Top Banner

of 36

Phuong VTMinh_Kahler_manifolds

Mar 10, 2016

Download

Documents

Toank50

Kahler manifolds
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • B GIO DC V O TO

    TRNG I HC S PHM H NI

    V Th Minh Phng

    A TP KAHLER

    KHA LUN TT NGHIP I HC

    Chuyn ngnh: Hnh hc v Tp

    Gio vin hng dn: PGS.TSKH. S c Quang

    H NI, 2015

  • Kha lun tt nghip a tp Kahler

    LI CM N

    Kha lun c hon thnh di s hng dn, ch bo tn tnh ca PGS.TSKH.

    S c Quang. Nhn dp ny ti xin by t lng bit n su sc n ngi Thy tn

    tnh gip ti. Ti cng xin chn thnh cm n cc Thy, C phn bin thnh thi

    gian c v gp nhng kin qu bu cho kha lun ny.

    Cui cng ti xin chn thnh cm n cc Thy, C trong Khoa Ton - Tin Trng

    i hc S Phm H Ni, c bit l cc Thy, C trong B mn Hnh hc, cc bn

    sinh vin v ngi thn gip ti sut nhng nm thng hc tp v nghin cu ti

    trng.

    H Ni, 01 thng 05 nm 2015

    Tc gi kha lun

    V Th Minh Phng

    V Th Minh Phng 1

  • LI M U

    a tp Kahler l mt a tp m trn c trang b ba cu trc tng thch vi

    nhau, l cu trc Riemannian, cu trc Hermit v cu trc symplectic. Hnh hc

    nghin cu cc tnh cht xung quanh a tp Kahler c gi l hnh hc Kahler,

    c pht trin mnh m t nhng nm 70 ca th k trc bi nhiu nh ton hc nh

    Alan Weinstein, Mikhail. L Gromov, Clifford Taube.... Hin nay a tp Kaler ang l

    i c nghin cu trong nhiu ngnh ton hc.

    Mc ch ca chng ti trong kha lun ny l i xy dng khi nim, a ra mt

    s v d in hnh v a tp Kahler v cui cng l chng minh mt s tnh cht c

    trng ca a tp Kahler.

    V thi gian v kin thc c hn, nn kha lun khng th trnh khi nhng thiu

    st. Chng ti rt mong nhn c nhng ng gp qu bu t pha bn c.

    2

  • Mc lc

    LI CM N 1

    LI M U 2

    MC LC 3

    1 Cu trc phc v cu trc Hermit 4

    1.1 Cu trc hu phc trn khng gian vc t thc . . . . . . . . . . . . . . 4

    1.2 i s ngoi trn khng gian vc t thc . . . . . . . . . . . . . . . . . . 6

    1.3 Dng vi phn trn Cn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    2 Php tnh vi phn trn a tp phc 15

    2.1 Cu trc hu phc trn a tp . . . . . . . . . . . . . . . . . . . . . . . 15

    2.2 Dng vi phn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

    3 a tp Kahler 21

    3.1 Metric Kahler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    3.2 c trng ca a tp Kahler . . . . . . . . . . . . . . . . . . . . . . . . . 26

    3.2.1 Phn th vc t Hermit v lin thng Chern . . . . . . . . . . . . 27

    3.2.2 Cc tnh cht c trng ca a tp Kahler . . . . . . . . . . . . . 31

    TI LIU THAM KHO 35

    3

  • Chng 1

    Cu trc phc v cu trc Hermit

    Trong chng ny, chng ti trnh by s lc cc khi nim v tnh cht lin quan n

    cu trc phc v cu trc Hermit. Cc chng minh chi tit c th xem trong [2].

    1.1 Cu trc hu phc trn khng gian vc t thc

    Cho V l mt khng gian vc t thc hu hn chiu v cho , l mt tch v hngtrn V .

    nh ngha 1.1.1 (Cu trc hu phc trn khng gian vc t). Mt t ng cu

    I : V V tha mn I2 = Id c gi l mt cu trc hu phc trn V .

    Ta thy, nu V l C-khng gian vc t th trn V c cu trc hu phc t nhin xcnh bi:

    I :V Vv 7 i.v.

    B 1.1.2. Nu I l mt cu trc hu phc trn khng gian vc t thc V th V c

    cu trc C-khng gian vc t cm sinh t I.

    Tht vy, ta ch vic nh ngha php nhn vc t vi s phc bi: (a + bi).v =

    a.v + b.Iv. Do , nu V chp nhn cu trc hu phc th V c s chiu thc chn.

    nh ngha 1.1.3. Ta nh ngha VC := V R C.

    4

  • Kha lun tt nghip a tp Kahler

    Khi V c coi nh khng gian con ca VC bi ng nht v vi v 1. Php tonlin hp trn VC cho bi:

    V R C V R C

    v 7 v ,

    Tc l v 7 v . D thy ngay V l khng gian con bt bin qua php lin hp.Khi nu I l cu trc hu phc trn V th I c m rng thnh t ng cu trn

    VC (vn k hiu l I) bi I(v z) = I(v) z. Ta d dng nhn thy rng I c ng haigi tr ring l i.

    Trong phn tip theo ca kha lun, nu khng c g ch c bit th thay v vit

    I(v) ta s vit n gin l Iv, vi I l t ng cu v v l vc t.

    nh ngha 1.1.4. Ta t:

    V 1,0 = {v VC | Iv = i.v},

    V 0,1 = {v VC | Iv = i.v},

    tng ng l cc khng gian con ring ng vi tr ring i,i ca I.

    Ta d thy rng VC = V1,0 V 0,1. Hn na c th chng minh c:

    V 1,0 = {12

    (v iIv) | v V },

    V 0,1 = {12

    (v + iIv) | v V },

    v php lin hp phc trn VC cm sinh mt R-ng cu V 1,0 = V 0,1.

    B 1.1.5. Cho V l khng gian vc t thc vi cu trc hu phc I. Khi khng gian

    i ngu V = HomR(V,R) c cu trc hu phc cm sinh t I cho bi: I(f)(v) = f(Iv).Hn na ta c (V )C = HomR(V,C) = (VC) c cm sinh bi:

    (V )1,0 = {f HomR(V,C) | f(Iv) = if(v)} = (V 1,0)

    (V )0,1 = {f HomR(V,C) | f(Iv) = if(v)} = (V 0,1)

    V Th Minh Phng 5

  • Kha lun tt nghip a tp Kahler

    1.2 i s ngoi trn khng gian vc t thc

    Gi s rng V l khng gian vc t thc chiu d. Ta t:

    V =

    dk=0

    kV,

    VC =

    dk=0

    kVC.

    nh ngha 1.2.1. Cho I l cu trc hu phc trn V . Vi VC = V1,0 V 0,1 ta t:p,q

    V =p

    V 1,0

    C

    qV 0,1.

    Khi ta c mnh sau.

    Mnh 1.2.2. Vi cc k hiu nh trn, ta c

    (i)p,qV l khng gian con ca p+q VC,

    (ii)k VC =

    p+q=k

    p,q V,(iii) php lin hp phc trn

    VC xc nh mt ng cu:p,qV =

    q,pV,

    (iv) ta c nh x: p,q:V

    r,s p+r,q+sV(, ) 7 .

