Top Banner
Phd fellowship funded by the Department of Materials Science on Materials for Energy The student can choose for his Phd thesis any of the experimental or theoretical activities carried out at the Department of Materials Science on the study of materials for solar cells, solid state batteries and supercapacitors, fuel cells, electrochromic devices, hydrogen production and storage. These activities are described at the webpage https://www.mater.unimib.it/en/research/research-areas within the research areas of "Environment and energy materials", "Organic and polymeric materials", and "Microelectronics and photonic materials".
12

Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Feb 18, 2019

Download

Documents

duongnhi
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Phd fellowship funded by the Department of Materials Science on

 Materials for Energy

   The student can choose for his Phd thesis any of the experimental or theoretical activities carried out at the Department of Materials Science on the study of materials for solar cells, solid state batteries and supercapacitors, fuel cells, electrochromic devices, hydrogen production and storage. These activities are described at the webpage https://www.mater.unimib.it/en/research/research-areas within the research areas of "Environment and energy materials", "Organic and polymeric materials", and "Microelectronics and photonic materials".

Page 2: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

                     The  Consortium  Corimav  in  collaboration  with  Pirelli  Tyres        finances  3  fellowships    for  the      Phd  Program  in  Materials  Science  and  Nanotechnology      on  the  projects      1)  Self-­‐assembly  of  Nanoparticles  in  Rubber  Nanocomposites    2)  Study  of  the  Crosslinking  Density  for  Vulcanization  Process    3)  Innovative  Materials  for  Tyre  Application    The   project  will   be   carried   out   both   in   the  University   labs   of   the  Department   of  Materials  Science  and  in  the  laboratories  of  Pirelli  Tyre  under  the  joint  supervision  of    University  and  company    tutors.    For  information    please  contact    -­‐  Dr.  Barbara  di  Credico,  Università  Milano-­‐Bicocca  ([email protected]).  -­‐  Dr.  Raffaella  Donetti,  PIRELLI  TYRE  ([email protected]).          A  description  of  the  three  projects  is  given  below.    

             

   

Page 3: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Self-­‐assembly  of  Nanoparticles  in  Rubber  Nanocomposites    

 University  Supervisor:  Dr.  Barbara  di  Credico  ([email protected])  Pirelli  Supervisors:  Dr.  Luca  Giannini,  Dr.  Luciano  Tadiello    Polymer   nanocomposites   (PNCs),   prepared   by   embedding   nanoparticles   (NPs)   into   a   polymer  matrix,   received   considerable   scientific   and   technological   attention   thank   to   their   excellent  mechanical,   thermal,   electrical   and   gas-­‐barrier   performance   These   interesting   properties   are  critically   dependent   on   i)   the   control   of   the   morphology   of   the   aggregates   at   the   local   scale  within  the  nanocomposite,  ii)  the  interfacial  interactions  between  polymer  and  NPs,  and  iii)  the  geometrical  characteristics  of  the  NPs,  such  as  size  and  shape.    Recently,   the   dramatic   improvements   in   PCNs   properties   have   been  mainly   attributed   to   the  ability   of   filler   NPs   to   self-­‐assemble   into   highly   anisotropic   structures.   The   use   of   anisotropic  NPs,   like   rod-­‐like   silica   and   silicate   nanofibers,   seems   to   be   a   potential   way   of   producing   an  oriented   and   anisotropic   filler   assemblies   (filler   network   structures).   Interestingly,   some  experimental   evidences   suggest   that   also   spherical   NPs,   uniformly   decorated   with   organic  coatings   (e.g.   small   molecules,   biomolecules,   or   polymers),   self-­‐assemble   into   a   variety   of  anisotropic  structures  when  they  are  dispersed  in  the  corresponding  homopolymer  matrix.  In   this   context,   the   PhD   research   activity   aims   at   developing   strategies   for   filler   NPs   self-­‐assembly   in   rubber   nanocomposites   in   order   to   improve   their  mechanical   properties.   On   the  basis   of   recent   publications,   the   anchoring   of   polymers   onto   inorganic   filler   surfaces   will   be  explored  to  prepare  a  new  class  of  hybrid  building  blocks,  which  combine  the  characteristics  of  both  inorganic  NPs,  like  silica  or  silicate,  and  rubber  polymers.    Possible   synthetic   methodologies   (e.g.   one-­‐pot   synthesis,   “grafting   from”   and   “grafting   to”  methods)   will   be   studied   to   prepare   polymer   decorated   NPs.   The   surface   functionality   and  interparticle  interactions  of  fillers  will  be  evaluated  with  respect  to  the  grafting  density,  polymer  length  and  composition,  and  particle  structure,  size  and  shape.  Upon   incorporation   of   polymer   decorated   NPs   in   the   rubber   matrix,   a   comprehensive  investigations  on  the  dispersion  and  assembly  of  grafted  NPs  in  rubber  nanocomposites  will  be  performed  by  means  of  a  plethora  of  characterization  techniques.  The  mechanical  performance  of  new  nanocomposites  will  be  studied  and  related  with  the  dispersion  and  distribution  of  NPs,  before   and   after   the   grafting   of   polymeric   components   that   may   template   or   direct   the   self-­‐assembly  process.    Finally,   the  goal  of   this   research  activity   is   to  design   rubber   systems  with  well-­‐defined   spatial  organization   and   control   the   NPs   assembly   into   architectures   with   desired   complexity   and  functionality  in  order  to  tailor  material  properties  for  tyre  application.          

