Top Banner
Phase Field Method From fundamental theories to a phenomenological simulation method Nele Moelans 24 June 2003
21

Phase Field Method

Nov 14, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Phase Field Method

Phase Field Method

From fundamental theories to a phenomenological simulation method

Nele Moelans24 June 2003

Page 2: Phase Field Method

Outline

• Introduction• Important concepts:

Diffuse interphase-phase field variables

• Thermodynamics of heterogeneous systemsFree energy formulation (C-H) -theoretical derivation-

interpretation

• Kinetics of heterogeneous systemsLinear kinetic theory-conserved versus non-conserved

variables

Page 3: Phase Field Method

Outline

• Phase field microelasticityStress-free strain-Khachaturyan’s approach-generalisation

• Calphad and phase field modeling• Determination of the other parameters

Gradient energy coefficient-kinetic parameters -mechanical parameters

• Conclusions

Page 4: Phase Field Method

Introduction

• Simulation of phase transformations and other microstructural evolutions:– Dendritic solidification, martensitic transformations,

recrystallisation, graingrowth, precipitation, …

• Possible to simulate and to predict arbitrary microstructures

• Straight forward to account for various driving forces:– Chemical free energy, interfacial energy, elastic strain

energy, external fields

Page 5: Phase Field Method

Important concepts

• Diffuse interfaces– Introduced by Cahn and Hilliard

(1958)

– Continous variation in properties accross interfaces of finite thickness

– Free energy for a heterogeneous system:

( )( , , ) , , , ( / ), ( / ), ( / )i i iF c F c c x x xφ η φ η φ η→ ∂ ∂ ∂ ∂ ∂ ∂

Interface

DistancePr

oper

ty

Page 6: Phase Field Method

Important concepts

• Phase field variables– Composition: ci, Ni

• Both phases same structure– spinodal decomposition

– Phase field parameter: φ• Distinction between phases with different structures:

– phase α: φ=0, phase β: φ=1– solidification

– Long range order parameter: η• Ordering:

– disordered phase: η=0, ordered phase: η=η0(c)– Ni-superalloys : γ(disorderd fcc) → γ’(ordered fcc)

• Reduction in crystal symmetry– high symmetry phase: η=0, low symmetry phase: η=η0(c)– martensitic transformation: cubic→tetragonal

NB0 1

f(NB)

f(NB)

NB0 1

α

β

Page 7: Phase Field Method

Thermodynamics of heterogeneous systems

• Free energy formulation (in J):

• Theoretical derivation (Cahn-Hilliard)– f (J/mol) depends on local composition and on composition

of immediate environment – Taylor expansion around f(c,0,0,…) :

with

2 20

1 ( , ) ( ) ( )V

F f c c dVη κ α η = + ∇ + ∇ Ω ∫

2 (1) 20( , ( / ), ( / ),...) ( ) ( / ) ( / )i i j i i ij i j

i ijf c c x c x x f c L c x c x xκ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ + ∂ ∂ ∂∑ ∑

(2)(1/ 2) ( / )( / ) ...ij i jij

c x c xκ + ∂ ∂ ∂ ∂ ∑

0[ / ( / )] ,i iL f c x= ∂ ∂ ∂ ∂(1) 2

0[ / ( / )] ,ij i jf c x xκ = ∂ ∂ ∂ ∂ ∂(2) 2

0[ / ( / ) ( / )]ij i jf c x c xκ = ∂ ∂ ∂ ∂ ∂ ∂ ∂

Page 8: Phase Field Method

Thermodynamics of heterogeneous systems

– Most general mathematical expression

– Cubic or isotropic symmetry

– Hence for a cubic lattice (J/mol):

1 2(1) (2)( ) ( )0, ,

0( ) 0( )i ij ij

i j i jL

i j i jκ κ

κ κ= =

= = =≠ ≠

( )22 20 1 2( , , ,...) ( ) ...f c c c f c c cκ κ∇ ∇ = + ∇ + ∇ +

2 (1) 20( ,( / ),( / ),...) ( ) ( / ) ( / )i i j i i ij i j

i ijf c c x c x x f c L c x c x xκ∂ ∂ ∂ ∂ ∂ = + ∂ ∂ + ∂ ∂ ∂∑ ∑

(2)(1/ 2) ( / )( / ) ...ij i jij

c x c xκ + ∂ ∂ ∂ ∂ ∑

Page 9: Phase Field Method

Thermodynamics of heterogeneous systems

– Total free energy (J):

