Top Banner
PHY 341/641 Thermodynamics and Statistical Mechanics MWF: Online at 12 PM & FTF at 2 PM Discussion for Lecture 14: Useful thermodynamic energy functions Reading: Chapters 5.1 1. Internal energy U 2. Enthalpy H 3. Helmholtz free energy F 4. Gibbs free energy G Record!!! 2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 1
15

PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

Jan 12, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

PHY 341/641 Thermodynamics and Statistical Mechanics

MWF: Online at 12 PM & FTF at 2 PM

Discussion for Lecture 14:Useful thermodynamic energy functions

Reading: Chapters 5.1

1. Internal energy U

2. Enthalpy H

3. Helmholtz free energy F

4. Gibbs free energy G

Record!!!

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 1

Page 2: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 2

Page 3: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 3

Reminder – lecture notes are available on the class webpagehttp://users.wfu.edu/natalie/s21phy341/lecturenote/

Page 4: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 4

Your questions –

From Kristen – 1. For the heat that is free from the environment, as in Helmholtz free energy, if there is indefinite heat, will it absorb all of the energy it needs from this or will we still have to input some work? 2. Could we review a bit about the reaction for the battery as discussed on page 154, I just need a bit of clarification.

From Parker -- We will invoke the Legendre transformation mathematically for changes in V to P and TS from S to T in this class?

From Michael -- Can you further explain why fuel cell engines are not more abundant in production given their high efficiency?

From Rich – In the Gibbs Free energy equation, how can the change in entropy be negative without violating the second law of thermodynamics?

From Noah -- Can you explain more why a problem would or would not care about the +PV term? E.g. why does the example of electrolysis use Gibbs free energy instead of Helmholtz?

Page 5: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 5

Internal energy U

First law of thermodynamics

dU Q WdU TdS PdV

Q TdS W PdV

= += −

⇔ ⇔ −

Note that this analysis implies that we should consider the internal energy( , )

V S

V S

U

U U S

P

V

dU

P

U UdS dV TdS dVS V

UTS V

∂ ∂+ = −

∂ ∂

=

=

∂⇒ =

∂ = − ∂

Page 6: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 6

Mathematical consistencySuppose ( , ) such that ( , ) ( , )

where ( , ) and ( , )

Check that second derivatives arexy

f x y df a x y dx b x y dy

a x y b x yf fx y∂ ∂∂

= +

= = ∂

2 2

consistent --

yy x x

f f f a by x y x x y y x

∂ ∂ ∂ ∂ ∂ ∂≡

∂ ∂ ∂ ∂ ∂

= ⇒ = ∂ ∂ ∂

For example: ( , )

Maxwell's relations show that

V S

V S

S V

U U SU UdS dV TdS PdVS VU

U

UTS V

TV

V

d

P

PS

=

=

=⇒ −

∂ ∂+ =

= −

−∂ ∂

∂=

∂ ∂

∂ ∂

∂∂

Maxwell’s relations

Page 7: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 7

Generalizing U to allow for variable N --

,

0

A

re

n

thes

e equ

Suppose and are constant; 0 a d 0

Suppose and ar

ation internally consisten

e constant; 0 and 0

?

t

0

0 0

U V

dNU V dU dV

dNS

T NS V dS dV

d

d

d

U

U

dN

T S PdV

TdS

µ

µµ

µ

µ

= =⇒ =

∂ = − ∂ = =

= − +

− +

⇒ = −

=

+

,S V

UN

Page 8: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 8

Summary of results for internal energy and entropy --

( , , )

, 1( , )

dNPS S U V N dS dU dV dN

U

T T

U S V N dU Td

T

S PdV µµ

= = + −

= = − +

, , ,

Some first derivative relationships --

V N S N V S

PU U UTS V N

µ∂ ∂ ∂= = = − ∂ ∂ ∂

, , , , , ,

Some second derivative relationships (thanks to Maxwell) --

S N V N S V V N S V S N

T P T PV S N S N V

µ µ∂ ∂ ∂ ∂ ∂ ∂ = − = = −

∂∂

∂ ∂ ∂ ∂

Page 9: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 9

What can we do to rationalize these interdependencies?