 

Page 4: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Study  of  the  Crosslinking  Density  for  Vulcanization  Process      University  Tutor:    Prof.  Roberto  Scotti    Pirelli  Supervisors:  Dr  Raffaella  Donetti,  Dr  Antonio  Susanna      The  vulcanization  is  the  final  chemical  step  in  the  tire  production  process,  creating  a  covalent  network  and  hence  fixing  the  geometry  of  the  tire  components  and  adjusting  the  key  characteristics  of  them,  such  as  mechanical  strength  and  resistance,  interaction  with  reinforcing  components  and  major  performance  requirements  as  the  more  environmental  relevant  Rolling  resistance  or  the  more  safety  related  braking  and  handling  performance.      Although  in  particular  the  sulfur  vulcanization  is  an  industrially  consolidated  process,  there  are  still  many  open  questions  regarding  the  reaction  mechanism  itself  and  the  potential  optimization  of  it.  Hence  the  vulcanization  is  still  matter  of  continuous  scientific  research  work.  The  more  complex  the  compound  system  evolves,  the  more  challenging  is  the  control  and  guidance  of  the  vulcanization  process.  In  this  scenario,  the  PhD  research  activity  aims  at  developing  different  vulcanization  agents,  majorly  metal  complexes,  anchored  to  filler  particles.  These  new  vulcanization  agents  target  to  modulate,  by  means  of    their  geometry  and  nature,  both  the  formation  and  spatial  distribution  of  the  crosslinking  sulfur  chains  during  the  vulcanization  process  of  rubber,  starting  with  more  simple  model  systems  and  then  moving  towards  more  complex  and  more  real  compound  compositions.  The  research  activity  which  basically  includes  the  synthesis  on  new  vulcanization  agents  will  be  enhanced  by  the  study  and  investigation  of  the  distribution  and  the  homogeneity  of  the  network-­‐chain  density  in  the  polymer  matrix,  by  a  variety  of  sophisticated  physical  and  chemical  analytical  methods,  such  as  MDR,  DSC,  Mooney–Rivlin,  NMR,  etc.  Finally  it  will  be  related  the  achieved  and  adjusted  crosslink  density,  by  means  of  new  vulcanization  activators  to  the  composite  mechanical  properties.      

