Top Banner
Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams , Holger Schneider, J. Mathias Weber JILA, University of Colorado, Boulder, CO 80309-0440 OSU International Symposium on Molecular Spectroscopy June 23, 2009
50

Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Dec 14, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions

Chris L. Adams, Holger Schneider, J. Mathias Weber

JILA, University of Colorado, Boulder, CO 80309-0440

OSU International Symposium on Molecular Spectroscopy

June 23, 2009

Page 2: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Novel Approach to studying intramolecular vibrational relaxation (IVR).

Motivation

Page 3: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

What happens when a photon of hn interacts with an anion with EeBE < hn ?

Motivation

Page 4: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

What happens when a photon of hn interacts with an anion with EeBE < hn ?

1. Direct photoemission of the excess electron.

A- + hn → A + e-

Motivation

Page 5: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

What happens when a photon of hn interacts with an anion with EeBE < hn ?

1. Direct photoemission of the excess electron.

A- + hn → A + e-

2. Vibrational excitation followed by vibrational autodetachment (VAD) of the excess electron.

A- + hn → [A-]* → A + e-

First example: NH- (Lineberger and coworkers, 1985)

Motivation

Page 6: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

• The excess electron is largely localized on the nitro group.

Nitroalkane Anions: A Model System

Page 7: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Nitroalkane Anions: A Model System

• The excess electron is largely localized on the nitro group.

Page 8: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Nitroalkane Anions: A Model System

• The excess electron is largely localized on the nitro group.

• The fundamental CH vibrational transitions have energies in excess of the adiabatic electronic affinity (AEA) ~200 meV (1600 cm-1).

Page 9: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

ZOBS

Dark States

Intramolecular Vibrational Relaxation (IVR)

e-

Page 10: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

MCP detector

Experimental Setup

Page 11: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

2800 3000 3200

0.0

0.5

1.0

1.5

2.0

2.5

Ph

oto

ne

utr

al Y

ield

Photon Energy (cm-1)

IR Spectrum of MeNO2-

Autodetachment spectrum CH3NO2

- + hn CH3NO2 + e-

Page 12: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

MCP detector

Experimental Setup

Page 13: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Ion Beam

Laser Beam Direction

Velocity Map Imaging Photoelectron Spectroscopy (VMIPES)

Page 14: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250

Ph

oto

ele

ctro

n Y

ield

[arb

. un

its]

Pixels

Raw Image Transformed ImageBASEXTransformed Image Integration over emission angles

Photoelectron Spectrum

Example: VMIPES of S- (532 nm)

V. Dribinski et al., RSI 73, 2634 2002.

Page 15: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

2800 3000 3200

0.0

0.5

1.0

1.5

2.0

2.5

Ph

oto

ne

utr

al Y

ield

Photon Energy (cm-1)

IR Spectrum of MeNO2-

Autodetachment spectrum CH3NO2

- + hn CH3NO2 + e-

Page 16: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

What do we expect from the direct photodetachment PES?

Page 17: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Ө = 14° Ө = 0°

Anion Neutral

What is the Geometry of the Anion and the Neutral?

Page 18: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

•The wagging vibration of the neutral should give the most prominent vibrational progression in the PES.

Dominant FCF Active Modes

Page 19: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

•The wagging vibration of the neutral should give the most prominent vibrational progression in the PES.

NO2 Wag ~ 655 cm-1 (81 meV )

Dominant FCF Active Modes

Page 20: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

•The wagging vibration of the neutral should give the most prominent vibrational progression in the PES.

•Upon emission the methyl rotor goes from being hindered to a free rotor.

NO2 Wag ~ 655 cm-1 (81 meV )

Dominant FCF Active Modes

Page 21: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

•The wagging vibration of the neutral should give the most prominent vibrational progression in the PES.

•Upon emission the methyl rotor goes from being hindered to a free rotor.

