, v1f 750 m/s,

    m2 1.9 kg, v2o 0, v2f ?po pf

    m1v1o m2v2o m1v1f m2v2f

    v2f

    v2f

    v

    2f 11.8 m/s [back]3. m1 400 g 0.400 kg,

    v

    1o 3.0 m/s [forward],v

    1f 1.0 m/s [forward],m2 0.400 kg, v

    2o 0, v

    2f ?p

    o p

    f

    m1v

    1o m2v

    2o m1v

    1f m2v

    2f

    v

    2f

    v

    2f

    v

    2f 2.0 m/s [forward]4. m1 m , m2 80m , m (1 2) 81m, v(1 2)o ?,

    v1f 1.5 106 m/s, v2f 4.5 103 m/s,po 7.9 10 17 kgm/s

    po pf po m1v1f m2v2f

    7.9 10 17 kgm/s m( 1.5 106 m/s)80m(4.5 103 m/s)

    7.9 10 17 kgm/s m[ 1.5 106 m/s80(4.5 103 m/s)]

    m

    m 6.9 10 23 kg5. m1 5m , v1o v, v(1 2)f ?, m2 4m, v2o 0

    po pf m1v1 m2v2 (m1 m2)v(1 2)f

    (5m)(v) (4m)(0) (5m 4m)v(1 2)f 5mv 9mv (1 2)f

    v(1 2)f 59

    v

    Section 4.51. m1 m2 2.0 kg, v

    1o 5.0 m/s [W], v

    2o 0,v

    1f 3.0 m/s [N35W], v

    2f ?p

    1o (2.0 kg)(5.0 m/s [W])p

    1o 10 kgm/s [W]p

    1f (2.0 kg)(3.0 m/s [N35W])p

    1f 6.0 kgm/s [N35W]p

    o p

    f

    p

    1o p

    2o p

    1f p

    2f , where p

    2o 0p

    1o p

    1f p

    2f

    Using the cosine law,p2f 2 (10 kgm/s) 2 (6.0 kgm/s) 2

    2(10 kgm/s)(6.0 kgm/s) cos 55p2f 8.2 kgm/s

    p mv

    v2f

    v2f 4.1 m/s

    8.2 kgm/s2 kg

    35

    p 1f = 6.0 kg m/s

    p 1o = 10 kg m/s

    p 2f

    7.9 10 17 kgm/s1.5 106 m/s 80(4.5 103 m/s)

    (0.400 kg)(3.0 m/s [forward]) (0.400 kg)(0) (0.400 kg)(1.0 m/s [forward])0.400 kg

    m1v

    1o m2v

    2o m1v

    1f

    m2

    (0.03 kg)(0) (1.9 kg)(0) (0.03 kg)(750 m/s)1.9 kg

    m1v1o m2v2o m1v1f m2

    Solutions to Applying the Concepts 25

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    30/200

    Using the sine law to find direction,

    37v

    2f 4.1 m/s [W37S]2. m1 85 kg, v

    1o 15 m/s [N],p

    1o 1275 kgm/s [N], m2 70 kg,v

    2o 5 m/s [E], p

    2o 350 kgm/s [E]p

    o p

    f

    p

    1o p

    2o p

    f

    Using Pythagoras theorem to solve for pf ,

    pf 2

    (1275 kgm/s)2

    (350 kgm/s)2

    pf 1322 kgm/s

    tan

    15.4p

    f m f v

    f

    v

    f

    v

    f 8.5 m/s [N15E]3. m1 0.10 kg, v

    1f 10 m/s [N],p

    1f 1.0 kgm/s [N], m2 0.20 kg,v

    2f 5.0 m/s [S10E],p

    2f 1.0 kgm/s [S10E], m3 0.20 kg,v

    3f ?p

    To 0p

    To p

    Tf

    0 p

    1f p

    2f p

    3f

    Using the cosine law,

    p3f 2 (1.0 kgm/s) 2 (1.0 kgm/s) 2

    2(1.0 kgm/s)(1.0 kgm/s)(cos 10)p3f 0.1743 kgm/s

    v3f

    v3f 0.87 m/sUsing the sine law to find direction,

    85v

    3f 0.87 m/s [S85W] or 0.87 m/s [W5S]4. m1 0.5 kg, v

    1o 2.0 m/s [R],p

    1o 1.0 kgm/s [R], m2 0.30 kg, v

    2o 0,p

    2o 0, v

    1f 1.5 m/s [R30U],p

    1f 0.75 kgm/s [R30U], v

    2f ?, p

    2f ?p

    To p

    Tf

    p

    1o p

    2o p

    1f p

    2f , where p

    2o 0p

    1o p

    1f p

    2f

    Using the cosine law,

    p2f 2 (1.0 kgm/s) 2 (0.75 kgm/s) 2

    2(1.0 kgm/s)(0.75 kgm/s)cos 30p2f 0.513 kgm/sp mv

    v2f

    v2f 1.7 m/sUsing the sine law to find direction,

    47v

    2f 1.7 m/s [R47D] or 1.7 m/s [D43R]

    Section 4.6

    1. a) 1.5 m from both objects

    b)

    (60 cm)

    17.1 cm from the larger mass

    c) (20 km)6.67 km from the larger satellite

    200600

    2.0 kg

    5.0 kg 2.0 kg

    3.0 m2

    sin 300.513 kgm/s

    sin0.75 kgm/s

    0.513 kgm/s0.30 kg

    p 1f

    = 0.75 kg m/s

    p 1o = 1.0 kg m/s

    30

    p 2f

    sin 100.1743 kgm/s

    sin1.0 kgm/s

    0.17 kgm/s0.2 kg

    p 3f

    p 1f = 1.0 kg m/s

    p 2f = 1.0 kg m/s

    10

    1322 kgm/s [N15E]85 kg 70 kg

    350 kgm/s1275 kgm/s

    p 2o = 350 kg m/s

    p 1o = 1275 kg m/s p f

    sin 558.2 kgm/s

    sin6.0 kgm/s

    26 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    31/200

    2. a) p1o (2.0 kg) p

    1o 0.22 kgm/s [S20E]

    p2o (1.0 kg) p

    2o 0.17 kgm/s [S10W]

    p1f (2.0 kg) p 1f 0.26 kgm/s [S5W]p2f (1.0 kg) p

    2f 0.15 kgm/s [S30E]

    pcm (3.0 kg) p

    cm 0.39 kgm/s [S8E] b) i)

    ii)

    c) The total momentum before and aftercollision is the same as the momentum of the centre of mass. The total momentumvectors have the same length and directionas the momentum of the centre of mass.