    Gi s rng khng gian vc t V c chiu thc d. Khi ta c cc php chiu chnh

    tc: k : VC k VC,p,q : VC p,q V.nh ngha 1.2.3. Cu trc hu phc I trn V c gi l tng thch vi tch v

    hng , nu Iu, Iv = u, v. Ngha l I O(V, , ).

    V Th Minh Phng 6

  • Kha lun tt nghip a tp Kahler

    nh ngha 1.2.4. Cho (V, , ) l khng gian vc t Euclide hu hn chiu, cho I lcu trc hu phc tng thch vi tch v hng , . Khi dng c bn lin kt vi(V, , ) c nh ngha bi:

    (u, v) = u, Iv = Iu, v. (V I2 = Id).

    Ch rng ta c th m rng tch v hng , ti dng Hermit xc nh dng , C trn VC bi:

    u , v = u, v.

    B 1.2.5. Cho V l khng gian Euclide, I l cu trc hu phc tng thch th dng

    c bn l dng thc c kiu (1, 1), ngha l 2 V 1,1 V .Chng minh. Trc tin ta c:

    (u, v) = u, Iv = Iu, I2v = Iu, v = v, Iu = (v, u).

    Vy nn 2 V .Ta s chng minh trit tiu trn V 1,0 V 1,0 v V 0,1 V 0,1. Tht vy, ta c:

    (u iIu, v iIv) = I(u iIu), v iIvC = Iu+ iu, v iIvC= Iu, v+ iu, v i.u, v u, Iv = 0.

    Tng t, ta cng c (u+ iIu, v + iIv) = 0. Vy nn 1,1 V .Hn th na, ta c th chng minh c rng nu (V, , ) khng gian Euclide v I

    l cu trc hu phc tng thch vi tch v hng ca n th dng( , ) = , i lmt dng Hermit xc nh dng trn (V, I). Ta c mnh sau:

    Mnh 1.2.6. Cho (V, , , I) nh trn. Khi qua ng cu chnh tc (V, I) '(V 1,0, i) cho bi v 1

    2(v iIv), ta c:

    1

    2(u, v) = u, vC |V 1,0

    Chng minh. Ta c:

    u iIu, v iIvC = u, v+ i.u, Iv i.Iu, v+ Iu, Iv = 2(u, v)

    Vy ta c iu phi chng minh.

    V Th Minh Phng 7

  • Kha lun tt nghip a tp Kahler

    Nhn xt 1.2.7. Gi s {z1, z2, ..., zn} l C- c s ca V 1,0 v gi s zi = 12

    (xi iIxi), xi V . Th th {x1 , y1 = Ix1, ..., xn, yn = Ixn} l R- c s ca V v {x1, x2, ..., xn}l C- c s ca (V, I).

    Gi s dng Hermit , C trn V 0,1 c ma trn 12(hij) ng vi c s zi th ta c:

    i

    aizi,j

    bjzjC = 12

    hijaibj.

    Theo Mnh 1.2.6, ta c hij = (xi, xj). Do (, ) l Hermit trn (V, I) nn ta cng c:

    (xi, yj) = i (xi, xj) = ihij, (yi, yj) = hij.

    Do ( , ) = , i nn = Im( , ) v , = Re( , ). Vy ta c:

    (xi, xj) = (yi, yj) = Im(hij),(xi, yj) = (xi, Ixj) = Im(xi, Ixj) = xi, xj = Re(hij),

    xi, xj = yi, yj = Re(hij),xi, yj = xi, Ixj = (xi, xj) = Im(hij).

    Do :

    = i

  • Kha lun tt nghip a tp Kahler

    x1

    x

    , ...,

    xn

    x

    ,

    y1

    x

    , ...,

    yn

    x

    .

    , {z1 = x1 + iy1, ..., zn = xn + iyn} l C-c s ca Cn.Trn mi khng gian vc t TxU , ta nh ngha cu trc hu phc I bi:

    I : TxU TxU

    xi

    x

    7 yi

    x

    yi

    x

    7 xi

    x

    .

    Gi {dx1, ..., dxn, dy1, ..., dyn} l c s i ngu (thc) ca T xU . khi , cu trc huphc cm sinh t I trn T xU cho bi:

    I(dxi)

    (

    xj

    x

    )= dxi

    (I

    (

    xj

    x

    ))= dxi

    (

    yj

    x

    )= 0

    I(dxi)

    (

    yj

    x

    )= dxi

    (I

    (

    yj

    x

    ))= dxi

    ( xj

    x

    )= ij

    Do :

    I(dxi) = dyi, I(dyi) = dxiTa c mnh sau y:

    Mnh 1.3.1. TCU := TU R C c phn tch thnh tng trc tip cc phn thvc t TCU = T

    1,0 T 0,1U tha mn I |T 1,0 U = i.Id, I |T 0,1 U = i.Id. Cc phn thvc t T 1,0U, T 0,1U c tm thng ha bi cc nht ct:

    zi:=

    1

    2

    (

    xi i

    yi

    )v

    zi:=

    1

    2

    (

    xi+ i

    yi

    )Tng t i vi phn th: T CU := T

    U C ta cng c phn tch :

    T CU = (TU)1,0 (T U)0,1.

    Trong (T U)1,0, (T U)0,1 c tm thng ha bi:

    dzi = dxi + idyi, dzi = dxi idyi.

    Nhn xt 1.3.2. Cho f : U V l nh x nhn. Khi (df)x : TxU : Tf(x)Vc m rng phc bi:

    V Th Minh Phng 9

  • Kha lun tt nghip a tp Kahler

    (df)x : TxU C Tf(x)V Cv 7 (df)x(v)

    Khi (df)x l C -tuyn tnh.

    Mnh 1.3.3. Cho f : U V l nh x chnh hnh gia hai tp m U Cm vV Cn. Khi m rng C -tuyn tnh ca nh x vi phn df : TxU Tf(x)V thamn:

    df(T 1,0x U) T 1,0f(x)V v df(T 0,1x U) T 0,1f(x)V

    Chng minh. Gi s trn U c ta phc zi = xi + i.yi v trn V c ta phc:

    wi = ui + ivi. Gi s thm rng f = (f1, f2, ..., fn) v fi = ai + i.bi Ta c

    dfx

    (

    zi

    x

    )=

    1

    2dfx

    (

    xi

    x

    i. yi

    x

    )=

    1

    2dfx

    (

    xi

    x

    ) i

    2dfx

    (

    yi

    x

    )=

    1

    2

    j

    ajxi

    x

    .

    uj

    f(x)

    +1

    2

    j

    bjxi

    x

    .

    vj

    f(x)

    i2

    j

    ajyi

    x

    .

    uj

    f(x)

    i2

    bjyi

    x

    .

    vj

    f(x)

    .

    V f l chnh hnh nn ta cajxi

    x

    =bjyi

    x

    ,ajyi

    x

    = bjxi

    x

    . Do

    dfx

    (

    zi

    x

    )=

    1

    2

    j

    (ajxi

    x

    i.ajyi

    x

    ).

    (

    uj

    f(x)

    i. vj

    f(x)

    ).