Define new function

( , )

For ,

y u

w ww u y dw du dyu y

w z ux dw dz udx xdu udx vdy udx xdudw xdu vdy

∂ ∂ ⇒ = + ∂ ∂ = − = − − = + − −

= − +

General notions of mathematical transformations for continuous functions of several variables and Legendre transforms --

and Let

),(

xy

xy

yzv

xzu

dyyzdx

xzdzyxz

∂∂

∂∂

∂∂

+

∂∂

=⇒

y u x

w w zx vu y y

∂ ∂ ∂ ⇒ = − = = ∂ ∂ ∂

Consider:

dz udx vdy= +

Page 10: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 10

Desired thermodynamic functions --

1Entropy

G

( , , )

Internal energy ( , , )

, , )

Enthalpy Helmholtz free energy

( ( , , )

U dNPS S U V N dS dU dV dN

U S V N dU TdS PdV

S P NHF F T V

TH

N

T T

µµ

=

= = + −

=

= − +

=ibbs free energy ( , , )G G T P N=

(

Using the Legendre transformation method:( , , )

, , )

( , , )

dNF T V N U ST SdT PdV dNH S P N U PV dH TdS

NG T P N F PV dG SdT VdPd

d

VdPF

µµµ

+= − = − − += + = − +

+

+

= = +

Page 11: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 11

1Entropy

n

( , , )

Internal energy ( , , )

Enthalpy

, , ) Helmholtz f

ree

(e

U dNPS S U V N dS dU dV d

d

N

P

T T T

U S V N dU TdS dV

S P N H Td PH H dNS Vd

µµ

µ=

= = −

+

+

= = +

= +ergy ( , , )

Gibbs free energy ( , , ) SdT PdV dN

dG SdT VdP dNF F T V N dFG G T P N

µµ

= − − += + +

== −

Summary of thermodynamic functions

Various first derivative relationships

, , , ,

, , , ,

,

Some first derivative relationships --

= =

= =

=

V N P N S N T N

V N P N S N T N

V S

U H U

V

FTS S V V

F G H GST T P P

UN

P

HN

µ

= − −

− =

∂ ∂

=

∂ ∂=

∂ ∂ ∂ ∂

∂ ∂ ∂−

∂ ∂ ∂ ∂

∂ ∂∂ ∂

=, , ,

= = P S V T T P

F GN N

∂ ∂

∂ ∂

Page 12: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 12

Which energy to use?Choose the one that most easily describes the circumstances of the systemAt constant T and P, the Gibbs free energy is often a good choice

Gibbs free energy ( , , )Note also that

dG SdT VdPS

G Gd

T P N dNG H ST dG H SdT Td

µ= = − + += − = − −

2 2 2 2 2 2

2 2 2

2 2 2

H H O O H O H O

H H O

2

O

2

O

H O

2

H

Example -- consider the following reaction at fixed T (298 K) and P (1 bar)1H O H O2

1In this case, 2

12

f i

f i

dN dN dN

dN dN dN

dN

G G G

dN

G G G

µ µ µ

µ µ µ

→ +

= + −

= =

= +

∆ =

∆ =

Page 13: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 13

Table of energies from your textbookfor T=298 K and

P=1 bar

Page 14: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 14

2 2 2 2 2 2

2 2 2

2 2 2

H H O O H O H O

H H O

2

O

2

O

H O

2

H

Example -- consider the following reaction at fixed T (298 K) and P (1 bar)1H O H O2

1In this case, 2

12

f i

f i

dN dN dN

dN dN dN

dN

G G G

dN

G G G

µ µ µ

µ µ µ

→ +

= + −

= =

= +

∆ =

∆ =

237.13 kJ/mole

Page 15: PHY 341/641 Thermodynamics and Statistical Mechanics MWF ...

2/26/2021 PHY 341/641 Spring 2021 -- Lecture 14 15

Electrochemical reactions4

2 4

4

42

2

4 4

42

2

2 4

electrode: Pb+HSO PbSO H +2e electrode: PbO HSO 3H +2e PbSO 2H O

in solution: 2SO + 2H 2HSOnet: Pb+PbO 4H +2SO 2PbSO 2H O

− −

+ −

+

+ −

+ −

− → +

+ + + → +

+ → +

19 23

19 23

394 / 21.60 10 6.02 10

394000 2 Volts

For each mole

2 1.60 1

:

0 6.02 10

avo

avo

G kJ mol eNe C N−

∆ = − = −

= × = ×

= =× × × ×

V

V