Innovative  materials  for  tyre  application    

Multi-­‐functionalized  molecular  systems  for  the  modulation  and  optimization  of  silica-­‐rubber  interaction  

   University  Supervisor:    Prof.  Antonio  Papagni  ([email protected])  Pirelli  Supervisors:  Dr  Luca  Giannini,  Dr  Luciano  Tadiello      In  rubber  nanocomposites  for  tyre  compound  technology,  the  interaction  at  silica-­‐rubber  interface  is  usually  provided  by  the  use  of  coupling  agent  such  as  silane  groups,  creating  covalent  bonds  between  silica  surface  and  polymeric  matrix.  In  this  scenario,  the  aim  of  this  PhD  project  is  to  plan  and  synthesize  multifunctional  molecular  systems  able  to  modulate  and  optimize  the  interaction  at  the  silica-­‐rubber  interface,  exploiting  the  reactivity  of  specific  functional  groups.  Particularly  appealing  are  functional  groups  that  show  a  suitable  reactivity  activated  during  vulcanization  process.  

Page 5: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

     

   

The  Institute  for  Microelectronics  and  Microsystems  (IMM)  of  the  National  Research  Council  (CNR)  

 finances 3 Phd fellowships on the following projects

1) Advanced dielectric stacks for smart power devices: synthesis, characterization and modelling 2) Memristive devices for brain inspired computing

3) Synthesis and isolation of epitaxial Xenes based on group IV-VI elements

 A description of the three CNR-IMM Phd projects is reported in the following pages.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 6: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

     

Advanced  dielectric  stacks  for  smart  power  devices:  synthesis,  characterization  and  modelling    

Supervisor: Dr. Sabina Spiga – CNR-IMM, Unit of Agrate Brianza (MB) ([email protected])

The PhD fellowship is focused on the development of advanced dielectric stacks, based on high-dielectric constant materials, for metal-insulator-metal capacitors suitable for the integration in smart power devices. The activity has a strong industrial interest and is developed in the framework of an EU project under the Horizon 2020 program.

The development of advanced materials, such as high-dielectric constant materials (high-k), has been one of the boosting factors driving the evolution of nanoelectronics in the last 2 decades. High-k dielectrics such as binary and ternary metal oxides (HfO2, ZrO2 and many others) has been used as gate insulator in transistors, as well as functional layers in non-volatile memories, and are today available in commercial products. The atomic layer deposition (ALD) of very thin, conformal and of controlled stoichiometric oxides has definitely been one of the key enablers for this revolution. Today ALD deposited metal oxides are of increasing interest for a variety of new applications, such as Smart Power ICs, MEMS sensors and actuators. This interest calls for further materials research and understanding of the properties of high-k dielectric materials.

The main goal of the PhD program is the development of binary or ternary oxide compounds deposited by ALD having ultra-low leakage current and dielectric constant values in the range 20-40. One of strategies to be explored is the doping of ZrO2 and HfO2 dielectric films to stabilize crystallographic phases exhibiting high-k values. Facilities for the growth of these materials as well as for the fabrication of devices are available in the clean room of the Unit of Agrate Brianza of CNR-IMM; the laboratory is also equipped with advanced characterization techniques for the analysis of the physical, chemical and electrical properties of materials and devices. Further, within the international partnership of the EU project, other materials such as perovskites may be available for extending the study to alternative routes.

The proposed approach include the synthesis of materials, device/material characterization (electrical and physical), as well as the modelling of charge transport properties and defect distribution within the oxides; a commercial specialized software will be made available for the latter purpose.

The student will join a team with an extensive experience in the field and highly committed to expanding knowledge in application-oriented material and device science; she/he will have the chance to develop broad skills ranging from material science to electrical testing and modelling, as well as to enhance her/his expertise in an international framework. Exchange visits with foreign partners will be organized; part of the activity will be carried out in strict collaboration with one of the leading semiconductor industries in Italy and worldwide, with a direct interaction of the student with the company R&D team.

