Top Banner
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke
42

PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Apr 29, 2018

Download

Documents

vankien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Phase Equilibrium

Engr 2110 – Chapter 9

Dr. R. R. Lindeke

Page 2: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Topics for Study

� Definitions of Terms in Phase studies

� Binary Systems �Complete solubility (fully miscible) systems

�Multiphase systems

� Eutectics

� Eutectoids and Peritectics

� Intermetallic Compounds

� The Fe-C System

Page 3: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Some Definitions

Component of a system: Pure metals and or compounds of which an

alloy is composed, e.g. Cu and Ag or Fe and Fe3C. They are the

solute(s) and solvent

System: A body of engineering material under investigation. e.g. Ag – Cu

system, NiO-MgO system (or even sugar-milk system)

Solubility Limit: The maximum concentration of solute atoms that may

dissolve in the Solvent to form a “solid solution” at some temperature.

Page 4: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Phases: A homogenous portion of a system that has uniform physical and

chemical characteristics, e.g. pure material, solid solution, liquid solution,

and gaseous solution, ice and water, syrup and sugar.

Microstructure: A system’s microstructure is characterized by the number

of phases present, their proportions, and the manner in which they are

distributed or arranged. Factors affecting microstructure are: alloying

elements present, their concentrations, and the heat treatment of the alloy.

Single phase system = Homogeneous system

Multi phase system = Heterogeneous system or mixtures

Definitions, cont

Page 5: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Figure 9.3 (a) Schematic representation of the one-component phase

diagram for H2O. (b) A projection of the phase diagram information at 1

atm generates a temperature scale labeled with the familiar

transformation temperatures for H2O (melting at 0°C and boiling at

100°C).

Page 6: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Figure 9.4 (a) Schematic representation of the one-component phase

diagram for pure iron. (b) A projection of the phase diagram information

at 1 atm generates a temperature scale labeled with important

transformation temperatures for iron. This projection will become one

end of important binary diagrams, such as that shown in Figure 9.19

Page 7: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Phase Equilibrium: A stable configuration with lowest free-energy (internal energy of

a system, and also randomness or disorder of the atoms or molecules (entropy).

Any change in Temperature, Composition, and Pressure causes an increase in free

energy and away from Equilibrium thus forcing a move to another ‘state’

Equilibrium Phase Diagram: It is a “map” of the information about the control of

microstructure or phase structure of a particular material system. The relationships

between temperature and the compositions and the quantities of phases present at

equilibrium are represented.

Definition that focus on “Binary Systems”

Binary Isomorphous Systems: An alloy system that contains two components that attain

complete liquid and solid solubility of the components, e.g. Cu and Ni alloy. It is the

simplest binary system.

Binary Eutectic Systems: An alloy system that contains two components that has a

special composition with a minimum melting temperature.

Definitions, cont

Page 8: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

With these definitions in mind:

ISSUES TO ADDRESS...

• When we combine two elements... what “equilibrium state” would we expect to get?

• In particular, if we specify... --a composition (e.g., wt% Cu - wt% Ni), and

--a temperature (T ) and/or a Pressure (P) then... How many phases do we get?

What is the composition of each phase?

How much of each phase do we get?

Phase B Phase A

Nickel atom Copper atom

Page 9: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Gibb’s Phase Rule: a tool to define the number of phases and/or degrees of phase changes that can be

found in a system at equilibrium

� For any system under study the rule determines if the system is at equilibrium

� For a given system, we can use it to predict how many phases can be expected

� Using this rule, for a given phase field, we can predict how many independent parameters (degrees of freedom) we can specify

� Typically, N = 1 in most condensed systems – pressure is fixed!

where:

F is # degrees of freedom of the system (independent parameters)

C is # components (elements) in system

P is # phases at equil.