    5

    30

    p 1f

    p 2f

    p Tf

    10

    70

    p 1o

    p 2o

    p To

    0.013 m0.1 s

    0.015 m0.1 s

    0.013 m0.1 s

    0.017 m0.1 s

    0.011 m0.1 s

    Solutions to Applying the Concepts 27

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    32/200

    Section 5.21. a) W F d

    W (40 N)(0.15 m)W 6.0 J

    b) W F dW mg dW (50 kg)(9.8 N/kg)(1.95 m)W 9.6 102 J

    c) W F d cosW (120 N)(4 m)(cos 25)W 4.4 102 J

    2. 45 km/h 12.5 m/sTo find d,v22 v12 2a d

    d

    dd 31.25 m

    W F dW (5000 N)(31.25 m)W 1.6 105 J

    3. W F d cosW (78 N)(10 m)(cos 55)W 4.5 102 J

    4. a

    a

    a 2.2 m/s 2

    F ma F (52 000 kg)( 2.2 m/s 2) F 114 400 N

    d

    d

    d 97.5 mW F dW ( 114 400 N)(97.5 m)W 1.1 107 J

    5. a) W F dW (175 N)(55 m)W 9625 J

    b) The triangular areas above and below theaxis are identical and cancel out, therefore,W (0.040 m)(20 N)W 0.80 J

    6. F ma F (3 kg)(9.8 N/kg) F 29.4 N

    d

    d

    d 16 m

    Section 5.3

    1. a) Ek12

    mv2

    Ek1

    2

    (20 000 kg)(7500 m/s) 2

    Ek 5.6 1011 J b) 20 km/h 5.6 m/s

    Ek12

    mv2

    Ek12

    (1.0 kg)(5.6 m/s) 2

    Ek 15.4 J

    c) Ek12

    mv2

    Ek12 (0.030 kg)(400 m/s)

    2

    Ek 2.4 103 J

    2. Ek12

    mv2

    3900 J 12

    (245 kg) v2

    v v 5.6 m/s

    3. Ek1

    2mv2

    m

    m

    m 6.5 kg4. p 2mE k

    p 2(9.11 10 31 kg)( 6000 e V )(1.6 10 19 J/eV ) p 4.2 10 23 Ns

    2(729 J)(15 m/s) 2

    2 Ekv2

    (3900 J)(2)245 kg

    480 J29.4 N

    W F

    [(14 m/s) 2 (25 m/s) 2]2( 2.2 m/s 2)

    (v22 v12)2a

    (14 m/s 25 m/s)5.0 s

    (v2 v1)t

    (12.5 m/s) 2 02(2.5 m/s 2)

    (v22 v12)2a

    28 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    33/200

    5. Ek Ek2 Ek1

    Ek12

    (60 kg)(5.0 m/s) 2 12

    (60 kg)(14 m/s) 2

    Ek 5.1 103 J

    6. a) Ek12

    mv2

    Ek12 (0.350 kg)(25.0 m/s)

    2

    Ek 1.1 102 J

    b) a

    a

    a 1.3 104 m/s 2

    F ma F (0.350 kg)( 1.3 104 m/s 2) F 4557 N

    W F dW ( 4557 N)(0.024 m)W 1.1 102 J

    c) F avg ma F avg 4557 N F avg 4.6 103 N

    Section 5.41. a) Eg mgh

    Eg (3.5 kg)(9.8 N/kg)(1.2 m) Eg 4.1 101 J

    b) Eg mgh Eg (2000 kg)(9.8 N/kg)(0) Eg 0 J

    c) Eg mgh Eg (2000 kg)(9.8 N/kg)(1.9 m) Eg 3.7 104 J

    2. a) v22 v12 2a d (or use the conservationof energy)

    v22 (0) 2(9.8 m/s 2)(27 m)v2 23 m/s

    b) E final E initial Ekf Ego Eko1

    2(65 kg) vf 2 (65 kg)(9.8 N/kg)(27 m)

    12

    (65 kg)(3.0 m/s) 2

    vf 23 m/s

    3. a) Using the law of conservation of energy, E total 5460 J

    12

    mv2 mgh 5460 J

    12

    (3.0 kg) v2 (3.0 kg)(9.8 N/kg)(5.0 m) 5460 J

    v 60 m/s b) Eg mgh

    5460 J (3.0 kg)(9.8 N/kg) hh 185.7 m from the groundh 180.7 m from the pad

    c) v2 v1 a t v2 (60 m/s) (9.8 N/kg)(2.0 s)v2 40.4 m/s

    Ek12

    mv2

    Ek1

    2(3.0 kg)(40.4 m/s) 2

    Ek 2.4 103 J Ep E total Ek Ep 5460 J 2448.24 J Ep 3.0 103 J

    4. F kx

    k

    k

    k

    k 1.2 106 N/mFor only one spring:

    k

    k 3.0 105 N/m

    Section 5.5

    1. a) k

    k

    k 200 N/mk 2.0 102 N/m

    20 N0.1 m

    riserun

    1 225 000 N/m4

    (5000 kg)(9.8 N/kg)0.04 m

    mg x

    F x

    0 (25.0 m/s) 2

    2(0.024 m)

    (v22 v12)2 d

    Solutions to Ap ply in g the Con ce pts29

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    34/200

    b) Maximum elastic potential energy occursat x 0.1 m.

    Ep12

    kx2

    Ep12

    (200 N/m)(0.1 m) 2

    Ep 1.0 Jc) Ee Ee2 Ee1

    E 12

    (200 N/m)(0.04 m) 2

    12

    (200 N/m)(0.03 m) 2

    Ee 7.0 10 2 J2. F g F e

    mg kx(0.500 kg)(9.8 N/kg) k(0.04 m)

    k 122.5 N/m

    3. a) W EW E2 E1 where E1 0W E2

    W 12

    kx2

    W 12

    (55 N/m)( 0.04 m) 2

    W 4.4 10 2 J b) W E

    W E2 E1 where E1 0W E2

    W 12

    kx2

    W 12

    (85 N/m)(0.08 m) 2

    W 2.7 10 1 J4. Ee Ek

    12

    kx2 12

    mv2

    (200 N/m)(0.08 m) 2 (0.02 kg) v2

    v 8.0 m/s5. Ee Ek

    12

    kx2 12

    mv2

    (5 106 N/m) x2 (2000 kg)(4.5 m/s) 2

    x 9 cm

    6. The loss in elastic potential energy is equal tothe gain in kinetic energy.

    Ee EkLet the subscript 1 represent the initialcompressed spring and subscript 2 represent the moment after the spring has been releasedwhen the cart has a velocity of 0.42 m/s.

    ( Ee2 Ee1) Ek2 Ek1

    kx12 kx22 mv22 0

    x2 x2

    x2 0.056 m x2 5.6 cm

    Section 5.61. The energy required to heat the water is

    Ew (4.2 103 J/C/L)(65C 10C)(2.3 L) Ew 5.31 105 JThe energy expended by the stove is

    P

    Es P t Es (1000 W)(600 s) Es 6.0 105 J

    The energy lost to the environment is E E s Ew E 6.9 104 J

    2. a) Ep mgh Ep (83.0 kg)(9.8 N/m)(13.0 m) Ep 1.057 104 J

    P

    P

    P 590 W b) Ep 1.057 104 J

    Ep 10 600 J3. Once the radiation of the Sun reaches Earth,

    it has spread out into a sphere surroundingthe Sun. This sphere has a surface area of:SA 4 r 2

    SA 4 (1.49 1011 m)2

    SA 2.79 1023 m2

    1.057 104 J18.0 s

    Et

    Et

    (65 N/m)(0.08 m) 2 (1.2 kg)(0.42 m/s) 2

    65 N/m

    kx12 mv22

    k

    12

    12

    12

    30 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    35/200

    The ratio of this area to the area of Earthexposed to the radiation will be equal to theratio of the power radiated by the Sun to thepower absorbed by Earth.

    x

    x 2 1017 WTherefore, Earth intercepts 2 1017 J of energy from the Sun each second.