    Vy ta c df(T 1,0x U) T 1,0f(x)V .Chng minh tng t i vi khng nh cn l

    nh ngha 1.3.4. Cho U Cn l tp m. Ta nh ngha:p,qU := p(T U)1,0q(T U)0,1v gi AkC(U) v Ap,q(U) tng ng l khng gian cc nht ct ca cc phn th

    kCU :=kT CU v p,qU.

    Khi ta c phn tch sau y:

    V Th Minh Phng 10

  • Kha lun tt nghip a tp Kahler

    kCU =

    p+q=k

    p,qU, AkC(U) = p+q=k

    Ap,q(U).

    Ta nh ngha ton t chiup,q : kC(U) p,qU cho bi nu w =

    k

    p+q=k

    dzi1 ... dzip dzj1 ... dzjq thp,q w =

    p+q=k

    dzi1 ... dzip dzj1 ... dzjp .

    nh ngha 1.3.5. Cho d : AkC(U) Ak+1C (U) l m rng C- tuyn tnh ca ton tvi phn ngoi. Khi ta nh ngha:

    : Ap,q(U) Ap+1,q(U) v : Ap,q(U) Ap,q+1(U) bi: :=

    p+1,q d, := p,q+1 dTa c mnh sau y:

    Mnh 1.3.6. Vi cc nh ngha nh trn, ta c:

    (i) d = + ,

    (ii) 2 = 2

    = 0, = ,

    (iii) (Lut Leibniz) Ap,q(U), Ar,s(U) :

    ( ) = + (1)p+q ,( ) = + (1)p+q .

    Chng minh. (i) Mnh ny l hin nhin.

    (ii) Ta c

    0 = d2 = ( + ) ( + ) = 2 + + + 2.

    Do ta c ngay 2 = 2

    = 0, = .(iii) Ta thy ton t d tha mn:

    d( ) = d + (1)p+q d.

    V Th Minh Phng 11

  • Kha lun tt nghip a tp Kahler

    Khi vi mi Ap,q(U), Ar,s(U), ta c

    ( ) =p+r+1,q+s d( )

    =p+r+1,q+s

    (d + (1)p+q d)=

    p+r+1,q+s(d ) + (1)p+q

    p+r+1,q+s( d)

    =p+r+1,q+s

    d + (1)p+q p+r+1,q+s

    d

    = + (1)p+q .

    Vy ( ) = + (1)p+q .ng thc cn li chng minh tng t.

    nh ngha 1.3.7. Cho U Cn l tp con m, xt metric Riemannian g trn U . Tani g tng thch vi cu trc hu phc (t nhin) trn U nu:

    x U ta c: gx(u, v) = gx(Iu, Iv), u, v TxU

    Ta nh ngha dng c bn A1,1U A2(U) bi:

    (x)(u, v) := gx(Iu, v).

    Metric g khi s cm sinh dng metric Hermit h := g i xc nh dng trnmi khng gian vc t phc (TxU, gx).

    V d 1.3.8. Nu g l metric Euclide trn Cn = R2n th:

    x1

    x

    , ...,

    xn

    x

    ,

    y1

    x

    , ...,

    yn

    x

    l c s trc giao ca TxU . Ta c dng c bn lin kt vi g c cho bi:

    =i

    2

    ni=1

    dzi dzi

    Nhn xt 1.3.9. Mt metric bt k g trn U tng thch vi cu trc hu phc c

    xc nh duy nht bi ma trn hij(z) := h

    (

    xi,

    xj

    ). Dng c bn lc c biu

    din bi

    =i

    2

    ni=1

    hijdzi dzj.

    V Th Minh Phng 12

  • Kha lun tt nghip a tp Kahler

    nh ngha 1.3.10. Metric g c gi l mt tip bc hai ti gc ta ti metric

    chnh tc nu:

    (hij) = Id+O(| z |2).

    T nh ngha trn ta d dng suy ra nu g mt tip bc hai ti gc ta ti metric

    chnh tc thhijzk

    (0) =hijzij

    (0) = 0. Ni cch khc l trong khai trin ti im 0 ca

    hij thnh chui ly tha th khng xut hin phn t dng aijkzk + a,ijkzk.

    Ta c mnh sau y:

    Mnh 1.3.11. Cho metric g tng thch vi cu trc hu phc t nhin trn U ,

    l dng c bn lin kt. Khi d = 0 khi v ch khi vi mi x U u tn ti ln cnm U

    Cn ca x v nh x song chnh hnh f : U f(U ) U tha mn f(0) = xv f g l mt tip bc hai ti gc ta ti metric chnh tc.

    Chng minh. Nhn xt rng nu l dng c bn lin kt vi g th f l dng c bn

    lin kt vi f g.

    Gi s d = 0. C nh p U , ta c th gi s p = 0. Ta vit :

    =1

    2

    hijdzi dzj.

    Do ma trn (hij) l Hermit nn ta c th gi s rng (hij(0)) = Id v

    hij = ij +k

    aijkzk +k

    aijkzk +O(|z2|).

    Trong aijk =hijzk

    (0), aijk =

    hijzk

    (0). Do d = 0 nn:

    hijzk

    dzk dzi dzj + hkjzi

    dzi dzk dzj = 0.

    Vy nn aijk = akji. Tng t ta cng c aijk = a

    ikj. Mt khc v hij = hji nn

    aijk = ajik. Ta dng php i bin:

    j = zj +1

    2

    i,k

    aijk zi zk.

    Php i bin ny xc nh cho ta nh x song chnh hnh f . Ta c:

    dj = dzj +1

    2

    i,k

    aijk (dzi) zk +1

    2

    i,k

    aijk zi (dzk)

    = dzj +i,k

    aijk zk dzi.

    V Th Minh Phng 13

  • Kha lun tt nghip a tp Kahler

    Tng t ta cng c:

    dj = dzj +i,k

    aijk zk dzi.

    Do nu khng tnh cc thnh phn vi bc ln hn 1 th ta c:

    i

    2

    nj=1

    dj dj = i2

    (dzj dzj + (n

    i,k=1

    aijk zk dzi) dzj + dzj (n

    i,k=1

    aijk zk dzi))

    =i

    2

    (nj=1

    dzj dzj +n

    i,j=1

    (nk=1

    aijkzk)dzi dzj +n

    i,j=1

    (nk=1

    ajikzk)dzj dzi

    ).

    Vy nni

    2

    nj=1

    dj dj =

    Do f g mt tip bc hai ti metric chnh tc.

    Ngc li, gi s tn ti nh x f nh trn. Khi ta c f l dng c bn ng vi

    f g. Do f g mt tip bc hai ti gc ta ti metric chnh tc nn o hm

    zi,

    zica cc h s ca f u trit tiu ti gc. Do d(f )(0) = 0 vy d(p) = 0. Ta c

    iu phi chng minh.

    V Th Minh Phng 14

  • Chng 2

    Php tnh vi phn trn a tp phc

    2.1 Cu trc hu phc trn a tp

    nh ngha 2.1.1. Cu trc hu phc trn a tp nhn X l mt ng cu phn th

    nhn I : TX TX tha mn I2 = Id.

    Vy nu trn X tn ti mt cu trc hu phc th X c s chiu chn. Tuy nhin

    khng phi a tp nhn vi s chiu chn no cng chp nhn mt cu trc hu phc.

