Top Banner
Physics 215 -- Fall 2014 Lecture 12-1 1 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion
24

Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Jan 02, 2016

Download

Documents

Sybil Ross
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 1

Welcome back to Physics 215

• Rolling

• Oscillations

• Simple harmonic motion

Page 2: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 2

Current homework assignment

• HW9:– Knight Textbook Ch.12: 74, 80, 82, 86– 2 exam-style web problems– Due Wednesday, Nov. 12th in recitation

Page 3: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 3

Rolling without slipping

translation rotation

vcm =

acm =

Page 4: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 4

Rolling without slipping

N

W

F

F = maCM

= I

Now aCM = R if no slipping

So, m aCM

and F =

Page 5: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 5

A ribbon is wound up on a spool. A person pulls the

ribbon as shown.

Will the spool move to the left, to the right, or will it not

move at all?

1. The spool will move to the left.

2. The spool will move to the right.

3. The spool will not move at all.

Page 6: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 6

1. The spool will move to the left.

2. The spool will move to the right.

3. The spool will not move at all.

A ribbon is wound up on a spool. A person pulls the

ribbon as shown.

Will the spool move to the left, to the right, or will it not move at

all?

Page 7: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 7

A ribbon is wound up on a spool. A person pulls the

ribbon as shown.

Will the spool move to the left, to the right, or will it not

move at all?

1. The spool will move to the left.

2. The spool will move to the right.

3. The spool will not move at all.

Page 8: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 8

Page 9: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 9

Page 10: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 10

Oscillations

• Restoring force leads to oscillations about stable equilibrium point

• Consider a mass on a spring, or a pendulum

• Oscillatory phenomena also in many other physical systems...

Page 11: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 11

Simple Harmonic Oscillator

x0

F=0FF F

Fx = k x

Newton’s 2nd Law for the block:

Spring constant

Differential equation for x(t)

Page 12: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 12

Simple Harmonic OscillatorDifferential equation for x(t):

Solution:

Page 13: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 13

Simple Harmonic Oscillator

f – frequency Number of oscillations

per unit time T – Period Time taken by one

full oscillation

Units:A - mT - sf - 1/s = Hz (Hertz)

- rad/s

amplitude angular frequency

initial phase

Page 14: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 14

Simple Harmonic OscillatorDEMO

• stronger spring (larger k) a faster oscillations (larger f)

• larger mass a slower oscillations

Page 15: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 15

Simple Harmonic OscillatorTotal Energy

E =

Page 16: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 16

Simple Harmonic Oscillator -- Summary

If F = k x then

Page 17: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 17

Importance of Simple Harmonic Oscillations• For all systems near stable equilibrium

– Fnet ~ - x where x is a measure of small deviations from the equilibrium

– All systems exhibit harmonic oscillations near the stable equilibria for small deviations

• Any oscillation can be represented as superposition (sum) of simple harmonic oscillations (via Fourier transformation)

• Many non-mechanical systems exhibit harmonic oscillations (e.g., electronics)

Page 18: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 18

(Gravitational) Pendulum Simple Pendulum – Point-like Object

DEMO

0 x

Fnet = mg sin

L

mFor small Fnet is in –x direction:

Fx = mg/L x

mg

T

Fnet

“Pointlike” – size ofthe object small compared to L

Page 19: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 19

Two pendula are created with the same length string. One pendulum has a bowling ball attached to the end, while the other has a billiard ball attached. The natural frequency of the billiard ball pendulum is:

1. greater

2. smaller

3. the same

as the natural frequency of the bowling ball pendulum.

Page 20: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 20

The bowling ball and billiard ball pendula from the previous slide are now adjusted so that the length of the string on the billiard ball pendulum is shorter than that on the bowling ball pendulum. The natural frequency of the billiard ball pendulum is:

1. greater

2. smaller

3. the same

as the natural frequency of the bowling ball pendulum.

Page 21: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 21

(Gravitational) Pendulum Physical Pendulum – Extended Object

DEMO

net = d mg sinFor small :

d m, I

mg

T

sin ≈

net = d mg

Page 22: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 22

A pendulum consists of a uniform disk with radius 10cm and mass 500g attached to a uniform rod with length 500mm and mass 270g. What is the period of its oscillations?

Page 23: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 23

Torsion Pendulum (Angular Simple Harmonic Oscillator)

=

Torsion constant

DEMO

Solution:

Page 24: Physics 215 -- Fall 2014 Lecture 12-11 Welcome back to Physics 215 Rolling Oscillations Simple harmonic motion.

Physics 215 -- Fall 2014 Lecture 12-1 24

Reading assignment

• Chapter 14 in textbook