    4. The total time is 3(20 min)(60 s/min) 3600 sThe time the player spends on ice is(3600 s)(0.25) 900 s

    P

    E P t E (215 W)(900 s) E 1.935 105 JWhile sitting on the bench, the player expends100 W of power.He spends 3600 s 900 s 2700 s on the

    bench.

    E (100 W)(2700 s) E 2.7 105 J ET (1.935 105 J) (2.7 105 J) ET 4.6 105 J

    Section 5.73. a) m1 3000 kg

    v

    1o 20 m/s [W]v

    1f 10 m/s [W]m2 1000 kg

    v2o 0v2f ?pTo pTf

    m1v1o m2v2o m1v1f m2v2f (3000 kg)(20 m/s) 0 (3000 kg)(10 m/s)

    (1000 kg) v2f v2f 30 m/s

    b) Since Eko Ekf , the collision is elastic( EkTotal 6 105 J).

    c) W Ek truck

    W 12

    (3000 kg)(10 m/s) 2

    12

    (3000 kg)(20 m/s) 2

    W 4.5 105 J4. mp 0.5 kg

    mg 75 kgdp 0.03 m

    vpo 33.0 m/svgo 0vgf 0.30 m/sa) pgo mv

    pgo (75 kg)(0)pgo 0

    Ekgo 0ppo mvppo (0.5 kg)(33.0 m/s)ppo 16.5 kgm/s

    Ekpo12

    (0.5 kg)(33.0 m/s) 2

    Ekpo 272.25 J b) po pf

    ppo pgo ppf pgf mpvpo 0 mpvpf mgvgf

    (0.500 kg)(33.0 m/s) (0.500 kg) vpf (75 kg)(0.30 m/s)vpf 12 m/s

    c) Ek p12

    mpvpf 2

    Ek p12

    (0.500 kg)(12 m/s) 2

    Ek p 36 J

    Ek g12

    mgvgf 2

    Ek g12 (75 kg)(0.30 m/s)

    2

    Ek g 3.4 Jd) The collision is inelastic due to the loss of

    kinetic energy.

    Et

    (3.9 1026 W)(1.48 1014 m2)2.79 1023 m2

    3.9 1026 W x

    2.79 1023 m2

    (6.87 106 m)2

    3.9 1026 W x

    2.79 1023 m2

    ( dE2arth )2

    Suns radiationabsorbed radiation

    SASun AEarth

    Solutions to Ap ply in g the Con ce pts31

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    36/200

    5. m1 10 gm2 50 gv1o 5 m/sv2o 0

    v1f v1o

    v1f (5 m/s)v1f 3.3 m/s

    v2f v1o

    v2f (5 m/s)

    v2f 1.7 m/s6. m1 0.2 kg

    m2 0.3 kgv1o 0.32 m/s

    v2o 0.52 m/sChanging the frame of reference,v1o 0.84 m/sv2o 0 m/s

    v1f (0.84 m/s)

    v1f 0.168 m/s

    v2f (0.84 m/s)

    v2f 0.672 m/s

    Returning to the original frame of reference,v1f 0.168 m/s 0.52 m/sv1f 0.69 m/sv2f 0.672 m/s 0.52 m/sv2f 0.15 m/s

    8. a) E stored12 bh

    Estored12

    (0.06 m 0.02 m)(50 N)

    Estored 1.0 J

    b) E lost 1.0 J12 (0.005 m)(30 N)

    (0.005 m)(20 N)12

    (0.035 m)(20 N)

    E lost 1.0 J 0.075 J 0.1 J 0.35 J E lost 0.475 J

    9. a) Counting the squares below the top curve,there are about 16.5 squares, each with anarea of (0.01 m)(166.7 N) 1.6667 J. Theamount of energy going into the shockabsorber is (16.5)(1.6667 J) 27.5 J.

    b) There are roughly 6 squares below the lower curve. The energy returned to theshock absorber is (6)(1.6667 J) 10 J

    c) % energy lost 100

    % energy lost 64%

    27.5 J 10 J27.5 J

    2(0.2 kg)0.2 kg 0.3 kg

    0.2 kg 0.3 kg0.2 kg 0.3 kg

    2(10 g)10 g 50 g

    2m1m1 m2

    10 g 50 g10 g 50 g

    m1 m2m1 m2

    32 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    37/200

    Section 6.11. mE 5.98 1024 kg, mS 1.99 1030 kg,

    r 1.50 1011 m

    a) Ek

    Ek

    Ek 2.65 1033 J

    b) Ep

    Ep

    Ep 5.29 1033 Jc) ET Ek Ep

    ET 2.65 1033 J ( 5.29 1033 J) ET 2.65 1033 J

    2. a g

    a g

    a g 7.32 m/s 2

    3. v1000 km 6.0 km/s 6.0 103 m/s,h 1000 km 1 106 m

    a) vesc vesc vesc 10 397 m/sSince the rocket has only achieved6000 m/s, it will not escape Earth.

    b) Ek 1000 km12

    mv2

    Ek 1000 km12

    m(6000 m/s) 2

    Ek 1000 km 1.8 107m JSince all kinetic energy is converted togravitational potential energy at maximum

    height, Ek Ep Ek E2 E1

    1.8 107m J

    r 2

    r 2(6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)

    1.8 107 J

    r 2 1.1 107 m

    hmax r 2 r Ehmax 1.1 107 m 6.38 106 mhmax 4.7 106 m

    Section 6.21. a) M Sun 1.99 1030 kg,

    T 76.1 a 2.4 109 sT 2 ka 3

    a 13

    a 13

    a 2.7 1012 m b) 0.97

    c) v

    v

    v 7031 m/s2. r altitude 10 000 km 1 107 m,

    r Jupiter 7.15 107 m, m Jupiter 1.9 1027 kg

    vesc vesc vesc 56 000 m/s

    3. mMoon 7.36 1022 kg,mEarth 5.98 1024 kg, r 3.82 108 m

    a) vesc vesc vesc 1445 m/s

    2(6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)3.82 108 m

    2GM r

    2(6.67 10 11 Nm 2/kg 2)(1.9 1027 kg)7.15 107 m 1 107 m

    2GM r

    2 (2.69 1012 m)2.4 109 s

    dt

    (2.4 109 s)2

    4 2

    (6.67 10 11 Nm 2/kg 2)(1.99 1030 kg)

    (2.4 109 s)2

    G 4 M

    2

    (6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)6.38 106 m 1 106 m

    GM

    1.8 107 J G r M

    1

    GMmr 1

    GMmr 2

    2(6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)(6.38 106 m 1 106 m)

    2GM r

    (6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)(6.38 106 m 1 106 m)2

    GM

    r 2

    (6.67 10 11 Nm 2/kg 2)(1.99 1030 kg)(5.98 1024 kg)(1.50 1011 m)

    GMmr

    (6.67 10 11 Nm 2/kg 2)(1.99 1030 kg)(5.98 1024 kg)2(1.50 1011 m)

    GMm2r

    Solutions to Ap ply in g the Con ce pts33

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    38/200

    To find the current speed of the Moon,

    mv2

    v v v 1022 m/s

    To find the additional speed required forescape,vadd esc 1445 m/s 1022 m/svadd esc 423 m/s

    b) Ek mvesc2 mv 2

    Ek (7.36 1022 kg)[(1445 m/s) 2

    (1022 m/s) 2] Ek 3.84 1028 J

    c) This value is comparable to a 900-MWnuclear power plant (e.g., Darlington)running for 2.35 1011 years!