    Ta c mnh sau y:

    Mnh 2.1.2. Mi a tp phc X chiu n u chp nhn mt cu trc hu phc t

    nhin cm sinh t cu trc phc.

    Chng minh. Vi x X, gi (U,) l bn chnh hnh ca X quanh x. Ta gi s rng{zi = xi + iyi}ni=1 l C- c s ca Cn. Khi khng gian tip xc thc TxX c c s l{

    x1

    x

    , ...,

    xn

    x

    ,

    y1

    x

    , ...

    yn

    x

    }. Ta nh ngha ng cu I tc ng trn mi TxX

    nh sau:

    I :TxX TxX

    xi

    x

    7 yi

    x

    yi

    x

    7 xi

    x

    .

    Hin nhin I l hon ton xc nh v tha mn I2 = Id. Ta s chng minh I l nhn.

    15

  • Kha lun tt nghip a tp Kahler

    Tht vy, gi (U,), (V, ) l cc bn chnh hnh ca X xung quanh x. Khi

    ta c cc tm thng ha a phng ca phn th vc t phc pi : TX X cho bi:

    |U : pi1(U) (U) Cn,

    |V : pi1(V ) (V ) Cn.

    Vy, vi mi U, i, i C, ta c:

    V I 1U (, 1, 2, ..., n, 1, 2, ..., n)

    = V I(

    i

    xi

    1()

    +

    i

    yi

    1()

    )

    = V

    (i

    yi

    1()

    i

    xi

    1()

    )=( 1() ,1, ...,n, 1, ..., n

    ).

    Vy I l nhn.

    nh ngha 2.1.3. Cho X l a tp hu phc. Ta nh ngha khng gian tip xc phc

    TCX := TX R C.

    Ta thy rng ng cu I c th m rng C-tuyn tnh trn TCX. Khi ta c mnh sau y:

    Mnh 2.1.4. Cho X l a tp hu phc vi cu trc hu phc I. Khi :

    (i) Ta c phn tch tng trc tip:

    TCX = T1,0X T 0,1X,

    Trong T 1,0X,T 0,1X l cc phn th con ca TCX tha mn:

    I|T 1,0X = i.Id, I|T 0,1X = i.Id.

    (ii) Nu X l a tp phc th T 1,0X ng cu t nhin vi phn th tip xc chnh

    hnh TX .

    V Th Minh Phng 16

  • Kha lun tt nghip a tp Kahler

    Chng minh. (i) Khng nh (i) l hin nhin.

    (ii) Gi s X l a tp phc. Gi i : Ui i(Ui) Cn l bn chnh hnh caX. Khi ta c TCU = T

    1,0U T 0,1U , trong T 1,0U v T 0,1U c mc tiu chnh tctng ng l

    {

    z1, ...,

    zn

    }v

    {

    z1, ...,

    zn

    }. Ta c cc tm thng ha a phng:

    i : T1,0Ui Ui Cn,

    i

    zi|p 7 (p, 1, ..., n).

    Ly p UiUj. t ij := i1j . Khi nh x i1j : UiUjCn UiUjCnc cho bi:

    i 1j (z, 1, ..., n) = i(

    k

    j

    zk

    z

    )= i

    (k

    l

    lijzk

    j(z)

    .

    zl

    z

    )

    = i

    (l

    (k

    lijzk

    j(z)

    ).

    zl

    z

    )=

    (z,j

    j1ijzi

    , ...,j

    jnijzi

    ).

    Vy phn th vc t T 1,0X c h hm chuyn l: ij(z) = J(ij)(j(z)) nn n ng

    cu t nhin vi phn th tip xc chnh hnh TX .

    V l do , phn th T 1,0X,T 0,1X c gi l cc phn th tip xc chnh hnh v

    phn chnh hnh ca a tp hu phc X.

    Nhn xt 2.1.5. Cho E X l phn th vc t phc. Ta nh ngha phn th phclin hp E X l phn th vc t c khng gian ton th l E, cu trc khng gianvc t trn Ex c php cng ging nh trn Ex v php nhn c nh ngha bi:

    C Ex Ex(, v) 7 v.

    Nu (ij) l h hm chuyn ca E th (ij) s l h hm chuyn ca E cho bi ij(x, v) =

    (x, ij(x)v).

    Khi ta thy rng hai phn th vc t phc T 1,0X, T 0,1X l lin hp ca nhau.

    2.2 Dng vi phn

    nh ngha 2.2.1. Cho X l a tp hu phc. Ta nh ngha cc phn th vc t phc:

    V Th Minh Phng 17

  • Kha lun tt nghip a tp Kahler

    kCX =

    k(TCX) , p,qX = p(T 1,0X)Cq(T 0,1X)v Ak(X), Ap,q(X) tng ng l khng gian cc nht ct ca kCX v p,qX.

    Ta d dng chng minh c h qu sau y:

    H qu 2.2.2. Ta c cc phn tch:kCX =

    p+q=k

    p,qX,Ak(X) =

    p+q=k

    Ap+q(X)

    Hn na ta c Ap,q(X) = Aq,p(X) v ngc li Aq,p(X) = Ap,q(X).

    Tng t ta cng c th nh ngha cc php chiu:k : A(X) = 2nk=0

    Ak(X) Ak(X),p,q : A(X) Ap,q(X)nh ngha 2.2.3. Cho X l a tp hu phc v d : Ak(X) Ak+1(X) l m rngC-tuyn tnh ca ton t vi phn ngoi. Ta nh ngha:

    :=p,q d, := p,q+1 d.

    T nh ngha, ta d dng thy ton t , cng tha mn lut Leibniz:

    ( ) = () + (1)p+q (),

    ( ) = () + (1)p+q ().

    Ta c nh mnh sau y:

    Mnh 2.2.4. Cho X l a tp hu phc. Khi hai iu kin sau y l tng

    ng:

    (i) d() = () + (), A(X),

    (ii) Trn A1,0(X) ta c 0,2 d() = 0, A1,0(X).Nu X l a tp phc th c hai iu kin trn u tha mn.

    Chng minh. (i) = (ii). Gi s d() = () + (). Nu A1,0(X) th:

    V Th Minh Phng 18

  • Kha lun tt nghip a tp Kahler

    0,2 d() = 0,2( + ) = 0,2() +0,2() = 0.Vy ta c iu cn chng minh.

    (ii) = (i). Ta s chng minh Ap,q(X) th

    d Ap+1,q(X)Ap,q+1(X). (2.1)

    Tht vy, trc ht ta thy nu A1,0(X) = th d A2,0(X)A1,1(X) dogi thit. Nu A0,1(X) th A1,0(X) = A2,0(X)A1,1(X). Do A0,2(X)A1,1(X).

    Ta s chng minh (2.1) bng quy np theo k = p+ q.

    - Nu k = 1 th (2.1) ng do chng minh trn.

    - Gi s = fi1 ... ip j1 ... jq th ta c

    d = (df) i1 ... ip j1 ... jq + f.d(i1 ... ip

    j1 ... jq)

    = (df) i1 ... ip j1 ... jq + f.d(i1 ... ip

    j1 ... jq1)

    jq

    + (1)p+q1f.i1 ... ip j1 ... jq1 d

    jq .