Page 7: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

     

Memristive  devices  for  brain  inspired  computing    

Supervisor: Dr. Sabina Spiga – CNR-IMM, Unit of Agrate Brianza (MB) ([email protected])

The PhD fellowship is focused on the development of memristive devices as new building blocks for advanced brain inspired computing technologies. The activity has a strong interdisciplinary character at the cross-road between materials science, device technology, computer science and neuroscience, and will be carried out in the framework of European Projects and existing international collaborations.

Memristive systems represent a large class of emerging nanoscaled devices that exploits various physical mechanisms to achieve a controlled and persistent conductance variation upon electrical stimuli. Most of the devices have a simple structure where an active organic or inorganic thin layer (e.g. an oxide) is sandwiched between two metal films and can be scaled down to few nanometers. Memristive devices are today of large interest since they can be used to reproduce bio-inspired systems: for example, they can act as dispersed memory elements mimicking the role of synapses in the nervous systems, or as stochastic and non-linear elements of neuronal units. With the further advantage of being compatible with integrated processes of electronic industry, these devices can be used as new building blocks for brain-inspired computing technologies. Thanks to event-driven computation, highly-parallelized non-von Neumann architecture, and spatio-temporal coding, the brain-inspired spiking neural network (SNN) is one of the most promising approach to artificial intelligence. Among the various available memristive technologies, resistance switching memories (RRAM) based on redox reactions and electrochemical phenomena in oxides are very promising because of low power consumption, fast switching times, scalability down to nm scale and CMOS compatibility. For these reasons, RRAM are today investigated as synaptic elements for spiking neural networks.

The main goal of the proposed PhD activity will be the development of RRAM-based nanoscale synapses for spiking neural network. Materials (oxides, nitrides and metals) will be deposited by atomic layer deposition, sputtering and electron beam evaporation; devices will be patterned via optical or electron beam lithography. The electrical testing will be performed both in DC and pulsed regimes to study the switching properties and the evolution of conductance dynamics under various stimuli. Further, modelling of SNN including the developed devices will be performed. Facilities for the growth of materials as well as for the fabrication of devices are available in the clean room of the Unit of Agrate Brianza of CNR-IMM; the laboratory is also equipped with advanced characterization techniques for the analysis of the physical, chemical and electrical properties of materials and devices.

The student will join a team with an extensive experience in the field and internationally positioned in the area of neuromorphic computing; she/he will have the chance to develop broad skills ranging from material science to electrical testing and modelling in an emerging area of research, as well as to enhance her/his expertise in an international framework through the existing collaborations of the hosting group. Exchange visits with international partners (both academic and industrial) will be organized.

Page 8: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

     

Synthesis  and  isolation  of  epitaxial  Xenes  based  on  group  IV-­‐VI  elements  

Supervisor: Dr. Alessandro Molle – CNR-IMM, Unit of Agrate Brianza (MB) ([email protected])

Project(s): XFab (ERC-CoG 2017)

The topic of the PhD thesis will be focused on the development of standardized procedures for the synthesis and processing of new epitaxial Xenes, that is two-dimensional atomically thin crystals made of non-carbon atoms supported by substrates. Xenes have recently come to the research forefront as complementary materials to graphene with X spanning from alternative group IV elements (like silicene, germanene, stanene), to pnictogens (like phosphorene, antimonene, and bismuthene), and chalcogens (like selenene and tellurene). Basic motivation for the Xenes is to outstandingly expand graphene functionalities in nanotechnology.

The research activity will be carried out in the framework of the ERC CoG 2017 grant “XFab” (“Xene fabrication for a new two-dimensional nanotechnology platform”, grant no. 772261) recently assigned to Dr. Alessandro Molle. The project objective is to produce Xene that can be readily integrated into functional devices for applications in nanotechnology. On this background, the identification and isolation of a selected number of Xenes in device-friendly configurations will be a key goal of the PhD activity.

In detail, a specific task will be devoted to the installation of new growth equipment increasing the production capabilities with respect to the current state. A second task will be concerned with the advanced characterization of the grown materials with light- or electron-based spectroscopy enabling the selection of a portfolio of Xenes that will be readily transferred to the device processing step. Overseas exchanges (stages, internships, and access to large-scale facilities) will be scheduled for these purposes.

