Top Banner
Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Goals: Assignment: Assignment: Read through Chapter 10 MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation principles In problems with 1D and 2D Collisions In problems having an impulse (Force vs. time) Chapter 8: Use models with free fall
30

Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Dec 17, 2015

Download

Documents

Gabriel Ward
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 1

Lecture 11Goals:Goals:

Assignment:Assignment:

Read through Chapter 10 MP HW5, due Wednesday 3/3

• Chapter 9: Momentum & ImpulseChapter 9: Momentum & Impulse Understand what momentum is and how it relates to forces Employ momentum conservation principles In problems with 1D and 2D Collisions In problems having an impulse (Force vs. time)

Chapter 8: Use models with free fall

Page 2: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 2

Problem 7.34 Hint

Suggested Steps Two independent free body diagrams are necessary Draw in the forces on the top and bottom blocks Top Block

Forces:  1. normal to bottom block 2. weight 3. rope tension and 4. friction with bottom block (model with sliding)

Bottom Block Forces: 

1. normal to bottom surface 2. normal to top block interface3. rope tension (to the left)4. weight (2 kg)

5. friction with top block 6. friction with surface7. 20 N

Use Newton's 3rd Law to deal with the force pairs (horizontal & vertical) between the top and bottom block.

Page 3: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 3

Locomotion: how fast can a biped walk?

Page 4: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 4

How fast can a biped walk?What about weight?

(a) A heavier person of equal height and proportions can walk faster than a lighter person

(b) A lighter person of equal height and proportions can walk faster than a heavier person

(c) To first order, size doesn’t matter

Page 5: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 5

How fast can a biped walk?What about height?

(a) A taller person of equal weight and proportions can walk faster than a shorter person

(b) A shorter person of equal weight and proportions can walk faster than a taller person

(c) To first order, height doesn’t matter

Page 6: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 6

How fast can a biped walk?What can we say about the walker’s

acceleration if there is UCM (a smooth walker) ?

Acceleration is radial !

So where does it, ar, come from?

(i.e., what external forces are on the walker?)

1. Weight of walker, downwards

2. Friction with the ground, sideways

Page 7: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 7

Orbiting satellites vT = (gr)½

Page 8: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 8

Geostationary orbit

Page 9: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 9

Geostationary orbit The radius of the Earth is ~6000 km but at 36000 km you are

~42000 km from the center of the earth.

Fgravity is proportional to r-2 and so little g is now ~10 m/s2 / 50 vT = (0.20 * 42000000)½ m/s = 3000 m/s

At 3000 m/s, period T = 2 r / vT = 2 42000000 / 3000 sec =

= 90000 sec = 90000 s/ 3600 s/hr = 24 hrs

Orbit affected by the moon and also the Earth’s mass is inhomogeneous (not perfectly geostationary)

Great for communication satellites

(1st pointed out by Arthur C. Clarke)

Page 10: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 10

Impulse & Linear Momentum

Transition from forces to conservation laws

Newton’s Laws Conservation Laws

Conservation Laws Newton’s Laws

They are different faces of the same physics

NOTE: We have studied “impulse” and “momentum” but we have not explicitly named them as such

Conservation of momentum is far more general than

conservation of mechanical energy

Page 11: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 11

Collisions are a fact of life

Page 12: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 12

Forces vs time (and space, Ch. 10)

Underlying any “new” concept in Chapter 9 is

(1) A net force changes velocity (either magnitude or direction)

(2) For any action there is an equal and opposite reaction

If we emphasize Newton’s 3rd Law and look at the changes with time then this leads to the Conservation of Momentum Principle

Page 13: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 13

Example 1

A 2 kg block, initially at rest on frictionless horizontal surface, is acted on by a 10 N horizontal force for 2 seconds (in 1D).

What is the final velocity? F is to the positive & F = ma thus a = F/m = 5 m/s2

v = v0 + a t = 0 m/s + 2 x 5 m/s = 10 m/s (+ direction)

Notice: v - v0 = a t m (v - v0) = ma t m v = F t

If the mass had been 4 kg … now what final velocity?

F

- +

F (

N)

10

0 2time (s)

Page 14: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 14

Twice the mass

Same force

Same time

Half the acceleration (a = F / m’)

Half the velocity ! ( 5 m/s )

F (

N)

10

0 2

Time (sec)

F Before

Page 15: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 15

Example 1

Notice that the final velocity in this case is inversely proportional to the mass (i.e., if thrice the mass….one-third the velocity).

Here, mass times the velocity always gives the same value. (Always 20 kg m/s.)

F (

N)

10

0 2

Time (sec)

Area under curve is still the same !

Force x change in time = mass x change in velocity

Page 16: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 16

Example 1

There many situations in which the sum of the products “mass times velocity” is constant over time

To each product we assign the name, “momentum” and associate it with a conservation law.