    4. Geostationary Earth satellites orbit constantlyabove the same point on Earth because theirperiod is the same as that of Earth.

    5. M 5.98 1024 kg, r 6.378 106 m,v 25 m/sTo find the semimajor axis,

    ET Ep Ek

    mv2

    v2

    a

    a

    a 3.19 106 m

    To find the period,

    T 2 ka 3, where k

    T T 1792 s

    Section 6.31. a) At the equilibrium point, the bobs kinetic

    energy accounts for all the energy in thesystem. This total energy is the same as themaximum elastic potential energy. Ek equil ET Ek equil Epmax

    Ek equil12

    kx2

    Ek equil1

    2(33 N/m)(0.23 m) 2

    Ek equil 0.87 J b) 0

    c) Ek12

    mv2

    v v v 1.9 m/s

    2. a) To find the period of an object in simple harmonic motion,

    T 2 T 2 T 0.76 s

    b) At 0.16 m, the elastic potential energy of the bob is

    Ep 0.16m1

    2kx2

    Ep 0.16m12

    (33 N/m)(0.16 m) 2

    Ep 0.16m 0.42 J ET Ek Ep Ek ET Ep Ek 0.87 J 0.42 J Ek 0.45 J

    0.485 kg33 N/m

    mk

    2(0.87 J)0.485 kg

    2 Ekm

    4 2(3.19 106 m)3

    (6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)

    4 2

    GM

    (6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)(6.378 106 m)2(6.67 10 11 Nm 2/kg 2)(5.98 1024 kg) (25 m/s) 2(6.378 106 m)

    GMr 2GM v2r

    2GM v2r GMr

    1a

    v2

    GM 2r

    1a

    2GM r

    GM a

    12

    GMmr

    GMm2a

    12

    12

    12

    (6.67 10 11 Nm 2/kg 2)(5.98 1024 kg)3.82 108 m

    GM r

    GMm2r

    12

    34 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    39/200

    Ek12

    mv2

    v v v 1.36 m/s

    c) Ek 0.45 J, from part b3.

    D i s p

    l a c e m e n

    t ( m )

    Position vs. Time

    Time (s)

    0.6 0.4 0.2

    00.20.4

    0.20 0.4 0.6 0.8 1.0 1.2 1.4

    2(0.45 J)0.485 kg

    2 Ekm

    Solutions to Ap ply in g the Con ce pts35

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    40/200

    Section 7.2

    1. a) 0.17 rad

    b) 1.0 rad

    c) 1.6 rad

    d) 3.07 rad

    e) 4.47 rad

    2. a) ( rad)(57.3/rad) 180

    b) rad (57.3/rad) 45

    c) (3.75 rad)(57.3/rad) 675d) (11.15 rad)(57.3/rad) 639e) (40 rad)(57.3/rad) 2.3 103

    3. a) Earth rotates 2 radians every 24 h.6.0 h 1.57 rad

    b) Earth moves 2 rad every 365 days.

    265 d 4.56 rad

    c) The second hand moves 2 rad every 60 s.

    25 s 2.62 rad

    d) A runner moves 2 rad for every lap.

    25.6 laps 161 rad

    Section 7.3

    2. a) a c

    v a cr v (9.8 m /s 2)(12 00 m) v 108 m/sv 1.1 102 m/s

    b)

    0.090 rad/sThe angular acceleration is zero becausethe angular velocity is constant.

    3. a)

    0.12566 rad/s0.13 rad/s

    b) r 1500 ma c r 2

    a c (1500 m)(0.12566 rad/s) 2

    a c 24 m/s 2

    c) The angular acceleration is zero becausethe angular velocity is constant.

    d) a c-space-station 24 m/s 2

    ac-Earth 9.8 m/s 2

    2.4

    Section 7.41. a) (3.35 rev/s)(2 rad/rev)

    21.0 rad/st 2 min (50 sec)

    t 170 s

    t (21.0 rad/s)(170 s)3.58 103 rad

    b)

    44 rad/s 2

    2. a) t

    t

    t 8.3 s

    b) t

    (8.3 s)

    7.3 radc) There are 2 radians in one cycle.

    number of cycles

    number of cycles 1.16number of cycles 1.2

    7.3 rad2 rad/cycle

    (1.75 rad/s 0)2

    ( 1 2)2

    (0 1.75 rad/s)0.21 rad/s 2

    (22.0 rad/s 0)0.5 s

    t

    t

    60 s1 min

    24 m/s 2

    9.8 m/s 2

    1 min60 s

    2 rad1 rev

    1.2 rev1 min

    108 m/s1200 m

    v

    r

    v2

    r

    2 rad1 lap

    2 rad60 s

    2 rad365 d

    2 rad24 h

    4

    25657.3/rad

    17657.3/rad

    9057.3/rad

    6057.3/rad

    1057.3/rad

    36 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    41/200

    d) 0.58 cycles

    (0.58 cycles)(2 rad/cycle)3.6 rad

    2 t 12

    t 2

    3.6 rad 012 ( 0.21 rad/s

    2

    ) t 2

    t 5.9 s

    3. a) t

    t 2

    t 6.026 st 6.03 s

    b)

    0.266 rad/s 2

    Section 7.52. a) I

    (0.045 kgm 2)( 1.90 rad/s 2)0.086 Nm

    b) For 78 rpm:1 0

    2

    2 8.2 rad/s2

    21

    2 2

    17.69 rad18 rad

    number of turns

    number of turns 2.8For 45 rpm:

    1 0

    2

    2 4.7 rad/s

    22

    12 2

    5.813 rad5.8 rad

    number of turns

    number of turns 0.93

    For 33 13

    rpm:

    1 0

    2 2 3.5 rad/s2

    21

    2 2

    3.223 rad3.2 rad

    number of turns

    number of turns 0.51

    3. I

    I

    I 0.693 kgm 2

    4. a) I 12

    mr 2 (moment of inertia for a disk)

