Top Banner
Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory (PV-Lab), 2000 Neuchâtel, Switzerland.
35

Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

Dec 18, 2015

Download

Documents

Lynette Lloyd
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

Photovoltaics

F.-J. HaugEcole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT),

Photovoltaics and Thin Film Electronics Laboratory (PV-Lab),

2000 Neuchâtel, Switzerland.

Page 2: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 2

Outline

• Why Solar Cells?

• How do they work?

• Why thin film silicon solar cells?

• What do we do at PV-Lab?– thin film solar cells on glass and plastic substrates– thin films for wafer-based cells (hetero-junction cells)– transparent conducting oxides– (sensor applications)– (module design and reliability)

Page 3: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 3

The power source: Our Sun

• A low to medium size star

• Heated by fusion(essentially , processes for , etc.)

• Power output: (convert to energy)

• Delivers to the earth

• 10’000 the global energy consumption

Page 4: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 4

Solar irradiation atlas

SolarGIS

Central Europe: ca 1 kW/m2 under clear sky at noonYearly average: 1000 kWh/m2, ca 3 hours every day

Page 5: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 5

The solar spectrum

See www.pvlighthouse.com.au

The solar spectrum resembles white-hot body glowing at T=5700 K• Usually measured with respect to wavelength (use a grating or a prism)• In PV: often necessary to convert to photon energy:

Page 6: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 6

Filtering by atmosphere: air mass (AM)

AM1.5: central Europe

AM2: 30° above horizon

AM3: 20° above horizon

Air mass number: , latitudePV standard: => , central Europe, Canada/US border

AM0: space

AM1: equator

400 600 800 10000.0

0.5

1.0

1.5

2.0 AM0 (data) AM1 AM1.5 (data) AM2 AM3

Spect

ral i

rradia

ton d

ensi

ty (W

/m2nm

)

Wavelength (nm)

WaterOzone

1000 W/m2

integrated: 1366 W/m2

Page 7: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 7

Is 1 kW/m2 a low energy density?

Example Germany: 30% of electricity supply by lignite (brown coal)exploitation in open strip mines

some data for Hambach (Germany): - lower ground water table by 400 m- dislocate 3 villages (2 more planned)- 85 km2 open mine and waste-deposit - 40 Mio tons of coal per year

~7GW electricity

Formation of lignite: 25 Mio y exploitation: 1984-2050

Perspective: solar illumination on 80 km2: 80 GWcover with solar cells of 10% efficiency => 8 GWp (alas, not continuously)

Page 8: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 8

Other “conventional” energy sources

Less obvious, but still impact on large area: dropping ground over coal shafts, shale-gas fracking, deep-sea oil drilling, etc.

MTR (mountain top removal) for Appalachian coal (USA)

Strip mining of tar sands in Alberta (Canada)

Page 9: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 9

Solar electricity (photovoltaics)

Roof top installation (Kaneka a-Si modules)Teplin Airstrip, Germany: 130 MW on 2 km2 installed in 4 months

c.f. Centrale de Gd Dixence: 2 GW, 8 km2 lakes + catchment area

Suitable roof top area in Switzerland: 138 km2 (residential, commercial, etc.)

(IEA)

Page 10: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 10

What is inside a solar cell?

thin film silicon solar cell p-i-n junction

glass

reflecting back electroden-layer

semiconductorabsorber layer

p-layer

transparent front contact

eh

glass

encapsulation

glass

metallic back contact

p-type wafer

n-contact

encapsulation

eh

glass

encapsulation

silicon wafer solar cell p-n junction

Page 11: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 11

What is inside a solar cell?

active part: semiconducting silicon (thin film)(also used: CdTe, CIGS etc.)

glass

glass

encapsulation

glass

n-contact

encapsulation

glass

encapsulation

active part: semiconducting silicon (crystalline)

2-3 μm200-300 μm

Page 12: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 12

What is a semiconductor?

• It’s conducting, but not as good as metals

• Electric conductivity is normally associated with the flow of electrons in metals

• Conductivity in semiconductors is different

• The flow of water can serve as analogue

Page 13: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 13

Conductivity in metals

Flow of electrons similar to flow of waterHorizontal surface, no (very small) potential difference

Analogue:a pond of water

Page 14: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 14

Electronic conductivity in a semiconductor

Winter: the pond is covered with ice

Page 15: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 15

Electronic conductivity in a semiconductor

Winter: the pond is covered with ice

Flow of electrons similar to flow of water (like metals)Difference: Slower movement, needs potential difference

Winter: the pond is covered with ice

Page 16: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 16

Hole conductivity in a semiconductor

Imagine: blow air bubbles under the ice sheet

A new phenomenon, exclusive to semiconductors !Bubbles under the barrier move upwardsIn semiconductors: positive charge carriers called holes

Page 17: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 17

Why semiconductors for solar cells?

• Metals normally reflect light; semiconductors can absorb it

• Absorbed light creates pairs of electrons and holes (water droplets above and bubbles below the ice sheet)

• An electric field between doped regions separates electron-hole pairs (imagine you inclined the ice sheet)

e-

h+

Page 18: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 18

Absorption in semiconductors: bandgap

+

-

-

+

High bandgap:high el. potentiallow current

Low bandgap:low el. potentialhigh current

Photons with energy less than the band gap are not absorbedPhoton energy in excess of band gap is lost to thermalization

𝜂=𝑉 𝑜𝑐 ⋅ 𝑗𝑠𝑐 ⋅ 𝐹𝐹⏟¿ 0.7 ...0.8

Page 19: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 19

Limiting efficiency

0.5 1.0 1.5 2.0 2.50

10

20

30

40

CdTe

CuGaSe2

a-Si

CuInSe2

GaAs

Ge

Si

Effi

cien

cy (

%)