NO2 Wag ~ 655 cm-1 (81 meV )

Dominant FCF Active Modes

Page 22: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 100 200 300 400

Phot

oele

ctro

n Yi

eld

Binding Energy [meV]

1MeNO2- at 3200 cm-1

Page 23: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

MeNO2-·Ar

3200 cm-1

MeNO2-

3200 cm-1

Peak Assignments – AEA determination

•Peaks are spaced by~ 645 cm-1 (80 meV), corresponding to the wagging motion of the neutral.

Page 24: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

•Peaks are spaced by~ 645 cm-1 (80 meV), corresponding to the wagging motion of the neutral.

•The first prominent peak, located at (172±6) meV, is identified as the origin of the vibrational progression (vanion=0, vneutral=0).

Peak Assignments – AEA determination

MeNO2-·Ar

3200 cm-1

MeNO2-

3200 cm-1

Page 25: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

•Peaks are spaced by~ 645 cm-1 (80 meV), corresponding to the wagging motion of the neutral.

•The first prominent peak, located at (172±6) meV, is identified as the origin of the vibrational progression (vanion=0, vneutral=0).

• Argon solvation shifts the vibrational progression by ~63 meV (508 cm-1).

Peak Assignments – AEA determination

MeNO2-·Ar

3200 cm-1

MeNO2-

3200 cm-1

Page 26: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

Hot band

Peak Assignments – AEA determination

•Peaks observed at binding energies less than 172 meV are identified as hot bands.

MeNO2-·Ar

3200 cm-1

MeNO2-

3200 cm-1

Page 27: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

Peak Assignments – AEA determination

•Peaks observed at binding energies less than 172 meV are identified as hot bands.

•The difference in binding energies of the hot band and origin of the vibrational progression matches the energy of the anionic wag.MeNO2

-·Ar3200 cm-1

MeNO2-

3200 cm-1

Page 28: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 50 100 150 200 250 300 350 400

Binding Energy [meV]

Pho

toel

ectron

Yie

ld

•Peaks observed at binding energies less than 172 meV are identified as hot bands.

•The difference in binding energies of the hot band and origin of the vibrational progression matches the energy of the anionic wag.

•The hot bands are suppressed upon Ar solvation.

Peak Assignments – AEA determination

MeNO2-·Ar

3200 cm-1

MeNO2-

3200 cm-1

Page 29: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Comparison of Experiment and Theory

0 100 200 300 400

electron binding energy [meV]

Franck-Condon Simulation (PESCAL)by Kent M. Ervin

• B3LYP/6-311++G(2df,2p) for anion and neutral geometries

• Independent Harmonic Oscillator Approximation with Duschinsky rotation

• 14 vibrational modes treated in simulation

• CH3 torsion treated separately

Page 30: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

-400 -200 0 200 400

phot

oele

ctro

n yi

eld

[ar.

units

]

relative binding energy [cm-1]

•There exists a pronounced shoulder on all

of the dominant features of the PES

regardless of Ar solvation.

Contribution of Torsion to the PES

Page 31: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

-400 -200 0 200 400

phot

oele

ctro

n yi

eld

[ar.

units

]

relative binding energy [cm-1]

•There exists a pronounced shoulder on all

of the dominant features of the PES

regardless of Ar solvation.

•The direct photodetachment involves a

transition from hindered-to-free methyl

rotor.

Contribution of Torsion to the PES

Page 32: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

-400 -200 0 200 400

phot

oele

ctro

n yi

eld

[ar.

units

]

relative binding energy [cm-1]

•There exists a pronounced shoulder on all

of the dominant features of the PES

regardless of Ar solvation.

•The direct photodetachment involves a

transition from hindered-to-free methyl

rotor.