– Divergence theorem:

– ∇c•n=0 at the boundary ⇒

( )220 1 2

1 ( ) ...V

F f c c c dVκ κ = + ∇ + ∇ + Ω ∫

( ) ( )( ) ( )221 1 1/

V V Sc dV d dc c dV c n dSκ κ κ⇒ ∇ = − ∇ + ∇∫ ∫ ∫ i

( )20

1V

F f c dVκ = + ∇ Ω ∫

( ) ( )1 1S Vc n dS c dVκ κ∇ = ∇ ∇∫ ∫i

Page 10: Phase Field Method

Thermodynamics of heterogeneous systems

• Flat interfase (C-H): – 1D:

– Free energy of a flat interfase:

– Equilibrium:σ minimal

( )20

1 ( ) /B BF A f N dN dx dxκ+∞

−∞ = + Ω ∫

( ) ( )20

1 ( ) / (1 )e eB B B B B Af N dN dx N N dxσ κ µ µ

+∞

−∞ = + − + − Ω ∫

( )21 ( ) /B Bf N dN dx dxσ κ+∞

−∞ = ∆ + Ω ∫

NB0 1

f 0(N

), (J

/mol

)

∆f

NBβNB

α

µBe

µAe

( )2( ) /B Bf N dN dxκ∆ =

[ ]1/ 2

1/ 22 ( )B

B

N

BN

f N dxβ

α

σ κ δ κ= ∆ ⇒ ∝Ω ∫

Distance

Nbα

Nbβ

α

β

Page 11: Phase Field Method

Thermodynamic equilibrium in heterogeneous systems

• η, φ not conserved ⇒

• c conserved ⇒

• Euler’s equation

• ⇒

0Fφ

∂ =∂

F ctec

∂ =∂

20 2 0fF α φφ φ

∂∂ = − ∇ =∂ ∂

20 2fF c ctec c

κ∂∂ = − ∇ =∂ ∂

2 20

1 ( , ) ( ) ( )V

F f c c dVη κ α η = + ∇ + ∇ Ω ∫

( ( )) ( , ( ), '( )) 0( ) '( )F L d LF y x L x y x y x dxy x y dx y x∂ ∂ ∂= ⇒ = − =

∂ ∂ ∂∫

and

Page 12: Phase Field Method

Kinetics of heterogeneous systems

• ci,Ni conserved– Mass balance

– Linear kinetic theory (Onsager)

– Cahn-Hilliard equation

kk

c Jt

∂ = −∇∂

k jkj j

FJ Mc

∂= − ∇∂∑

20 2fc M ct c

κ∂∂ = ∇ ∇ − ∇ ∂ ∂ i

Page 13: Phase Field Method

Kinetics of heterogeneous systems

• η, φ not conserved– Linear Kinetic theory:

• Cahn-Allen equation:

• Time dependant Ginzburg-Landau equation:

• Equivalent formulation: Langevin equations

20 2fd Ldtφ α φ

φ ∂= − − ∇ ∂

20 2fd Ldtη α η

η ∂= − − ∇ ∂

d FLdtη

η∂= −∂

20 2 ( , )fc M c r tt c

κ ζ∂∂ = ∇ ∇ − ∇ + ∂ ∂ i

Page 14: Phase Field Method

Phase field microelasticity theory

• Important for phase transformations in solids

• Elastic contribution to free energy

ε0

tot chem elF F F= + ∫=V

elkl

elijijkl

el dVCF εε21

Page 15: Phase Field Method

Phase field microelasticity theory

• Khachaturyan’s approach → Fel(c,η)– Stress-free strain: εij

0(ck,ηl)