    Theo gi thit quy np th d(i1...ipj1...jq1) Ap+1,q1(X)

    Ap,q(X).Do f.d(i1 ... ip j1 ...

    jq1)

    jq Ap+1,q(X)

    Ap,q+1(X). Mtkhc v df A1,0(X)A0,1(X) nn ta c f.i1 ...ip j1 ...jq1 djq Ap+1,q(X)Ap,q+1(X).

    Vy (2.1) c chng minh.

    Nu X l a tp phc th ta c cc phn t dng dzi1 ... dzip dzj1 ... dzjq lpthnh c s ca Ap,q(X)Ap,q(X) nn c hai iu kin trn u c tha mn.nh ngha 2.2.5. Cu trc hu phc I trn a tp nhn X c gi l kh tch nu

    mt trong hai iu kin trong mnh trn c tha mn.

    Sau y ta xt mt iu kin khc cho tnh kh tch ca cu trc hu phc I trn

    a tp nhn X.

    Mnh 2.2.6. Cu trc hu phc I l kh tch nu v ch nu mc Lie ca trng

    vc t bo ton T 1,0X , ngha l [T1,0X , T

    1,0X ] T 1,0X .

    V Th Minh Phng 19

  • Kha lun tt nghip a tp Kahler

    Chng minh. Nhc li rng ta c phn tch TCX = T1,0XT 0,1X, nn mi trng vc t

    phc trn TCX c th vit c di dng tng = + i trong T 1,0X , T 0,1X .By gi ly A1,0(X) v v, w l cc nht ct trn T 0,1X. Ta c

    (d)(v, w) = v((w)) w((v)) [v, w].

    Do A1,0(X) nn (v) = (w) = 0. Vy d A2,0(X)A1,1(X). Do [v, w] T 0,1X , v, w T 0,1X . Vy ta c iu phi chng minh.

    T iu kin kh tch trn, ta thu c h qu quan trng sau y.

    H qu 2.2.7. Nu I l cu trc hu phc kh tch th ta c

    2 = 2

    = 0, = .

    Ngc li, nu 2

    = 0 th I l cu trc hu phc kh tch.

    Chng minh. Nhn xt u tin l hin nhin, ta chng minh nhn xt th hai.

    Gi s 2

    = 0. Ta s s dng Mnh 2.2.6 chng minh tnh kh tch ca I. Ly

    v, w T 0,1X , A0,1(X). Ta c

    (d)(v, w) = v((w)) w((v)) [v, w].

    Mt khc (d)(v, w) = ()(v, w) nn

    0 = (2f)(v, w) = v((f)(w) w(f)(v) (f)([v, w]).

    V v, w T 1,0X nn ta c

    0 = v(df(w)) w(df(v)) (f)([v, w])= (d2f)(v, w) + (df)([v, w]) (f)([v, w]) = (f)([v, w]) do df = f + f.

    V { f | f CX} sinh ra A1,0(X) nn ta c [v, w] T 0,1X . Vy I l kh tch.

    Ta c nh l sau y v s tng ng gia cu trc hu phc kh tch vi cu trc

    phc trn a tp nhn.

    nh l 2.2.8 ( nh l Newlander-Nierenberg). Cho I l mt cu trc hu phc kh

    tch trn a tp nhn X. Th th tn ti mt cu trc phc trn X tha mn cu trc

    hu phc cm sinh trn X trng vi I.

    V Th Minh Phng 20

  • Chng 3

    a tp Kahler

    3.1 Metric Kahler

    Cho X l a tp phc vi cu trc hu phc I.

    nh ngha 3.1.1. Mt metric Riemannian g trn X c gi l mt cu trc Hermit

    trn X nu metric g tng thch vi cu trc hu phc I, ngha l:

    g(I, I) = g(, )

    vi mi , l cc trng vc t trn X.

    Khi , metric g cm sinh mt dng c bn lin kt A1,1(X) xc nh bi:

    (, ) := g(I, ).

    D thy c biu din a phng:

    =i

    2

    ni,j=1

    hijdzi dzj,

    vi mi x X th (hij(x)) l ma trn Hermit xc nh dng.Mt a tp phc X c trang b cu trc Hermit g c gi l mt a tp Hermit.

    Lun tn ti cu trc Hermit trn a tp phc X. Tht vy, ly g l metric Riemann

    trn X v t h(, ) = g(, ) + g(I, I), vi , l cc trng vc t trn X. D thy

    ngay rng h l mt cu trc Hermit trn X.

    nh ngha 3.1.2. Mt cu trc Kahler l mt cu trc Hermit g m dng c bn

    l ng, ngha l d = 0. Khi , ta ni l dng Kahler v g l metric Kahler.

    21

  • Kha lun tt nghip a tp Kahler

    Bi mnh sau y, ta thy rng metric Kahler v mt nh phng, l mt metric

    mt tip bc hai ti gc ti metric chnh tc trn Cn.

    Mnh 3.1.3. Cho X l a tp phc n chiu, g l metric Kahler trn X. Khi , vi

    mi p X th tn ti bn chnh hnh vi h ta (z1, . . . , zn) ti p sao cho ma trn(hij(p)) = h

    (

    zi,

    zj

    )trong h ta ny c dng In +O(|z|2).

    Chng minh. Ly p X. Gi (U,) l bn chnh hnh ca X quanh p tha mn(p) = 0. V metric g l Kahler nn d((1)) = 0. Theo Mnh 1.3.11 th tn ti

    tp m U Cn cha 0 v nh x song chnh hnh f : U f(U) (U) tha mnf(0) = 0 v f ((1)g) l mt tip bc hai ti gc ta ti metric chnh tc. t

    V = 1(f(U)), = f1 . Th th (V, ) chnh l bn chnh hnh cn tm.

    B sau y cho php ta xc nh metric Kahler t mt dng thc ng, xc nh

    dng.

    B 3.1.4. Cho l dng thc ng, A1,1(X). Nu xc nh dng, ngha l c biu din a phng

    =1

    2

    ni,j=1

    hijdzi dzj

    tha mn (hij(x)) l ma trn Hermit xc nh dng vi mi x X, th tn ti metricKahler trn X tha mn l dng c bn lin kt.

    Chng minh. Ta xc inh g bi: g(, ) = (, I) vi , l cc trng vc t trn

    X. Ta s ch ra g l mt metric Kahler. Tht vy, gi s:

    =

    i

    zi+

    i

    zi,

    =

    j

    zj+

    j

    zj.

    Ta c cc iu sau:

    g(, ) = (, I) = (

    i

    zi+

    i

    zi, i

    j

    zj i

    j

    zj)

    = i

    ij(

    zi,

    zj) + i

    ij(

    zi,

    zj)

    =1

    2(

    hijij +

    hjiij).

    V Th Minh Phng 22

  • Kha lun tt nghip a tp Kahler

    Tng t g(, ) =1

    2(hijij +

    hjiij). Do vy g(, ) = g(, ).

    g(I, I) = (I, I2) = (I,) = (I, ) = (, I) = g(, ) = g(, ).Vy g tng thch vi cu trc hu phc.

    g(, ) = ijhij > 0 do (hij) l ma trn xc nh dng. Do g l dngHermit lin kt vi .