    I 12

    (5.55 kg)(1.22 m) 2

    I 4.13 kgm 2

    b) rF (1.22 m)(15.1 N)18.4 Nm

    c) I

    4.46 rad/s 2

    18.4 Nm4.13 kgm 2

    8.45 Nm12.2 rad/s 2

    3.223 rad2 rad/turn

    (3.5 rad/s) 2 02( 1.90 rad/s 2)

    ( 22 12)2

    1 min60 s

    2 rad1 rev

    1300 rev

    1 min

    5.813 rad2 rad/turn

    (4.7 rad/s) 2 02( 1.90 rad/s 2)

    ( 22 12)2

    1 min60 s

    2 rad1 rev

    45 rev1 min

    17.69 rad2 rad/turn

    (8.2 rad/s) 2 02( 1.90 rad/s 2)

    ( 22 12)2

    1 min60 s

    2 rad1 rev

    78 rev1 min

    14.5 rad/s 16.1 rad/s6.026 s

    t

    92.2 rad(16.1 rad/s 14.5 rad/s)

    ( 12

    2)

    1.16 cycles2

    Solutions to Ap ply in g the Con ce pts37

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    42/200

    Section 7.61. a) rF

    (0.20 m)(23.1 N)4.62 Nm4.6 Nm

    W RW R (4.62 Nm)(2 rad)W R 29 J

    b) W RW R (4.62 Nm)(1.5 rad)W R 6.9 J

    c) 951.66 rad

    W RW R (4.62 Nm)(1.66 rad)W R 7.7 J

    2. a) 45

    4rad

    W RW R rF

    W R (0.556 m)(12.2 N) 4rad

    W R 5.3 J b) The work done does not change.

    Section 7.7

    1. I 25 mr 2

    I 25

    (0.0350 kg)(0.035 m) 2

    I 1.7 10 5 kgm 2

    Erot 12 I 2

    Erot 12

    (1.7 10 5 kgm 2)(165 rad/s) 2

    Erot 0.23 J2. a) (5.3 rev/s)(2 rad/rev)

    33.3 rad/s

    Erot 412 I 2

    Erot 412

    (0.900 kgm 2)(33.3 rad/s) 2

    Erot 2.0 103 J

    b) v r v (0.320 m)(33.3 rad/s)v 10.7 m/s

    Ek12

    mv2

    Ek12

    (1000 kg)(10.7 m/s) 2

    Ek 5.7 104 J

    Section 7.8

    1. a) vr

    78 rad/s

    Erot 412 I 2

    Erot 2(0.900 kgm2

    )(78 rad/s)2

    Erot 1.1 104 J

    b) Ek12

    mv2

    Ek12

    (1300 kg)(25 m/s) 2

    Ek 4.1 105 Jc) ET Ek E rot

    ET (4.1 105 J) (1.1 104 J) ET 4.2 105 J

    2. v1 01 0

    h1 12.0 mm 2.2 kgr 0.056 m I mr 2 (moment of inertia for a hollowcylinder)a) ET mgh 1

    ET (2.2 kg)(9.8 m/s 2)(12.0 m) ET 2.6 102 J

    b) To find the gravitational potential energy halfway down: Eg mgh 2

    Eg mg Eg (2.2 kg)(9.8 m/s 2) Eg 1.29 102 J

    12.0 m2

    h12

    25 m/s0.320 m

    38 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    43/200

    To find the velocity halfway down: ET1 ET2

    mgh 112

    mv2212 I 2 mgh 2

    mgh 112

    mv2212

    mr 2 2 mgh 2mgh 1 mv22 mgh 2mv22 mgh 1 mgh 2

    v22 gh1 g 2v22 2 gh1 gh12v22 gh1

    v2 v2 v2 7.67 m/s

    c) vr

    1.9 102 rad/s

    Section 7.9

    1.

    1.99 10 7 rad/s

    I 25 mr 2 (moment of inertia for a sphere)

    L I

    L 25

    mr 2

    L 25

    (5.98 1024 kg)(6.38 106 m)2

    (1.99 10 7 rad/s) L 1.94 1031 kgm 2/s

    2.

    25.7 rad/s

    r

    r 0.9 m

    I 25

    mr 2 (moment of inertia for a sphere)

    L I

    L 25

    mr 2

    L 25

    (85 kg)(0.9 m) 2(25.7 rad/s)

    L 7.1 102 kgm 2/s3. At perihelion,

    v 5472.3 m/sr 4.4630 1012 mm 1.027 1026 kg

    vr

    1.2261 10 9 rad/s L I

    L 2

    5mr 2

    L 25

    (1.027 1026 kg)(4.4630 1012 m)2

    (1.2261 10 9 rad/s) L 1.003 1042 kgm 2/sAt aphelion:v 5383.3 m/sr 4.5368 1012 mm 1.027 1026 kg

    vr

    1.1866 10 9 rad/s L I

    L 25

    mr 2

    L 25

    (1.027 1026 kg)(4.5368 1012 m)2

    (1.1866 10 9 rad/s) L 1.003 1042 kgm 2/s

    Section 7.10

    2. 1

    1

    1 2.94 10 6 rad/s

    2 rad2.14 106 s

    t

    5383.3 m/s4.5368 1012 m

    5472.3 m/s4.4630 1012 m

    1.8 m2

    2 rad1 cycle

    4.5 cycles1.1 s

    2 rad1 rev

    1 h3600 s

    1 d24 h

    1 rev365 d

    10.8 m/s0.056 m

    (9.8 m/s 2)(12.0 m)2

    gh12

    h12

    v2r

    Solutions to Ap ply in g the Con ce pts39

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    44/200

    I 1 1 I 2 2

    mr 12 1 mr 22 2

    r 12 1 r 22 2

    2

    2

    2 4.69 104 rad/s

    T 2

    T 2

    T 2 1.34 10 4 s3. r a 1.52 1011 m

    r p 1.47 1011 mvp 30 272 m/s

    I a a I p p

    mr a2 mr p2 r ava r pvp

    va

    va

    va 2.93 104 m/sva 29.3 km/s

    Section 7.113. R 0.040 m

    r 0.0070 m

    a

    a g

    1

    a 9.8 m/s2

    1

    a 0.64 m/s 2

    12

    (0.040 m) 2

    (0.0070 m) 2

    12

    mR 2

    mr 2

    g

    m I r 2

    1

    (1.47 1011 m)(30 272 m/s)1.52 1011 m

    r pvpr a

    vpr p

    var a

    2 rad4.69 104 rad/s

    2 rad2

    (6.95 108 m)2(2.94 10 6 rad/s)

    (5500 m) 2

    r 12 1r 22

    25

    25

    40 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    45/200

    Section 8.41. q1 3.7 10 6 C, q2 3.7 10 6 C,

    d 5.0 10 2 m, k 9.0 109 Nm 2/C 2

    F

    F

    F 49 N F 49 N (attraction)

    2. F 2( 49 N) F 98 N

    r r r 3.5 10 2 m

    3. a)

    b)

    c) How close do the dust balls get and what isthe charge on the tethered dust ball?m 2.0 10 10 kg , l 0.42 m,dwall-1 0.35 m, q 3.0 10 6 C, 21dwall-2 0.35 m 0.42 m(sin 21)

    dwall-2 0.35 m 0.15 mdwall-2 0.20 m

    From the force vector diagram we see that,

    tan

    F e mg tan

    mg tan

    q1

    q1

    q1 1.1 10 15 CThe dust balls are 0.20 m apart, and thecharge on the tethered dust ball is1.1 10 15 C.

