Top Banner
Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative motion Galilean Transformation of coordinates 3: Two Dimensional Motion
18

Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Dec 22, 2015

Download

Documents

Milo Greer
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Physics 211

•Space - time & space-space diagrams•Kinetic Equations of Motion•Projectile motion•Uniform circular motion•Moving coordinate systems•Relative motion

•Galilean Transformation of coordinates

3: Two Dimensional Motion

Page 2: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

r(t1)

r(t2)

x

yspace-space diagram

Page 3: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

position vectors r t1 ; r t2

r t1 x t1 i y t1 j

r t2 x t

2 i y t2 j

d t r t2 r t1 x t

2 x t1 i y t

2 y t1 j

v t1

dr t1

dtdx t

1 dt

i dy t

1 dt

j

v t1

dr t1 dt

vx t1 i vy t1 j

Page 4: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

a t1

dv t1 dt

d2x t

1

dt2i d 2y t

1

dt 2j

a t1

dv t1

dtax t1 i ay t1 j

speed = v t v t dx t dt

2

dy t dt

2

acceleration = a t a t d2x t dt 2

2

d 2y t dt 2

2

average quantities = final value-initial valuetime taken

Page 5: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

If a is constant ax and ay being constant

then we can use Kinetic Equations of Motion

d t 12

at2 v 0 t

v t at v 0

•acceleration due force of gravity near the •earths surface is approximately constant •Neglect air resistance•Neglect rotation of earth

Then we can use kinetic equations of motion for projectile motion

Page 7: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

a g 9. 81 j ms 2

r 0 0

r t 12gt 2

j v x 0 t i v y 0 t j

v x 0 t i v y 0 t 12gt 2

j

x t vx 0 t

y t vy 0 t 12gt 2

y

x

Horizontal and vertical positions

Page 8: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

velocity in x directionxt =

dx

dt v

x0

velocity in y direction y t = dy

dt v y 0 9 .81 t

when projectile reaches highest point vy(t)=0 v y 0 9 .81 t 0

thigh

v

y0

9 . 81

x thigh

vx

0 v y0

9. 81;

y thigh

v y 0 2

9. 81-

12

9.81v y 0 9 .81

2

=12

v y 0 2

9 . 81=

v y 0 2

19 . 62

projectile hits ground when y t 0

t vy

0 1

29. 81 t

0

t 0 or t 2 vy0

9 .81 x

max

2 vx

0 v y0

9 . 81

v

v

Page 9: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

trajectory angle

tan slope of tangent to path at t0

slope of velocity vector at t 0

v

y 0 vx 0

dy

dtdx

dt

dy

dx

tan 1v

y 0 vx 0

y

x

Page 10: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

initial speed = v 0 vx 0 2 vy 0 2

vx 0 v 0 cos

vy 0 v 0 sin

x thigh

v 0 2sin cos g

v 0 2sin 22g

y thigh v 0 2sin 2

2g

and

xrange

2vx 0 vy 0

9.81

2v 0 2 sin cos g

v 0 2 sin 2

g

Maximun height and range can be expressed in terms

of v 0 and

Page 11: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

y

x

v(0)

v 0 2 sin 22g

v 0 2 sin (2

g

Page 12: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Uniform circular motion

rv

v t v = constant ; r t r constant

position vector r t = x t , y t r cos t , r sin t r cos t , r sin t rcos t , r sin t

t t d t dt

constant

is angular speed

angular acceleration d t dt

0

distance travelled s = r r t

linear speed = v =dsdt

r

Page 13: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

r t rcos t i r sin t j r ˆ r t

v t dr t dt

r sint i r cost j

r sint i cos t j r ˆ v t

a t dv t dt

r 2 cost i 2 sint j r 2 cost i sin t j r 2 ˆ r t

a t r 2 ˆ r t v 2

rˆ r t

a t v 2

r constant

Page 14: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Relative motion

observer 1

observer 2

u(t)=u=constant

r2(t)

r1(t)

r(t)=ut

Page 15: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

r1t position vector of object in coordinate system

r2t position vector of object in coordinate system

r1 t r2 t ut

r2t r

1t u t

v2t v

1t u

a2t a

1t

Galilean Transformation 1 2

1

2

Page 16: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

Nonuniform curvilinear motion

ˆ v t

ˆ c t

Page 17: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

r t r t cos t i sin t j

v t dr t dt

v t ˆ v t

find unit vector, ˆ c t perpendicular to ˆ v t

points to center of curvature of path at this point

ˆ v t ˆ v t 1 d

dtˆ v t ˆ v t 0

d ˆ v t dt

ˆ v t ˆ v t dˆ v t dt

0

ˆ v t d ˆ v t dt

0 thus ˆ c t

d ˆ v t dt

d ˆ v t dt

Page 18: Physics 211 Space - time & space-space diagrams Kinetic Equations of Motion Projectile motion Uniform circular motion Moving coordinate systems Relative.

a t dv t dt

dv t dt

ˆ v t v t dˆ v t dt

a t at t ̂ v t +ar t ̂ c t

ar t v t 2

r t radial (centripetal) acceleration

at t r t t tangential acceleration

r t distance to center of curvature