    Vy g l metric Kahler.

    nh ngha 3.1.5. Ta gi tp cc (1, 1)-dng thc ng v xc nh dng A1,1Xl tp cc dng Kahler.

    V d 3.1.6 (Mt s v d v a tp Kahler). 1) Xt khng gian Cn vi metric chnhtc:

    d2 =ni=1

    dzidzi =n

    i,j=1

    ijdzidzj.

    Khi dng c bn A1,1(Cn) cho bi

    =i

    2

    dzi dzi.

    D thy ngay rng d = 0. Vy Cn vi metric chnh tc l a tp Kahler.2) Xt khng gian x nh phc Pn := PnC = (Cn+1 \ {0})/C. Trong C l quan

    h tng ng:

    z z Cn C | z = z.

    Khi c nh x chiu

    pi : Cn+1 \ {0} Pn

    lm cho Pn c cu trc tp thng. t

    Ui = {(z0 : z1 : . . . : zn) | zi 6= 0} Pn.

    Khi Ui l m v pi1(Ui) = (Cn \ {0}) \ {zi = 0}.

    Xt nh x: i : Ui Cn cho bi:

    (z0 : z1 : . . . : zn) 7(z0zi, . . . ,

    zi1zi

    ,zi+1zi

    , . . .znzi

    ).

    V Th Minh Phng 23

  • Kha lun tt nghip a tp Kahler

    D thy i l song nh v ta c nh x chuyn ij = i1j : j(UiUj) i(UiUj)cho bi

    ij(w1, w2, . . . , wn) =

    (w1wi, . . . ,

    wi1wi

    ,wi+1wi

    , . . . ,wj1wj

    ,1

    wi,wjwi, . . . ,

    wnwi

    ).

    Do vy ij l nh x song chnh hnh. Vy Pn l a tp phc.Metric Fubini-Study trn Pn c cho bi (1, 1) dng lin kt FS c xc nh nh

    sau Vi mi:

    i : Ui Cn

    (z0 : . . . : zn) 7 (z0zi, . . . ,

    zizi, . . . ,

    znzi

    ).

    Ta nh ngha:

    FS|Ui = i :=i

    2pi log(

    nl=0

    zlzi

    2). y, i =

    i (i), trong i =

    i

    2pi log(

    nk=1

    |wk|2 + 1). nh ngha ny l tha ngbi v i|UiUj = j|UiUj . Tht vy, ta c:

    log(nl=0

    zlzi

    2) = log(zjzi

    2 nl=0

    zlzj

    2)= log(

    zjzi

    2) + log( nl=0

    zlzj

    2).Do log(

    zjzi

    2) l hm a iu ha nn log(zjzi

    2) = 0 v do i|UiUj = j|UiUj .Vy tn ti dng FS A1,1(Pn).

    Ta s ch ra FS l dng thc, ng. Tht vy, v: = = nn ta c i = i,do i l dng thc. Vy FS thc. Mt khc FS hin nhin l ng v i = i = 0

    vi mi i. Hn na FS l xc nh dng. Tht vy, ta c:

    log(1 +ni=1

    |wi|2) =(ni=1

    widi

    1 +ni=1

    |wi|2) =

    ni=1

    (wi

    1 +ni=1

    |wi|2dwi)

    =

    ni=1

    widwi

    1 +ni=1

    |wi|2=

    dwi dwi

    1 + |wi|2 (

    widwi)(

    widwi)

    (1 + |wi|2)2

    =1

    (1 + |wi|2)2 hijdwi dwj,

    V Th Minh Phng 24

  • Kha lun tt nghip a tp Kahler

    trong

    hij = (1 +|wi|2)ij wiwj.

    La c, vi mi u Cn (u 6= 0) th:

    uthiju =(u, u) + (w,w)(u, u) utwwtu = (u, u) + (w,w) (u,w)(w, u)=(u, u) + (w,w) (w, u)(w, u) = (u, u) + (w,w) |(w, u)|2 > 0.

    Vy FS l dng Kahler, do theo B 3.1.4 n cm sinh metric Kahler trn Pn vc gi l metric Fubini - Study.

    Tnh cht: (i) Cho pi : Cn+1 \ {0} Pn l php chiu t nhin. Ta c :

    pi(FS) =i

    2pi log z2.

    Tht vy, trn Ui ta c FS = i (i), nn:

    pi(FS) = pi(i (i)) = (i pi)(i) =i

    2pi log(

    nl=0

    zlzi

    2)=

    i

    2pi log z2 log |zi|2 = i

    2pi log z2.

    (ii) Ta c P1FS = 1. Tht vy, ta c:

    P1

    FS =

    C

    i

    2pi

    1

    (1 + ||2)2dw dw

    =1

    pi

    R2

    1

    (1 + (x, y)2)2dx dy = 20

    rdr

    (1 + r2)2= 1.

    3) Xt xuyn phc Cn/, vi = {2ni=1

    aiwi , ai Z} v {w1, w2, ..., w2n} l R-c sca Cn. t T = Cn/. Ta c php chiu t nhin

    pi : Cn T .

    Gi U Cn l mt tp m trong Cn m khng cha hai im no sai khc mt phnt trong . Khi ta c th chng minh c rng U := pi(U) l tp m trong T vnh x

    pi|U : U U

    V Th Minh Phng 25

  • Kha lun tt nghip a tp Kahler

    l mt ng phi. Vy ta xc nh bn a phng (U,) trn T , trong = (pi|U)1.Khi T vi cu trc phc xc nh nh trn l mt a tp phc n chiu.

    Hn na mi xuyn phc Cn/ u c cu trc ca a tp Kahler. Tht vy, vmetric chnh tc g trn Cn l - bt bin nn cm sinh mt metric Kahler trn xuyn.

    3.2 c trng ca a tp Kahler

    Trong phn ny, chng ti s trnh by cc tnh cht c trng ca a tp Kahler lin

    quan n lin thng Levi-Civita v lin thng Chern, mt dng lin thng trn phn

    th vc t chnh hnh. Trc tin ta nhc li v lin thng Levi-Civita.

    Cho M l a tp nhn. K hiu TM l khng gian cc trng vc t nhn trn M .Nhc li rng mt lin thng D trn M l mt nh x:

    D : TM TM TM

    (, ) 7 D(, ) := D

    sao cho D l R-song tuyn tnh v C(M)-tuyn tnh theo , ng thi tha mn lutLeibniz sau:

    D(f) = fD + (f)D

    vi mi f C(M).Cho (M, g) l a tp Riemannian. Lin thng D trn M c gi l tng thch vi

    metric g nu

    (g(, )) = g(D, ) + g(,D).

    Ta c nh l c bn ca hnh hc Riemannian sau:

    nh l 3.2.1. Cho (M, g) l mt a tp Riemannian. Khi tn tai duy nht lin

    thng D m ta gi l lin thng Levi-Civita trn (M, g) tha mn cc tnh cht sau y:

    (i) D tng thch vi metric g.

    (ii) D l khng xon, ngha l D tha mn D D = [, ] vi mi trng vc tnhn , trn M .