    Section 8.51. a)

    b)

    c)

    +

    (0.20 m) 2(2.0 10 10 kg)(9.8 N/kg)(tan 21)(9.0 109 Nm 2/C2)(3.0 10 6 C)

    r 2mg tankq2

    kq1q2r 2

    F emg

    mg T

    F e

    F e

    T

    mg

    (9.0 109 Nm 2/C 2)(3.7 10 6 C)( 3.7 10 6 C)98 N

    kq1q2 F

    (9.0 109 Nm 2/C 2)(3.7 10 6 C)( 3.7 10 6 C)(5.0 10 2 m)2

    kq1q2d2

    Solutions to Ap ply in g the Con ce pts41

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    46/200

    Section 8.61. a) q 1.0 10 6 C,

    1.7 106 N/C [right]Let right be the positive direction. F

    e q

    F e ( 1.0 10 6 C)(1.7 106 N/C) F e 1.7 N F

    e 1.7 N [left]

    b) q 1.0 10 6 C, 2(1.7 106 N/C) [right]If right is still the positive direction, F

    e q

    F e (1.0 10 6 C)[2(1.7 106 N/C)] F e 3.4 N F

    e 3.4 N [right]2.

    q 1.0 10 6 C,

    1.7 106 N/C [right] F e mg tan F

    e 1.7 N [left]3. a)

    The field lines radiate outward, away fromthe charge.

    b) k 9.0 109 Nm 2/C2, q 3.0 10 6 CAt 2 cm away from the charge:

    6.8 107 N/C

    At 4 cm away:

    1.7 107 N/CAt 6 cm away:

    7.5 106 N/Cc) Doubling the distance,

    1

    114

    Tripling the distance,2

    219

    1 decreases to14

    and 2 decreases to19

    of

    the original strength.

    d) . The field strength varies as the

    inverse square of the distance away from

    the charge.e) q1 1.0 10 6 C, q2 3.0 10 6 C,

    r 8.0 10 2 m

    4.22 106 N/C F

    e q

    F e (1.0 10 6 C)(4.22 106 N/C)

    F

    e 4.22 N [right]4. a) q1 q2 1.0 10 6 C, r 0.20 m

    Let the positive direction be left.At point A:r 1 0.05 m, r 2 0.25 m

    (9.0 109 Nm 2/C 2)(3.0 10 6 C)(8.0 10 2 m)2

    kq1r 2

    1r 2

    kq(3r )2

    kq(2r )2

    (9.0 109 Nm 2/C 2)(3.0 10 6 C)(6.0 10 2 m)2

    kqr 2

    (9.0 109 Nm 2/C 2)(3.0 10 6 C)(4.0 10 2 m)2

    kqr 2

    (9.0 109 Nm 2/C2)(3.0 10 6 C)(2.0 10 2 m)2

    kqr 2

    +

    mg

    F e

    T

    Stationary chargecreating a field

    42 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    47/200

    TA

    1

    2

    TA

    TA (9.0 109 Nm 2/C 2)(1.0 10 6 C)

    TA 3.7 106 N/C [left]

    At point B:r 1 0.10 m, r 2 0.10 mThe addition of these two distances as wasdone in the previous question will yield azero quantity.

    TB 0 N/CAt point C:r 1 0.15 m, r 2 0.05 m

    TC

    1

    2

    TC

    TC (9.0 109 Nm 2/C 2)(1.0 10 6 C)

    TC 3.2 106 N/C [left]

    b) At the centre point, 1 is equal inmagnitude but opposite in direction to 2,therefore there is no net field strength asthe fields cancel out.

    c) For all field strengths to cancel out, the

    magnitudes of the ratio of must beequal and pointing in opposite directions.

    Section 8.7

    1. a) Ee

    Ee

    Ee 6.8 10 1 J

    b) V

    V

    V 4.5 105 V

    c) V

    V

    V 9.0 105 V

    V V 2 V 1 V 9.0 105 V ( 4.5 105 V) V 4.5 105 V

    2. a) m1 m2 5.0 10 9 g 5.0 10 12 kg,q1 4.0 10 10 C, q2 1.0 10 10 COn particle 1:W 1 qV W 1 (4.0 10 10 C)(50 V)W 1 2.0 10 8 JOn particle 2:W 2 qV W 2 (1.0 10 10 C)(50 V)W 2 5.0 10 9 J

    b) W Ek

    W mv2

    v The similar masses cancel.

    2

    3. a) Extensive: electric force, potential energyIntensive: field strength, electric potential

    b) Electric force Charge and the fieldstrengthPotential energy Charge and the electricpotential

    c) Extensive propertiesProduct cost (per package)

    MassVolumeLengthForce of gravityEtc.Intensive propertiesUnit product cost (per unit weight or measure)DensityHeat capacity

    v1v2

    2.0 10 8 J5.0 10 9 J

    v1v2

    W 1W 2

    v1v2

    2mW

    1

    1 2mW

    2

    2 v1v2

    2W m

    12

    (9.0 109 Nm 2/C 2)( 5.0 10 6 C)5.0 10 2 m

    kqr

    6.8 10 1 J1.5 10 6 C

    Ee

    q

    (9.0 109 Nm 2/C2)( 5.0 10 6 C)(1.5 10 6 C)10 10 2 m

    kq1q2r

    qr 2

    1(0.15 m) 2

    1(0.05 m) 2

    kq1

    r 21

    kq2

    r 22

    1(0.25 m) 2

    1(0.05 m) 2

    kq2r 22

    kq1r 21

    Solutions to Applying the Concepts 43

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    48/200

    Indices of refractionGravitational field strengthEtc.