N is # "noncompostional" parameters in system (temp &/or Press

F C P N= − +

ure)

Page 10: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Looking at a simple “Phase Diagram” for

Sugar – Water (or milk)

Page 11: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Effect of Temperature (T) & Composition (Co)

• Changing T can change # of phases:

D (100°C,90)

2 phases

B (100°C,70) 1 phase

See path A to B.

• Changing Co can change # of phases: See path B to D.

Adapted from Fig. 9.1, Callister 7e.

A (20°C,70) 2 phases

70 80 100 60 40 20 0

Temperature (°C

)

Co =Composition (wt% sugar)

L

(liquid solution i.e, syrup)

20

100

40

60

80

0

L (liquid) + S

(solid sugar)

water-

sugar

system

Page 12: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Phase Diagram: A Map based on a System’s Free Energy indicating

“equilibuim” system structures – as predicted by Gibbs Rule

• Indicate ‘stable’ phases as function of T, P & Composition, • We will focus on:

-binary systems: just 2 components.

-independent variables: T and Co (P = 1 atm is almost always used).

Phase Diagram -- for Cu-Ni system

• 2 phases are possible: L (liquid)

α (FCC solid solution)

• 3 ‘phase fields’ are observed:

L

L + α

α

wt% Ni 20 40 60 80 100 0

1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

α

(FCC solid solution) An

“Isomorphic”

Phase System

Page 13: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

wt% Ni 20 40 60 80 100 0 1000

1100

1200

1300

1400

1500

1600 T(°C)

L (liquid)

α (FCC solid solution)

Cu-Ni

phase

diagram

Phase Diagrams:

• Rule 1: If we know T and Co then we know the # and types of all phases present.

• Examples:

A(1100°C, 60): 1 phase: α

B (1250°C, 35): 2 phases: L + α

B (1250°C,35)

A(1100°C,60)

Page 14: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

wt% Ni

20

1200

1300

T(°C)

L (liquid)

α

(solid)

30 40 50

Cu-Ni

system

Phase Diagrams:

• Rule 2: If we know T and Co we know the composition of each phase

• Examples: T A

A

35 C o

32 C L

At T A = 1320°C:

Only Liquid (L) C L = C o ( = 35 wt% Ni)

At T B = 1250°C:

Both α and L

C L = C liquidus ( = 32 wt% Ni here)

C α = C solidus ( = 43 wt% Ni here)

At T D = 1190°C:

Only Solid ( α )

C α = C o ( = 35 wt% Ni )

C o = 35 wt% Ni

adapted from Phase Diagrams

of Binary Nickel Alloys, P. Nash (Ed.), ASM

International, Materials Park, OH, 1991.

B T B

D T D

tie line

4 C α 3

Page 15: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Figure 9.31 The lever rule is a mechanical analogy to the mass-

balance calculation. The (a) tie line in the two-phase region is

analogous to (b) a lever balanced on a fulcrum.

Page 16: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

� Tie line – a line connecting the phases in equilibrium with

each other – at a fixed temperature (a so-called Isotherm)

The Lever Rule

How much of each phase?

We can Think of it as a lever! So to

balance:

ML Mα

R S

RMSM L ⋅=⋅α

L

L

LL

LL

CC

CC

SR

RW

CC

CC

SR

S

MM

MW

−=

+=

−=

+=

+=

α

α

α

α

α

00

wt% Ni

20

1200

1300

T(°C)

L (liquid)

α

(solid)

3 0 4 0 5 0

B T B

tie line

C o

C L C αααα

S R

Page 17: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• Rule 3: If we know T and Co then we know the amount of each phase (given in wt%)

• Examples:

At T A : Only Liquid (L)

W L = 100 wt%, W α = 0

At T D : Only Solid ( α )

W L = 0, W α = 100 wt%

C o = 35 wt% Ni

Therefore we define

wt% Ni

20

1200

1300

T(°C)

L (liquid)

α

(solid)