Band gap energy (eV)

certified records: 28.8%: crystalline GaAs (Alta Devices)25.6%: crystalline silicon (Panasonic)20.5%: thin film Cu(In.Ga)Se2, (Solibro)

Theoretical limit of ~33%, optimum bandgap 1.44 eV

Page 20: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 20

Better use of incident light: tandem cells

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Top cell bandgap (eV)

Bot

tom

cel

l ban

dgap

(eV

)

0510152025303540

4 Terminal (no constraint on current matching)

Theoretical limit of ~43%, optimum bandgaps 1.1 and 1.7 eV

certified records (triples): 37.9: crystalline (In,Ga)P/GaAs/(In,Ga)As (Sharp)13.4%: thin film a-Si/nc-Si/nc-Si (LG)

high gap

low gap

glue

Page 21: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 21

Wafers or thin films?Crystalline cells: size determined by wafer

e.g. c-Si:single-crystalline: max 30cm diametermulti-crystalline: typically cut to 15x15 cm2

Thin film modules: size determined by glass and machinery

e.g. thin film silicon tandem modules5.3 m2 (Applied Materials machinery)1.4 m2 (TEL Solar (ex Oerlikon) machinery)

high efficiency – high cost moderate efficiency – low cost

Page 22: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 22

Wafers or thin films?Crystalline material: perfect propertiesexcellent lifetime and collection

Polycrystalline or amorphous materials: defects and grain boundariesrecombination and short lifetime

Electric field: Electric field:

e-

h+

e- e-

h+ h+

e-

h+

Page 23: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 23

Module interconnection

Wafer based: solder cells into strings(e.g. SunPower: 22.4%)

Thin film: 3 x laser scribing during process(e.g. TEL Solar: 12.2%)

SunPower

SaFlex/TEL Solar

Rowell, En. Env. Sci

Page 24: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 24

Thin film advantage

Semi-transparent a-Si modules (Schott)

Colorful TF-Si modules(PV-Lab prototypes)

Page 25: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 25

Thin film advantage

Roof tile laminate(Bressler)

Flexible a-Si modules(Flexcell)

(UniSolar)

Page 26: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 26

Thin film dilemma

PV modules are sold by power, currently:

~0.8 $/W crystalline

~0.6 $/W thin film

3.5$/W in 3.5 y

PV system cost (currently ~5 $/W)

includes items that scale with area

(mount, wiring, labour, etc.)

For given power kWp, a larger area is needed, higher cost takes longer for amortisation

3.5$/W in 3.5 y

Balance of System (BOS)“cost baseline”

Page 27: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 27

PV landscape in Switzerland

PV-Centre

Neuchâtel

dye sensitizedsolar cells

flexible CIGS

3S Laminators

MB wafer sawing

Pasan sun simulators

Roth and Rau (CH)

PV-Labsystens

module testing

PV-Labc-Si, TF-Si

dye cells

inverters

Equipment(end 2014)

Page 28: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 28

What we do at PV-Lab

TF-Sichallenge: weak absorberption especially for long wavelengths (red light)

Solution: add back reflector => 2x absorptionadd texture for scattering => up to 50x

TCOp

i

n

TCO

p-i-n (usually on rigid glass)

Superstrate

(glass)

back reflector

grow

th

Page 29: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 29

Textured ZnO:B electrodes

Requirements:- conductivity: add B-dopant (diborane)- surface texture for light scatteringExamples:

ZnO:B (PV-Lab std.)SnO2:F (commercial, Asahi)

W. Wenas, Jap. J. Appl. Phys (1991)S. Faÿ, EU PV Conf. (2000)

Page 30: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 30

Take care with texturing!

Collision of growth fronts on facets yields defective material !

H. Sakai, Jap. J. Appl. Phys. (1990)Y. Nasuno, Jap. J. Appl. Phys. (2001) M. Python, J. Non-Cryst. Sol., (2008)

Here: μc-Si, but also observed in a-Si

Page 31: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 31

Cells on flexible plastic substrate

Nano-imprinting used for texturing of plastic (here: periodic grating structure)

T. Söderström, Appl. Phys. Lett, (2009)K. Söderström, Prog. in PV, (2010)

J. Escarré, J. Optics, (2012)R. Biron, Sol. En. Mat. (2013)

Page 32: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 32

Heterojunction solar cells

c-Si is a perfect crystal; cell-performance is not bulk- but surface-limited

Intrinsic (undoped) a-Si:H provides excellent passivation of c-Si surface

Charge is extracted through passivating a-Si:H bi-layers

High efficiency cells >22% (certified)

Surfacepassivation

A. Descoedre, EU-PV Conf., (2012)

Page 33: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 33

Research on hetero-junction cells

• Thin a-Si layers: max 5 nm

• Pure a-Si layers: avoid epitaxy on underlying c-Si

• Chemical annealing: alternate SiH4 and H2 plasma

• Other:– Texture etch (avoid sharp valleys)– Highly transparent TCOs (very high transmission at 1100 nm)– Replace screen printing of Ag contacts by galvanic Cu

Page 34: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

34F.-J. Haug – Photovoltaics

• Acknowledgement for funding– Swiss Federal Office for Energy

EU FP6 and FP7, CTI, FNS, CCEM-CH, Swiss Electric Research, Axpo Naturstromfonds, Velux-Stiftung, IBM…

– Bosch, Oerlikon Solar, Pasan, Flexcell, Solvay, Dupont, Metalor,Meyer-Burger (3S Moduletec, Roth and Rau), Indeotec SA, …

• Thanks also to the PV-Lab members

Thanks for your attention

Page 35: Photovoltaics F.-J. Haug Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics.

F.-J. Haug – Photovoltaics 35