•This leads to progressions of the free

internal rotor states superimposed on all

transitions

Contribution of Torsion to the PES

Page 33: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

2700 2800 2900 3000

ph

oto

ne

utr

al y

ield

[a

rb. u

nits

]

photon energy [cm-1]

CH Stretching Vibrations

ν13 = 2775 cm-1

ν14= 2922 cm-1

ν15= 2965 cm-1

n14 n15

n13

Autodetachment spectrum CH3NO2

- + hn CH3NO2 + e-

IR Spectrum of MeNO2-

Page 34: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Vibrational Autodetachement Direct Photoelectron Emission

Comparison of Off and On Resonance Images

Page 35: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 100 200 300 400

P

ho

toe

lectr

on

Yie

ld [a

rb. u

nits]

Binding Energy [meV]

Vibrational Autodetachement

Direct Photoelectron emission

Comparison of Off and On Resonance Images

Page 36: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 100 200 300 400

P

ho

toe

lectr

on

Yie

ld [a

rb. u

nits]

Binding Energy [meV]

Vibrational Autodetachement

Direct Photoelectron emission

Comparison of Off and On Resonance Images

Page 37: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 40 80 120 160

po

pu

latio

n [

arb

. u

nits]

energy left in neutral [meV]

On-Resonance Interpretation

Both on-resonant and direct detachment contributions

® subtract contribution of direct photodetachment

0 100 200 300 400

Ph

oto

ele

ctr

on

Yie

ld

Binding Energy [meV]

0 100 200 300 400

Pho

toel

ectr

on Y

ield

Binding Energy [meV]

Page 38: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Compare with vibrational states of the neutral, neglecting torsion

Without Torsion

On-Resonance Interpretation

0 40 80 120 160

po

pu

latio

n [

arb

. u

nits]

energy left in neutral [meV]

Page 39: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 40 80 120 160

po

pu

latio

n [

arb

. u

nits]

energy left in neutral [meV]

With Torsion

On-Resonance Interpretation

Compare with vibrational states of the neutral, including torsion

Page 40: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 40 80 120 160

popula

tion [arb

. units]

energy left in neutral [meV]

Inconsistencies with purely statistical argument.• Some states preferentially occupied• Nonstatistical population

With Torsion

On-Resonance Interpretation

Page 41: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

• Considerable differences between direct detachment and

vibrational autodetachment

Summary

Page 42: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

• Considerable differences between direct detachment and

vibrational autodetachment

• Redistribution of vibrational energy before electron emission

Summary

Page 43: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

• Considerable differences between direct detachment and

vibrational autodetachment

• Redistribution of vibrational energy before electron emission

• Retention of vibrational energy in the molecule, leading to

emission

of low-energy electrons.

Summary

Page 44: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

• Considerable differences between direct detachment and

vibrational autodetachment

• Redistribution of vibrational energy before electron emission

• Retention of vibrational energy in the molecule, leading to

emission

of low-energy electrons.

• Methyl torsion very important for IVR

Summary

Page 45: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Continue the study with the larger nitroalkane chains:

Summary

Page 46: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Continue the study with the larger nitroalkane chains:

• Determine AEA and assign the vibrational features in the direct photodetachment spectra

Summary

Page 47: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Continue the study with the larger nitroalkane chains:

• Determine AEA and assign the vibrational features in the direct photodetachment spectra

• Monitor the evolution of the VAD PES as the site of initial excitation is moved further away from the nitro group

Summary

Page 48: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Acknowledgements

Mathias Weber

Holger Schneider

Jesse Marcum

Kent Ervin (UN Reno)

Carl Lineberger

and the Lineberger Lab

Page 49: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

0 25 50 75 100 125

0

20

40

60

Inte

nsi

ty [a

rb. u

nits]

Energy Left in Neutral Molecule [meV]

On-Resonance Interpretation

NO2 rocking (475 cm-1)

NO2 Wag (603 cm-1)

NO2 Scissor (657 cm-1)

CN stretch (918 cm-1)

2 quanta NO2 rocking (475X2 cm-1)

1 quanta NO2 rocking (475 cm-1) and 1 quanta NO2 Wag (603 cm-1)

CH3 rocking (1096 cm-1)

1 quanta NO2 rocking (475 cm-1) and 1 quanta NO2 Scissor (657 cm-1)

Page 50: Photoelectron Imaging of Vibrational Autodetachment from Nitromethane Anions Chris L. Adams, Holger Schneider, J. Mathias Weber JILA, University of Colorado,

Averaging in the Lab Frame along the Transition Dipole of the CH Stretch Vibration (2775 cm-1)