    V Th Minh Phng 26

  • Kha lun tt nghip a tp Kahler

    Nhn xt 3.2.2. K hiu A1(M,TM) l khng gian cc nht ct nhn ca phn thvc t (nhn) T M

    TM . Khi ta c th xc nh lin thng D nh nh x R -tuyn

    tnh :

    D : TM A1(M,TM)

    v tha mn:

    D(f) = fD() + df .

    3.2.1 Phn th vc t Hermit v lin thng Chern

    Cho E X l phn th vc t phc trn a tp thc X.

    nh ngha 3.2.3. Mt metric Hermit h trn E X l cho trn mi th Ex mt tchHermit , x tha mn vi mi tp m U X v vi mi , A(U,E) l nht ct aphng trn U th nh x , : U C cho bi , (x) := (x), (x)x l mt hmnhn. Mt phn th vc t E c trang b metric Hermit c gi l mt phn th vc

    t Hermit.

    Nu (U, ) l mt tm thng ha a phng : E|U U Ck th ta c mtmc tiu a phng (e1, e2, ..., ek) ca E trn U , khi ta c th ng nht mi nht

    ct ca E trn U vi k hm (1, 2, ..., k), trong i : U C. Ta xc nh matrn (hij) : U Gl(k,C), vi hij C(U) bi:

    hij(x) := ei, ej(x).

    Khi vi mi , A0(U,E), ta vit = i

    iei, =j

    jej v ta c:

    , = i

    iei,j

    jej =i,j

    ijei, ej =i,j

    ijhij.

    nh ngha 3.2.4. Ap(X,E) = A(X,pT XCE) c gi l l khng gian cc dngvi phn bc p trn X vi h s trong E.

    Nhn xt 3.2.5. Mi nht ct a phng Ap(U,E) vi U m trong X c th vitdi dng =

    i

    i i. Trong i Ap(U) l p-dng vi phn , i A0(U,E) lnht ct ca E trn U

    Sau y ta xt n lin thng trn phn th vc t phc.

    V Th Minh Phng 27

  • Kha lun tt nghip a tp Kahler

    nh ngha 3.2.6. Cho E X l mt phn th vc t phc. Khi ta nh nghalin thng trn E l mt nh x C-tuyn tnh:

    : A0(X,E) A1(X,E)

    tha mn lut Leibniz

    (f) = df + f

    vi mi f C(U), A0(U,E), y U m trong X.

    Khi nu (U, ) l tm thng ha a phng ca E. Trong mc tiu a phng

    lin kt (e1, e2, ..., ek) ta c th biu din di dng ta :

    (1, 2, ..., k) = (d1, d2, ..., dk) + (1, 2, ..., k).A.

    Trong A l ma trn kk vi h s l cc 1-dng trn U . Nh vy v mt a phngta c th vit = d+ A trong A l ma trn cc 1-dng.

    Gi s h l metric Hermit trn phn th vc t E. Khi ta c th m rng h ti

    nh x (m ta vn k hiu l h) cho bi:

    h : Ap(X,E)Aq(X,E) Ap+q(X)1 1, 2 2 7 1 2.1, 2

    nh ngha 3.2.7. Lin thng trn E c gi l tng thch vi metric Hermit hnu:

    d, = , + ,vi mi , A(X,E)

    Gi s 5 c biu din a phng l = d+ A. Ta c:

    dei, ej = ei, ej+ ei,ej

    Do vy

    dhij =k

    Aik ek, ej+ ei,l

    Ajl el

    =k

    Aikhkj +l

    Ajlhil

    = (A.h)ij + (h.At)ij.

    V Th Minh Phng 28

  • Kha lun tt nghip a tp Kahler

    Tip chng ta s i nh ngha khi nim lin thng Chern v ch ra s tn ti duy

    nht ca lin thng Chern trn phn th vc t Hermit chnh hnh. Gi s E X lphn th vc t chnh hnh trn a tp phc X. Nhc li rng:

    A(X) =r=1

    Ar(X),

    trong Ar(X) = p+q=r

    Ap,q(X). Do ta cng c phn tch:

    A(X,E) =r

    Ar(X,E), Ar(X,E) =p+q=r

    Ap,q(X,E).

    Ap,q(X,E) = Ap,q(X)A0(X,E). T nhn xt trn, ta thy mi lin thng trn E u c th vit duy nht di dng = 1,0 +0,1, :

    1,0 : A0(X,E) A1,0(X,E),0,1 : A0(X,E) A0,1(X,E).

    Nhn xt rng, trn phn th vc t chnh hnh E X tn ti ton t E :A(X,E) A0,1(X,E) c nh ngha a phng bi: vi mi tm thng ha aphng U,), gi s (e1, e2, ..., ek) l mc tiu a phng ca E trn U v (1, 2, ..., k)

    l ta a phng ca nht ct th:

    E = U|U := (1, 2, ..., k).

    Ton t E l hon ton xc nh qua b sau y.

    B 3.2.8. Gi s (U,), (V, ) l cc tm thng ha a phng ca E tha mn

    U V 6= . Khi vi mi A0(X,E). Ta c:

    U|UV = V |UV .

    Chng minh. Gi (e1, e2, ..., ek) v (e1, e

    2, ..., e

    k) l cc mc tiu a phng ca E

    lin kt vi (U,) v (V, ) tng ng. Gi s g = (gij) l ma trn chuyn mc tiu

    t (e1, e

    2, ..., e

    k) sang (e1, e2, ..., ek), vi gij l cc hm chnh hnh trn U V . Gi

    (1, 2, ..., k) v (,1,

    2, ...,

    k) tng ng l ta ca i vi hai mc tiu trn.

    Khi ta c k =

    i i.gki. Do gij l cc hm chnh hnh nn ta c:

    k =i

    (i.gki) =

    i

    (i.gki +

    i.gki) =

    i

    i.gki.

    V Th Minh Phng 29

  • Kha lun tt nghip a tp Kahler

    Ta cn chng minh U|UV = V |UV , hay

    k k.ek =

    i i.ek. Tht vy, ta c:

    k

    kek =k

    i

    i gki ek =

    i

    i

    (k

    gki ek

    )=

    i

    i.ek.

    Vy ta c iu phi chng minh.

    Ta c nh l sau y.

    nh l 3.2.9. Tn ti duy nht lin thng trn E tha mn cc iu kin sau y:

    (i) tng thch vi metric Hermit h.

    (ii) 0,1 = E

    Lin thng duy nht xc nh nh trn gi l lin thng Chern ca phn th E.

    Chng minh. Trc tin ta ch ra s tn ti ca lin thng cn dng.

    - -Xt trng hp E = X Cn l phn th vc t tm thng, khi ta xc nhlin thng bi = d+ A, trong A = h.h1.

    - -Trng hp E l phn th vc t bt k. Xt vi mi tm thng ha a phng

    (U, ) ta nh ngha lin thng tng t nh trng hp trn. Gi (f) lphn hoch n v ng vi ph (U). Ta nh ngha lin thng trn E nh sau:

    =

    f..

    D dng kim tra c tha mn lut Leibniz.

    kim tra tnh duy nht, ta vit = 1,0 +0,1. Khi tng thch vi metrich nu v ch nu:

    d(h(, )) = h(, ) + h(,).So snh phn dng (1, 0) ca hai v ta c

    h(, ) = h(1,0, ) + h(,0,1).