The overall activity will be pro-actively conducted according to the project roadmap and within a strongly motivated research team (including Researchers, Post-Doc fellows, PhD students). As such, being respectful of project timing and milestones, and working in a team under the coordination of the supervisor will be considered as pre-requisites for the PhD activity.

Page 9: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

               

Istituto per lo Studio delle Macromolecole (ISMAC) of the National Research Council (CNR)

 finances 2 Phd fellowships on the following projects 1) Polymer nanoparticle-based aqueous inks for optoelectronic and electronic device fabrication 2) Innovative additives as viscosity modifiers for energy saving lubricants

 A description of the two CNR-ISMAC Phd projects is reported in the following pages.                                                                                    

                                           

Page 10: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

   Polymer  nanoparticle-­‐based  aqueous  inks  for  optoelectronic    

and  electronic  device  fabrication      Supervisor:  Dr.  Silvia  Destri,  Research  Director      ([email protected])                                                                                    POPLAB  -­‐  Photonics  and  Optoelectronics  Group,  CNR-­‐  ISMAC,  Research  Unit  of    Milano      The   focus   of   this   project   will   be   the   fabrication   of   active   layers   in   electronic   and  optoelectronic   devices   processed   in   aqueous   medium,   exploiting   the   preparation   of  semiconducting   material-­‐based   polymer   nanoparticles.   In   particular,   this   approach   will   be  studied   for   the   preparation   of   organic   solar   cells   (OSCs),  moreover   it   could   be   extended   to  other  kind  of  device  fabrication  (e.g.  OLED,  OFET,  etc).  Water-­‐processable   polymer-­‐based   nanoparticles   can   be   prepared   though   a   miniemulsion  process,   in   which   the   hydrophobic   material   (in   our   case   a   blend   of   p-­‐type   and   n-­‐type  semiconducting   materials)   dissolved   into   an   organic   solvent   immiscible   with   water   and  properly   emulsified   with   an   aqueous   phase   in   order   to   obtain   a   miniemulsion.   Then   the  organic  solvent  can  be  removed  through  a  mild  heating  of  the  so-­‐obtained  miniemulsion,  and  recovered   if   it   is   necessary.   This   approach   leads   to   achieve   stable   colloidal   suspensions   of  nanoparticles  consisting  of  the  starting  material  blend.  The  deposition  and  thermal  treatment  of   these   colloidal   suspensions   allows   to   obtain   homogeneous   and   compact   active   layers.   In  literature  many  papers  reported  on  the  use  of  miniemulsion  approach  using  a  large  amount  of  surfactants   to   stabilize   the   aqueous/organic   solvent   interface.   These   surfactants   display   an  insulating  behavior  and  have  to  be  removed  at  the  end  of  the  procedure  by  means  of  dialysis.  Recently   the   ISMAC-­‐CNR   research   group   developed   the   preparation   of   polymer-­‐based  colloidal   suspensions   through   miniemulsion   approach   using   amphiphilic   rod-­‐coil   block  copolymers,   bearing   a   rigid   block   (a   p-­‐type   semiconducting   polymer)   and   an   hydrophilic  flexible   segment   able   to   interact   with   aqueous  medium,   and   at   the   same   time  with   n-­‐type  fullerene  or  non-­‐fullerene  semiconducting  materials  (DOI  10.1002/adsu.201700155).  Amphiphilic   rod-­‐coil   block   copolymers   are   characterized  by   the   capability   to   self-­‐assemble,  leading  to  make  organized  nanostructures,  under  specific  conditions.  The  hydrophilic  flexible  block  behaves  as  surfactant  thus    ensuring  the  colloidal  suspension  stability,  and  it  interacts  with  the  electron  acceptor  (n-­‐type)  material,  producing  within  the  suspended  nanostructures  pre-­‐aggregated   domains   with   suitable   dimensions   for   the   separation   and   collection   of   the  charges  in  the  device  active  layers.  The  mild  annealing  of  the  water-­‐processed  nanoparticles  provides  thin  films  on  different  substrates  (e.g.  ITO,  PEDOT:PSS,  ZnO,  etc.)  that  will  be  studied  as   active   layers   in   polymeric   solar   cells.   Low   band-­‐gap   copolymers   will   be   considered   as  electron   donor   materials   in   order   to   enhance   the   solar   radiation   absorption.   Possibly  materials   endowed  of   partial   crystallinity   (degree  of   structural   order   in   solid   state)  will   be  selected  to  investigate  the  nanoscale  structural  organization  of  the  p-­‐type  material  within  of  the  water-­‐processable  nanoparticles.   PC71BM  and  other  n-­‐type  macromolecular   compounds  will  be  studied  as  acceptors.  OPV  cell  prototypes  will  be  prepared  on  flexible  substrates  with  the  aim  to  produce  large  area  modules,   thus   the   scale-­‐up   of   the   material   synthesis   and   processing   will   be   tune   in  collaboration  with  the  ENI  researchers.  