(Units: kg m/s or N s) A force applied for a certain period of time can be

graphed and the area under the curve is the “impulse”

F (

N)

10

0 2

Time (sec)

Area under curve : “impulse”With: m v = Favg t

Page 17: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 17

Force curves are usually a bit different in the real world

Page 18: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 18

Example 1 with Action-Reaction Now the 10 N force from before is applied by person

A on person B while standing on a frictionless surface For the force of A on B there is an equal and opposite

force of B on A

F (

N)

10

0 2Time (sec)

0

-10

A on B

B on A

MA x VA = Area of top curve

MB x VB = Area of bottom curve

Area (top) + Area (bottom) = 0

Page 19: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 19

Example 1 with Action-ReactionMA VA + MB VB = 0

MA [VA(final) - VA(initial)] + MB [VB(final) - VB(initial)] = 0

Rearranging terms

MAVA(final) +MB VB(final) =

MAVA(initial) +MB VB(initial)

which is constant regardless of M or V

(Remember: frictionless surface)

Page 20: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 20

Example 1 with Action-Reaction

MAVA(final) +MB VB(final) = MAVA(initial) +MB VB(initial)

which is constant regardless of M or V

Define MV to be the “momentum” and this

is conserved in a system if and only if the system is not acted on by a net external force (choosing the system is key)

Conservation of momentum is a special case of applying Newton’s Laws

Page 21: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 21

Applications of Momentum Conservation

234Th238U Alpha Decay

4Hev1v2

Explosions

Radioactive decay:

Collisions

Page 22: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 22

Impulse & Linear Momentum

Newton’s 2nd Law: FF = maa

)v(v

mdtd

dtd

m

This is the most general statement of Newton’s 2nd Law

pp ≡ mvv (pp is a vector since vv is a vector)

So px = mvx and so on (y and z directions)

Definition: For a single particle, the momentum p is defined as:

dt

dp

F

Page 23: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 23

Momentum Conservation

Momentum conservation (recasts Newton’s 2nd Law when F = 0) is an important principle

It is a vector expression (Px, Py and Pz) .

And applies to any situation in which there is NO net external force applied (in terms of the x, y & z axes).

ddtP 0

dtd

EXT

PF 0EXTF

Page 24: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 24

Momentum Conservation

Many problems can be addressed through momentum conservation even if other physical quantities (e.g. mechanical energy) are not conserved

Momentum is a vector quantity and we can independently assess its conservation in the x, y and z directions

(e.g., net forces in the z direction do not affect the momentum of the x & y directions)

Page 25: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 25

Exercise 1 Momentum is a Vector (!) quantity

A. Yes

B. No

C. Yes & No

D. Too little information given

A block slides down a frictionless ramp and then falls and lands in a cart which then rolls horizontally without friction

In regards to the block landing in the cart is momentum conserved?

Page 26: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 26

Exercise 1 Momentum is a Vector (!) quantity

Let a 2 kg block start at rest on a 30° incline and slide vertically a distance 5.0 m and fall a distance 7.5 m into the 10 kg cart

What is the final velocity of the cart?

x-direction: No net force so Px is conserved. y-direction: Net force, interaction with the ground so

depending on the system (i.e., do you include the Earth?)

Py is not conserved (system is block and cart only)

5.0 m

30°

7.5 m

10 kg

2 kg

Page 27: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 27

Inelastic collision in 1-D: Example 2

A block of mass M is initially at rest on a frictionless horizontal surface. A bullet of mass m is fired at the block with a muzzle velocity (speed) v. The bullet lodges in the block, and the block ends up with a speed V. In terms of m, M, and V :

What is the momentum of the bullet with speed v ?

vV

before after

x

Page 28: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 28

Inelastic collision in 1-D: Example 2

What is the momentum of the bullet with speed v ?

Key question: Is x-momentum conserved ?

vV

before after

x

aaaa

vm

V)( 0 M v Mmm BeforeBefore AfterAfter

Page 29: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 29

Example 2Inelastic Collision in 1-D with numbers

ice

(no friction)

Do not try this at home!

Before: Before: A 4000 kg bus, twice the mass of the car, moving A 4000 kg bus, twice the mass of the car, moving at 30 m/s impacts the car at rest. at 30 m/s impacts the car at rest.

What is the final speed after impact if they move together?What is the final speed after impact if they move together?

Page 30: Physics 207: Lecture 11, Pg 1 Lecture 11 Goals: Assignment: l Read through Chapter 10 l MP HW5, due Wednesday 3/3 Chapter 9: Momentum & Impulse Chapter.

Physics 207: Lecture 11, Pg 30

Exercise 2Momentum Conservation

A. Box 1

B. Box 2

C. same

Two balls of equal mass are thrown horizontally with the same initial velocity. They hit identical stationary boxes resting on a frictionless horizontal surface.

The ball hitting box 1 bounces elastically back, while the ball hitting box 2 sticks.

Which box ends up moving fastest ?

1 2