– Elastic strain/total strain:– Total strain is sum of homogeneous and heterogeneous

strains

Homogeneous strain=macroscopic strain

2000 )()( ηεδεε η+∂= ijc

ij rcr)()()( 0 rrr ij

totij

elij εεε −=

∂∂

+∂

∂=∂

→∂

∂+=

i

j

l

iij

ijV ij

ijijtotij

rru

rrur

dVr

rr

)()(21)(

)(

)()(

ε

εε

εεε

Page 16: Phase Field Method

Phase field microelasticity theory

– Mechanical equilibrium is established much faster than chemical equilibrium

• Elasticity theory:

• Extension to elastically inhomogeneous systems:

[ ] [ ])()()()(0)( 0 rrCrCr

rr

ijtotijijkl

elijijkl

elij

j

elij εεεσ

σ−===

∂∂

)(rui

∫=V

elkl

elijijkl

el dVrrcrrcCF ))(),(())(),((21 ηεηε

αβ

αβ

αβ

βα

eqeq

eqijkl

eqeq

eqijklijkl cc

crcC

ccrcc

CrC−−

+−

−=

)()()(

Page 17: Phase Field Method

Generalisation to a phenomenological theory

• Multiple components and multiple phases: ck, φl or ηl

• For condensed matter f(J/mol)≈Gm(J/mol)

⇒CALPHAD approach to obtain free energy expressions

• Interfacial energy

22 22( , ) ( ) ( )

2 2m k l k l

k lVk lm

G cG c dVV

φ κ α φ

= + ∇ + ∇

∑ ∑∫

2 22 2 2 2( , ) ( , )( , ) ( / ) ( / )

2 2pij k l rij k lm k l

p i j r i jVp ij r ijm

c cG cG c x x x x dVV

κ φ α φφ φ

= + ∂ ∂ ∂ + ∂ ∂ ∂

∑∑ ∑∑∫

Page 18: Phase Field Method

CALPHAD and the phase field method

• Transformation α(φ=0)→β(φ=1)

– Calphad:

– Wheeler-Boettinger

• p(φ) smooth function with p(0)=0,p(1)=1, for example

• double well

?),,(10),(),1,(

),(),0,(

TcGTcGTcGTcGTcG

km

kmkm

kmkm

φφ

β

α

→<<=

=

( ) )()()()()()(1),( kkmkmkm cWgcGpcGpcG φφφφ βα ++−=

)23()( 2 φφφ −=p

22 )1()( φφφ −=g

φ0 1

g(φ)

Page 19: Phase Field Method

CALPHAD and the phase field method

• Landau expansion polynomial

– Symmetry (for example cubic→tetragonal phase transformation)

– Calphad:

– Other parameters must be determined by fitting

...)( ++∑ijkl

lkjiijkl cE ηηηη

∑∑∑ +++=ijk

kjiijkij

jiiji

iik cDcCcBcfcf ηηηηηηη )()()()0,(),(

3242 )()()()0,(),(

+++= ∑∑∑k

kk

kk

kk cGcEcCcfcf ηηηη

( ,0) ( )cubicmf c G c≈

Page 20: Phase Field Method

Determination of the other parameters

• The gradient energy coefficient • Experimental measurement of interfacial energy and thickness• From theoretical calculation (starting from regular solution model, first

principles)• Kinetic parameters

– Mobilities in the Cahn-Hilliard equation• Relation between mobilities and diffusivities:• DICTRA-software

– Relaxation parameter in TDGL equation• Very hard to determine

• Elastic parameters– Elastic moduli Cijkl

• From mechanical experiments– Stress-free strains

• Related to the difference in lattice parameters between different phases

FJ Mc

∂= − ∇∂

BB RTMD =

d FLdtη

η∂= −∂

2 20

1 ( , ) ( ) ( )V

F f c c dVη κ α η = + ∇ + ∇ Ω ∫

Page 21: Phase Field Method

Conclusions

• The Phase field method for modeling microstructural evolutions has become very popular

• Achievements– A consistent and general theory (thermodynamics, kinetics) has

been worked out– Simulations for simple cases give promising results– Link with CALPHAD and DICTRA

• Remaining problems: – Systems with multiple components and phases with different

orienations– Determination of the parameters– Computational intensive method