Page 11: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Innovative  additives  as  viscosity  modifiers    for  energy  saving  lubricants  

   Supervisor:  Dr.  Laura  Boggioni,  CNR-­‐ISMAC,  Via  E.  Bassini,  Milano                                  ([email protected])  Co-­‐Supervisor:  Dr.  Incoronata  Tritto,  CNR-­‐ISMAC,  Via  E.  Bassini,  Milano                            ([email protected])  University  Tutor:  Prof.  Angiolina  Comotti          The   technological   evolution   of   lubricants   and   in   particular   of   automotive   lubricants   goes  towards  products  that  contribute  to  the  reduction  of  CO2  emissions  through  the  improvement  of  energy  efficiency.  In   this   evolution,   the   lubricant   additives,   such   as   the   Viscosity   Modifiers   (Viscosity   Index  Improvers)  play  a  crucial  role.  The  Viscosity  Modifiers  (VMs)  are  polymeric  additives  used  to  optimize  the  viscosity  of  the  oils  in  all  the  temperatures  range  at  which  VMs  operate.  In  particularly  the  VMs  have  the  function  to  increase   the   viscosity   of   the   oils   at   high   temperature   (thickening   power)   limiting   as   far   as  possible   any   increase   in   low-­‐temperature   viscosity.   These   additives   must   also   be   stable   and  retain  their  functions  when  the  oil  is  employed  in  an  engine.  By  this,  a  good  VM  must  also  have  an  optimal  mechanical  shear  stability.  The  most   common   VMs   additives   are   based   on   ethylene-­‐propylene   linear   copolymers   (OCPs)  and,   although   still   used   in  many   oils,   OCPs   show   signs   of  weakness   in   lubricants   of   advanced  technology,  which  has  to  be  in  compliance  with  the  new  international    specifications  especially  in  terms  of  engine  tests  performances  and  energy  efficiency  (fuel  economy).  It  is  therefore  very  important   to   identify  a  new  class  of  VMs  that  overcomes  the  problems  of  OCPs  and  allows  the  production  of  technologically  advanced  lubricants  with  high  fuel  economy.  The  purpose  of  the  project  is  to  study  and  develop  polymers  characterized  by  better  mechanical  shear  stability,  thickening  efficiency  and  low  temperature  performances  than  OCPs.    The   research   activity   will   concern   the   synthesis   and   the   performance   evaluations   of   new  polymeric  materials  with  singular  structures  such  as  star  shape  or  dendrimer,  containing  a  core  linked  to  arms  based  on  styrene/diene  or  other  copolymers.  This  study  will   include  the  use  of  different   types   of   polymerization   such   as   anionic   or   others,   that  will   be   combined  with   "Arm  First"   or   “Core   First”   techniques.   Polymers   will   be   characterized   by   NMR,   GPC   and   DSC  techniques.    The  project  activities  will  be  carried  out  in  the  ISMAC  laboratories  and  also  in  the  Eni  Research  Center  of  San  Donato  Milanese.                    