    Section 8.81. qA 2e, qB 79e,

    Ek 7.7 MeV

    (7.7 106 eV)(1.602 10 19 J) Ee Ek

    Ee

    r

    r

    r 2.96 10 14 mr 3.0 10 14 m

    3. q 1.5 105

    C12

    mv2 q(V 2 V 1)

    v v v

    6.0 m/s [left]4. a) V 1.5 103 V, m 6.68 10 27 kg,

    q 2e 3.204 10 19 C Ek Ee

    12

    mv2 Vq

    v v v 3.8 105 m/s

    b) 12

    mv2 12

    Vq

    v v v 2.7 105 m/s

    5. a) V 20 kV 2.0 104 V,q 1.602 10 19 C, m 9.11 10 31 kg Ek E e Ek Vq Ek (2.0 104 V)(1.602 10 19 C) Ek 3.2 10 15 J

    b) Ek12 mv

    2

    v v v 8.4 107 m/s

    Section 8.91. W 2.4 10 4 J, q 6.5 10 7 C

    V

    V

    V 3.7 102 V2. d 7.5 10 3 m, V 350 V,

    4.7 104 N/C3. m 2.166 10 15 kg, V 530 V,

    d 1.2 10 2 m F e F g

    mg

    q

    q

    q 4.8 10 19 C

    (2.166 10 15 kg)(9.8 N/kg)(1.2 10 2 m)530 V

    mgdV

    qV d

    350 V7.5 10 3 m

    V d

    2.4 10 4 J6.5 10 7 C

    W q

    2(3.2 10 15 J)9.11 10 31 kg

    2 Ekm

    (1.5 103 V)(3.204 10 19 C)6.68 10 27 kg

    Vqm

    2(1.5 103 V)(3.204 10 19 C)6.68 10 27 kg

    2Vqm

    2( 1.5 10 5 C)( 12 V)(1.0 10 5 kg)

    2q(V 2 V 1)m

    (9.0 109 Nm 2/C2)(1.602 10 19 C)2(2)(79)(7.7 106 eV)(1.602 10 19 J)

    kqAqB Ee

    kqAqBr

    44 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    49/200

    Section 9.51. L 0.30 m

    I 12 A B 0.25 T

    90 F BIL sin F (0.25 T)(12 A)(0.30 m) sin 90 F 0.90 N

    2. L 0.15 m F 9.2 10 2 N B 3.5 10 2 T

    90

    I

    I

    I 18 A3. a) L 50 m

    I 100 A F 0.25 N

    45

    B

    B

    B 7.1 10 5 T b)

    4. B 3.0 105

    T L 0.20 m N 200

    4 10 7 Tm/A

    I

    I

    I 2.4 10 2 A

    5. a) I 100 A L 50 m B 3.0 10 5 T

    45

    r

    r r 0.67 m

    b) Referring to the diagram in question 3,Earths field lies in a line that is crossingthe wire at 45 below the horizontal. Themagnetic field would form a circular ringin the clockwise direction (rising on thesouth side of the wire, descending on thenorth with a radius of 0.67 m). Therefore,the field will cancel that of Earth on thesouth side below the wire, as shown in thediagram.

    2 x2

    (0.67 m)2

    x 0.47 mThe fields will cancel 4.7 10 1 m southand 4.7 10 1 m below the wire.

    6. a) r 2.4 10 3 m I 13.0 A L 1 m

    F

    F

    F 1.4 10 2 N/m7. q 20 C

    B 4.5 10 5 Tv 400 m/s

    90 F qvB sin F (20 C)(400 m/s)(4.5 10 5 T) sin 90 F 0.36 N

    (4 10 7 Tm/A)(13.0 A) 2(1 m)2 (2.4 10 3 m)

    I 2 L2 r

    N

    45 x

    x

    0.67 m

    (4 10 7 Tm/A)(100 A)2 (3.0 10 5 T)

    I 2 B

    (3.0 10 5 T)(0.20 m)(4 10 7 Tm/A)(200)

    BL N

    Tower

    Directionof Force

    Wire

    (cross-section) Earth'sMagneticField45

    S N

    45

    (0.25 N)(100 A)(50 m) sin 45

    F IL sin

    (9.2 10 2 N)(3.5 10 2 T)(0.15 m) sin 90

    F BL sin

    Solutions to Applying the Concepts 45

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    50/200

    8. q 1.602 10 19 Cv 4.3 104 m/s B 1.5 T

    90 F qvB sin F (1.602 10 19 C)(4.3 104 m/s)(1.5 T) sin 90 F

    1.0 10 14 N [south]

    46 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    51/200

    Section 10.2

    1. a) T

    T

    T 75 min

    b) T T 0.67 s

    c) T

    T 1.80 s

    d) T

    T 0.838 s

    2. a) f

    f

    f 60 Hz

    b) f

    f 0.75 Hz

    c) f

    f 0.009 26 Hz

    d) f

    f 1.35 Hz

    3. a) i) f

    f

    f 2.22 10 4 Hz

    ii) f

    f 1.49 Hz

    iii) f

    f 0.556 Hz

    iv) f

    f 1.19 Hz

    b) i) T

    T

    T 0.0167 s

    ii) T

    T 1.33 s

    iii) T

    T 108 s

    iv) T

    T 0.74 s5. a) x (30 cm) cos

    x (30 cm) cos 30 x 26 cm

    b) x (30 cm) cos 180 x 30 cm

    c) x (30 cm) cos 270 x 0 cm (equilibrium)

    d) x (30 cm) cos 360 x 30 cm

    e) x (30 cm) cos4

    x 21 cm

    Section 10.34. a) v f

    f

    f

    f 4.7 1014 Hz

    b) f

    f 2.5 108 Hz

    c) f

    f 1.5 1017 Hz5. a) v f

    2.0 10 5 m

    3.0 108 m/s1.5 1013 Hz

    v f

    3.0 108 m/s2 10 9 m

    3.0 108 m/s1.2 m

    3.0 108 m/s640 10 9 m

    v

    11.35 Hz

    10.009 26 Hz

    10.75 Hz

    160 Hz

    1 f

    10.838 s

    1

    1.80 s

    10.67 s

    175 60 s

    1T

    6548 s

    401.2 60 60 s

    4560 s

    1202.0 s

    cyclest

    57 s68

    60 s33.3

    6.7 s10

    375 min5

    t cycles

    Solutions to Applying the Concepts 47

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    52/200

    b)

    0.15 m

    c)

    1.0 10 14 m

    Section 10.44. a) n

    v

    v

    v 2.26 108 m/s

    b) v

    v 1.24 108

    m/sc) v

    v 1.99 108 m/s

    5. a) n

    n

    n 1.43

    b) n

    n 2.0

    c) n

    n 1.276. a) n1 sin 1 n2 sin 2

    2 sin 1 2 sin 1 2 18.5

    b) 2 sin 1 2 10.1

    c) 2 sin 1 2 16.3

    Section 10.5

    5. a) n

    vo ray

    vo ray

    vo ray 1.81 108 m/s

    ve ray

    ve ray

    ve ray 2.02 108 m/s

    b) 100%

    111.6%

    Therefore, the speed of the e ray is 11.6%greater than the speed of the o ray.

    ve rayvo ray

    2.02 108 m/s1.81 108 m/s

    ve rayvo ray

    3.0 108 m/s1.486

    c ne ray

    3.0 108 m/s1.658

    cno ray

    c v

    sin 251.51

    sin 252.42

    sin 251.33

    n1 sin 1n2

    3.0 108 m/s0.79(3.0 108 m/s)