    V 1,0 = nn ta ch(, ) = h(1,0, ) + h(, ).

    V Th Minh Phng 30

  • Kha lun tt nghip a tp Kahler

    Gi (e1, e2, ..., ek) l mc tiu chnh hnh ton cc trn E. Th th ei = 0.Vy ta c:

    h(1,0ei, ej) = (h(ei, ej)),

    hay h(1,0ei, ej) = hij. T biu thc ny ta thy lin thng Chern trn E nu tnti l duy nht. Tht vy, gi s c biu din a phng l = d + A, khi (A.h)ij = (h)ij, do vy A = h.h

    1.

    3.2.2 Cc tnh cht c trng ca a tp Kahler

    Cho X l a tp phc vi I l cu trc hu phc t nhin trn TX. Nhc li rng khi

    ta c TCX = T1,0X

    T 0,1X. Trong phn th T 1,0X ng cu t nhin vi phn

    th vc t chnh hnh TX . Gi s g l cu trc Hermit trn X, ngha l mt metricRiemannian tng thch vi cu trc hu phc I. Khi g cm sinh dng c bn

    (u, v) = g(Iu, v), A1,1(X)

    v cm sinh metric Hermit gC trn phn th vc t TCX. Ta ch rng gC|T 1,0X =1

    2(g i) v cc phn th vc t (TX, I) v (T 1,0X, i) c ng nht vi nhau qua

    ng cu :

    R :TX T 1,0Xu 7 1

    2(u iIu).

    Do ng cu R c tnh cht I R = R i nn vi mi trng vc t thc trn X talun ng nht i. vi I trn TX. V T 1,0X l phn th vc t chnh hnh nn trn

    (T 1,0X, gC) tn ti duy nht lin thng Chern v trn (TX, g) tn ti duy nht linthng Levi-Civita D. nh l sau y s ch ra mi quan h ca chng trong trng hp

    X l a tp Kahler.

    nh l 3.2.10. Cho X l a tp phc, g l cu trc Hermit trn X vi cu trc hu

    phc I. Khi cc mnh sau l tng ng:

    (i) g l metric Kahler.

    (ii) Cu trc hu phc I l phng i vi lin thng Levi-Civita D, ngha l D(I) =

    I(D) vi mi l trng vc t trn X.

    V Th Minh Phng 31

  • Kha lun tt nghip a tp Kahler

    (iii) Qua ng cu R, lin thng Chern v lin thng Levi-Civita D l trng nhau.

    Chng minh. Ta chng minh theo cc bc sau.

    (iii) = (ii). V qua ng cu R lin thng Chern v lin thng Levi-Civita Dtrng nhau nn D c xc nh bi:

    D() = (R),

    vi l trng vc t trn TX. y ta lun ng nht i. vi I trn TX. V lC-tuyn tnh nn ta c:

    (iR) = i.(R),hay

    (RI) = i.(R).Do D(I) = ID(X). Vy ta c (ii).

    (ii) = (i). Ta c g(u, v) = (u, Iv). V D l lin thng Levi-Civita nn ta cdg(, ) = g(D, ) + g(,D) vi mi , A0(TX). Do vy:

    d((, ) = dg(I, ) = g(DI, ) + g(I,D) = g(ID, ) + (,D)

    = (D, ) + (,D).

    Do vi mi A0(TX) ta c:

    ((, )) = (D, ) + (,D). (3.1)

    Mt khc, ta c:

    d(, , ) = ((, )) ((, )) + ((, )) ([, ], ) + (, [, ]) + ([, ], )

    = ((, )) ((, )) + (()) (DD, ) + (,D D) + (D D, ).

    T y v t (3.1) ta c ngay d(, , ) = 0, , A0(TX). Vy l dng ng,v do g l metric Kahler.

    (i) = (iii). Gi s g l metric Kahler. Gi l lin thng Chern trn T 1,0X. Tanh ngha lin thng D trn TX bi:

    D = (R).

    V Th Minh Phng 32

  • Kha lun tt nghip a tp Kahler

    Ta s chng minh rng D chnh l lin thng Levi-Civita trn TX.

    Tht vy, v l lin thng Chern nn n tng thch vi metric Hermit gC|T 1,0X =12(g i) nn

    dgC(R,R) = gC(R,R) + gC(R,R).

    Do

    dg(, ) = g(D, ) + g(,D).

    Vy D tng thch vi metric Riemannian g.

    Gi s h = (hij) l ma trn biu din a phng cho metric Hermit gC trn T1,0X

    v = d + A, trong A = (aij) l biu din a phng ca lin thng Chern. Theochng minh nh l 3.2.9 th ta c A = h.h1. Do :

    aij =k

    hik hij,

    vi (hij) l ma trn nghch o ca ma trn h. Ta s chng minh D khng xon, ngha

    l D D = [, ]. Nhc li rng{

    z1, ...,

    zn

    }l mc tiu a phng ca T 1,0X. Khi :{

    x1, ...,

    xn,

    y1, ...,

    yn

    }l mc tiu a phng ca TX. Ta c:

    D

    xi=

    zi= (d+ A)

    (

    zi

    )=k

    aik zk

    .

    Vy nn:(D

    xi

    )(

    xj

    )=k

    aik

    (

    xj

    ).

    zk

    =k

    aik

    (

    zi+

    zi

    ).

    zk

    =k

    aik

    (

    zj

    ).

    zk(v A l ma trn (1,0)-dng).

    V Th Minh Phng 33

  • Kha lun tt nghip a tp Kahler

    M aij =l

    hil.hlj, nn

    (D

    xi

    )(

    xj

    )=k

    (l

    hilzj

    .hlk

    )

    zk.

    Do ta cng c: (D

    xj

    )(

    xi

    )=k

    (l

    hjlzi

    .hlk

    )

    zk.

    n y, vi ch rng g l metric Kahler nn dng c bn =i

    2hijdzi dzj l ng

    v ch thm rng ma trn (hij) l Hermit nn ta c vi mi i, j, k th:

    hijzk

    =hkjzi

    ,hijzk

    =hikzj

    ,hijzk

    =hjizk

    . (3.2)

    Vy (D

    xj

    )(

    xi

    )=

    (D

    xi

    )(

    xj

    ).

    Tng t nh vy, p dng (3.2) ta cng chng minh c cc ng thc sau:(D

    yj

    )(

    yi

    )=

    (D

    yi

    )(

    yj

    ),

    (D

    xj

    )(

    yi

    )=

    (D

    yi

    )(

    xj

    ),(

    D

    yj

    )(

    xi

    )=

    (D

    xi

    )(

    yj

    ).

    T y d dng thy rng D l khng xon. Vy D l lin thng Levi-Civita. nh l

    c chng minh.

    V Th Minh Phng 34

  • Ti liu tham kho

    [1] Raymond O.Wells, Differential Analysis on Complex Manifolds, Springer-Verlag,

    2000.

    [2] Daniel Huybrechts, Complex Geometry, An Introdution, Springer-Verlag, Berlin,

    2005.

    [3] Claire Voisin, Hodge Theory and Complex Algebraic Geometry, I, Cambridge

    Stud.Adv.Math.76, 2002.

    35