Page 12: Phd Materials for Energy - unimib.it di ricerca... · Phd fellowship funded by the Department of Materials Science on ! Materials for Energy !! The student can choose for his Phd

Contratto di apprendistato di alta formazione presso Glass to Power S.r.l Sede di lavoro: Milano

Sviluppo di nanocristalli colloidali a semiconduttore ad elevato Stokes- shift per concentratori solari luminescenti

I concentratori solari luminescenti (LSCs) sono dei dispositivi fotovoltaici composti da una guida d’onda polimerica drogata o ricoperta con fluorofori altamente emissivi. La luce solare diretta e/o diffusa è assorbita dai fluorofori che la riemettono a lunghezze d’onda maggiori all’interno della matrice. La luminescenza è quindi guidata tramite riflessione totale interna fino a raggiungere i bordi della guida d’onda dove è convertita in elettricità da piccole celle fotovoltaiche poste lungo i bordi perimetrali. L’efficienza del dispositivo è determinata da una serie di processi fisici riguardanti sia la matrice sia i fluorofori. Ad esempio, un elevato coefficiente di assorbimento su tutto lo spettro visibile e un’alta resa quantica di fotoluminescenza dei fluorofori sono necessari mentre il riassorbimento della luminescenza da parte dei fluorofori stessi e della matrice, nonché fenomeni di diffusione della luce, comportano perdite di efficienza. Questi requisiti possono essere simultaneamente soddisfatti dai nanocristalli colloidali a semiconduttore (NC) che presentano elevate efficienze di luminescenza, un alto coefficiente di assorbimento su tutto lo spettro visibile e una lunghezza d’onda di emissione selezionabile tramite le dimensioni. Inoltre, a differenza rispetto ai fluorofori organici tradizionali, ingegnerizzando opportunamente i NC, è possibile ottenere un’elevata separazione spettrale tra i profili di assorbimento ottico e di emissione (comunemente indicata col termine Stokes-shift), che riduce drasticamente le perdite ottiche dovute a riassorbimento in particolar modo in LSC di grandi dimensioni. Sulla base di queste potenzialità, Glass to Power è impegnata a industrializzare i processi di sintesi di NC e di fabbricazione di guide d’onda nano-composite basate su polimeri acrilati contenenti NC. Allo stato attuale, nonostante i grandi passi avanti ottenuti recentemente, rimangono aperte problematiche di rilievo principalmente associate all’ottimizzazione dell’efficienza di emissione dei NC, la loro compatibilizzazione con la matrice polimerica e la stabilità delle proprietà ottiche agli iniziatori radicalici utilizzati per la fabbricazione di LSC tramite polimerizzazione in massa. Il progetto sarà quindi focalizzato sullo sviluppo della sintesi di NC con assorbimento ottico esteso su tutto lo spettro visibile e emissione nel vicino infrarosso in modo da ottenere LSC efficienti ed incolori adatti all’integrazione architettonica sotto forma di finestre fotovoltaiche. Saranno quindi investigate varie classi di NC che presentano un elevato Stokes-shift, tra cui semiconduttori ternari, come il CuInS2, calcogenuri binari drogati con impurezze metalliche e i NC di perovskiti di più recente sviluppo. Nuove procedure sintetiche e di passivazione inorganica tramite etero-strutturazione saranno investigate al fine di ottimizzarne l’efficienza di fotoluminescenza e la fotostabilità verso il processo di fabbricazione, limitando comunque il riassorbimento. Per la sintesi colloidale sarà principalmente utilizzata una Schlenk line, mentre la caraterizzazione del materiale sarà focalizzata sull’investigazione delle proprietà ottiche, come l’assorbimento ottico e la fotoluminescenza tramite tecniche in continua e risolte in tempo. Supervisor Universitario: Dott. Angelo Monguzzi, [email protected] Per informazioni: Prof. Sergio Brovelli, [email protected]