    3.0 108 m/s1.5 108 m/s

    3.0 108 m/s2.1 108 m/s

    c v

    3.0 108 m/s1.51

    3.0 108 m/s2.42

    3.0 108 m/s1.33

    c n

    c v

    3.0 108 m/s3.0 1022 Hz

    3.0 108 m/s2.0 109 Hz

    48 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    53/200

    Section 11.42. d 5.6 m

    x2 28 cm L 1.1 mm 2

    7.13 10 7 m713 nm

    3. 510 nmd 5.6 m L 1.1 m

    x

    x

    x 0.10 m x 10 cm

    4. m 3d 5.6 m L 1.1 m

    713 nm

    xm

    x3

    x3 0.42 m x3 42 cm

    Section 11.52. PD 3

    ng 1.52624 nm

    t

    t

    t 1.8 10 6 mt 1.8 m

    Section 11.62. m 22

    625 nm

    t

    t

    t 6.87 10 6 mt 6.9 m

    3. t 1.75 10 5 m625 nm

    2t m

    m

    m

    m 55.5m 55

    Section 11.81. w 5.5 10 6 m

    550 nm L 1.10 mm 2

    a) sin m

    sin 2

    sin 2 0.22 11.5

    b) xm L sin m xm (1.10 m)(0.2) xm 0.22 m xm 22 cm

    2. a) x

    x

    x 0.22 m x 22 cm

    2(5.50 10 7 m)(1.10 m)(5.5 10 6 m)

    2 Lw

    (2)(5.50 107

    m)5.5 10 6 m

    mw

    12

    2(1.75 10 5 m)(6.25 10 7 m)

    12

    2t

    12

    (22)(6.25 10 7 m)2

    m2

    (6.24 107

    m)(3)2(0.52)

    PD2(ng 1)

    (3)(7.13 10 7 m)(1.1 m)

    (5.6 106

    m)

    m Ld

    (5.10 10 7 m)(1.1 m)

    5.6 10 6 m

    Ld

    (5.6 10 6 m)(0.28 m)(2)(1.1 m)

    dxmmL

    Solutions to Ap ply in g the Con ce pts49

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    54/200

    b) sin 12

    sin 12

    sin 12

    0.1

    11.53. x

    x

    x 0.11 m x 11 cm

    6. R 1 10 7 radd 2.4 m

    a)

    1.97 10 7 m197 nm

    b) sin = L x

    L

    L 5000 m L 5 km

    Section 11.91. N 8500

    w 2.2 cm530 nm

    d

    d

    d 2.59 10 6 m

    sin m

    sin 1

    sin 1 0.2051 12

    sin m

    sin 2

    sin 2 0.4102 24

    sin m

    sin 3

    sin 3 0.6143 38

    2. a) m

    m

    m 4

    b) m

    m

    m 4.7m 4

    c) m

    m

    m 5.7m 5

    3. m 22 8.41o

    614 nm

    a) d

    d

    d 8.396 10 6 m

    d 8.40 m b) w 1.96 cm

    N

    N

    N 2334 slits

    1.96 10 2 m8.396 10 6 m

    wd

    (2)(6.14 10 7 m)sin 8.41

    msin m

    2.59 10 6 m4.50 10 7 m

    d

    2.59 10 6 m5.50 10 7 m

    d

    2.59 10 6 m6.50 10 7 m

    d

    3(5.30 10 7 m)2.59 10 6 m

    md

    2(5.30 10 7 m)2.59 10 6 m

    md

    5.30 10 7 m2.59 10 6 m

    md

    2.2 10 2 m

    8500

    w N

    12

    (1.0 10 3 m)

    sin(1 10 7 rad)

    (1 10 7 rad)(2.4 m)1.22

    Rd

    1.22

    (5.50 10 7 m)(1.10 m)(5.5 10 6 m)

    Lw

    5.50 10 7 m5.5 10 6 m

    w

    50 Solutions to Applying the Concepts

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    55/200

    Section 11.10

    1. 300 000 lines/m

    100 000 lines/m

    Therefore, 3000 lines/cm produces the best

    resolution.3 . sin Red

    sin Red

    sin Red 0.386Red 22.7

    sin Violet

    sin Violet

    sin Violet 0.211Violet 12.2

    sin Green

    sin Green

    sin Green 0.269Green 15.6

    This can be similarly proven for the next 3orders using the appropriate m .The sequence is violet, green, red.At the fourth order, green and red maxima areno longer visible.

    5. d 2.5 10 10 m12o

    m 2

    5.198 10 11 m52 pm

    6.

    sin

    sin

    sin 0.208168, 192

    (5.2 10 11 m)(2)2(2.5 10 10 m)

    m2d

    2d sinm

    2(2.5 10 10 m) sin 122

    2d sinm

    (1)(5.10 10 7 m)1.89 10 6 m

    md

    (1)(4.00 10 7 m)1.89 10 6 m

    md

    (1)(7.30 10 7 m)1.89 10 6 m

    md

    100 cm1 m

    20 000 lines20 cm

    100 cm1 m

    3000 lines1 cm

    Solutions to Ap ply in g the Con ce pts51

  • 8/2/2019 Physics Concepts and Connections, Book Two - Solutions Manual[1]

    56/200

    Section 12.21. T 12 000 K

    a) The maximum wavelength can be foundusing Wiens law:

    max

    max

    max 2.4 10 7 mThe peak wavelength of Rigel is2.4 10 7 m. It is in the ultraviolet spectrum.

    b) It would appear violet.c) No: the living cells would be damaged by

    the highly energetic UV photons.2. T 900 K

    a) The maximum wavelength can be foundusing Wiens law:

    max

    max

    max 3.2 10 6 mThe peak wavelength of the light is3.2 10 6 m.

    b) It would appear in the infrared spectrum.c) Since the peak is in infrared, more energy

    is required to produce the light in thevisual spectrum.

    Section 12.3

    1. V f 0eV hf 0 W 0Choosing two pairs of values from the tableand subtracting,

    (1.6 10 19 C)(0.95 V) h(7.7 1014 Hz) W 0(1.6 10 19 C)(0.7 V) h(7.2 1014 Hz) W 0

    (1.6 10 19 C)(0.25 V) h(0.5 1014 Hz)h 8 10 34 Js

    W 0 4.64 10 19 JW 0 2.9 eV

    2. a) Increasing the work function by 1.5 wouldcause a vertical shift of the line. Hence,potential would have to be greater, but thefrequencies would not change.

    b) The term he

    is constant and hence the

    slope would not change.3. 230 nm 2.3 10 7 m

    The energy can be found as follows:

    E W 0

    E

    4.64 10 19 J E 5.79 10 19 J

    Section 12.4

    2. E 85 eV, 214 nm 2.14 10 7 ma) Momentum of the original electron can be

    found using:

    p

    p

    p 4.53 10 26 Ns b) Momentum of the resultant electron can be

    found using:

    p

    p

    p 3.1 10 27 Nsc) The energy imparted can be found by:

    E E hc

    6.626 10 34 Js2.14 10 7 m

    h

    (85 eV)(1.6 10 19 C)3.0 108 m/s

    Ec

    (8 10 34 Js)(3.0 108 m/s)2.3 10 7 m

    hc

    3

    2

    1

    0 7 8

    V s

    t o p

    ( V )

    f 0 ( 10 14 Hz)

    V stop vs. f 0

    9 10 11 12 13

    W 0e

    he

    2.898 10 3

    900 K

    2.898 10 3

    T

    2.898 10 3