Top Banner
PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček
19

PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Dec 18, 2015

Download

Documents

Basil Brown
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

PHASE MATCHING

Janez Žabkar

Advisers: dr. Marko Zgonik dr. Marko Marinček

Page 2: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Introduction

• Motivation

• Basics of nonlinear optics

• Birefringent phase matching

• Quasi phase matching

• Conclusion

Page 3: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Motivation

• An eye-safe laser

• Problems with other laser sources (Er:glass – low repetition rates, diode lasers – small peak powers)

• Recent progress in growing large nonlinear crystals enables efficient conversion

• A basic condition for efficient nonlinear conversion is phase-matching

Page 4: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Nonlinear conversion – second harmonic generation

Page 5: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Nonlinear optics (1)

• EM field of a strong laser beam causes polarization of material:

• The wave equation for a nonlinear medium is:

• And using:• We get:

• Putting in:

Nonlinear opticalcoefficient:d = ε0 χ / 2

Page 6: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Nonlinear optics (2)

• The phase difference between the wave at ω3 and the waves at ω1, ω2 is:

• With the non-depleted pump approximation and condition for conservation of energy:

• We obtain:

Page 7: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Nonlinear optics (3)

• Hence the energy flow per unit area: =1 for ∆k=0

∆k=0

∆k≠0

Page 8: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Birefringent phase matching (1)

Polar diagram showing the dependance of refractive indices on propagation direction in a uniaxial, negative birefringent crystal for type-I phase matching.

type-I phase matching for SHG:

Page 9: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Birefringent phase matching (2)

Polar diagram showing the dependance of refractive indices on propagation direction in a uniaxial, negative birefringent crystal for type-II phase matching.

type-II phase matching for SHG:

Page 10: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Poynting vector walk-off

Page 11: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Birefringent phase matching (3)

Dispersion in LiNbO3. The extraordinary refractive index can have any value between the curves.

Page 12: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Quasi phase matching for SHG

Fundamental field (ω1)

SH polarization of the medium (ω2 = 2ω1)

SH field (ω2) radiated by

SH polarization

Isotropic, dispersive crystal lc = π/∆k, coherence length ∆k=k2-

2k1

Page 13: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Periodically poled crystal

A schematic representation of periodically poled nonlinear crystal.

Nonlinear opticalcoefficient:d = ε0 χ / 2

Page 14: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Performance of quasi phase matching

Recall: growth of the SH field

For perfect birefringent PM (∆k=0) and d(z)=deff:

Where deff is an effective nonlinear coefficient obtained from tensor d for a certain crystal, direction of propagation and polarization:

Example: QUARTZNonzero elements of tensor d: d11 = - d12 = - d26

d14 = - d25

Nonzero elements of tensor d: d11 = - d12 = - d26

d14 = - d25

For ordinary polarization:deff = d11 cos(θ) cos(3φ)

For extraordinary polarization:deff = d11 cos2(θ) sin(3φ) + d14 sin(θ) cos(θ)

Page 15: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Performance of quasi phase matching

perfect periodically poled structurelc

growth of the SH field

We get:

Second harmonic field:

the difference to birefringent PM

Since: →

Page 16: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Performance of quasi phase matching

∆k=0

∆k≠0

QPM

birefingent PM

Page 17: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Some benefits of QPM• The possibility of using largest nonlinear

coefficients which couple waves of the same polarizations, e.g. in LiNbO3:

• Noncritical phase matching with no Poynting vector walk-off for any collinear interaction within the transparency range

• The ability of phase matching in isotropic materials, or in materials which possess too little / too much birefringence

Page 18: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Fabrication of a periodically poled crystal

Page 19: PHASE MATCHING Janez Žabkar Advisers: dr. Marko Zgonik dr. Marko Marinček.

Conclusion

• Phase matching is necessary for efficient nonlinear conversion

• Ideal birefringent PM: intensity has quadratic dependence on interaction length

• QPM: smaller efficiency than birefringent PM (4/π2 factor in intensity)

• Advantages of QPM (larger nonlinear coefficients,...)