3 0 4 0 5 0

Cu-Ni

system

T A A

35 C o

32 C L

B T B

D T D

tie line

4 C α 3

R S

At T B : Both α and L

% 733243

3543wt=

−=

= 27 wt%

WL = S

R + S

Wα = R

R + S Notice: as in a lever “the opposite leg” controls with a balance (fulcrum) at the ‘base composition’ and R+S = tie line length = difference in composition limiting phase boundary, at the temp of

interest

Page 18: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

wt% Ni 20

120 0

130 0

3 0 4 0 5 0 110 0

L (liquid)

α

(solid)

T(°C)

A

35 C o

L: 35wt%Ni

Cu-Ni

system

• Phase diagram: Cu-Ni system.

• System is: --binary i.e., 2 components:

Cu and Ni.

--isomorphous i.e., complete

solubility of one

component in

another; α phase

field extends from

0 to 100 wt% Ni.

Adapted from Fig. 9.4, Callister 7e.

• Consider Co = 35 wt%Ni.

Ex: Cooling in a Cu-Ni Binary

46 35

43 32

α : 43 wt% Ni

L: 32 wt% Ni

L: 24 wt% Ni

α : 36 wt% Ni

B α: 46 wt% Ni

L: 35 wt% Ni

C

D

E

24 36

Page 19: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• Cα changes as we solidify.

• Cu-Ni case:

• Fast rate of cooling: Cored structure

• Slow rate of cooling: Equilibrium structure

First α to solidify has Cα = 46 wt% Ni.

Last α to solidify has Cα = 35 wt% Ni.

Cored vs Equilibrium Phases

First α to solidify:

46 wt% Ni

Uniform C α :

35 wt% Ni

Last α to solidify:

< 35 wt% Ni

Page 20: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Cored (Non-equilibrium) Cooling

Notice: The Solidus

line is “tilted” in this non-

equilibrium

cooled environment

Page 21: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

: Min. melting TE

2 components has a ‘special’ composition with a min.

melting Temp.

Binary-Eutectic (PolyMorphic) Systems

• Eutectic transition

L(CE) α(CαE) + β(CβE)

• 3 single phase regions

(L, α, β )

• Limited solubility:

α : mostly Cu

β : mostly Ag

• TE : No liquid below TE

• CE

composition

Ex.: Cu-Ag system

Cu-Ag

system

L (liquid)

α L + α L + β β

α + β

Co , wt% Ag

20 40 60 80 100 0 200

1200 T(°C)

400

600

800

1000

CE

TE 8.0 71.9 91.2 779°C

Page 22: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

L + α L + β

α + β

200

T(°C)

18.3

C, wt% Sn 20 60 80 100 0

300

100

L (liquid)

α 183°C

61.9 97.8

β

• For a 40 wt% Sn-60 wt% Pb alloy at 150°C, find... --the phases present: Pb-Sn

system

EX: Pb-Sn Eutectic System (1)

α + β

--compositions of phases:

CO = 40 wt% Sn

--the relative amount

of each phase (by lever rule):

150

40 Co

11 Cα

99 Cβ

S R

Cα = 11 wt% Sn

Cβ = 99 wt% Sn

W α = Cβ - CO

Cβ - Cα

= 99 - 40

99 - 11 = 59

88 = 67 wt%

S R+S

=

W β = CO - Cα

Cβ - Cα

= R

R+S

= 29

88 = 33 wt% =

40 - 11

99 - 11

Adapted from Fig. 9.8, Callister 7e.

Page 23: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

L + β

α + β

200

T(°C)

C, wt% Sn

20 60 80 100 0

300

100

L (liquid)

α β

L + α

183°C

• For a 40 wt% Sn-60 wt% Pb alloy at 220°C, find... --the phases present: Pb-Sn

system

EX: Pb-Sn Eutectic System (2)

α + L --compositions of phases:

CO = 40 wt% Sn

--the relative amount

of each phase:

W α = CL - CO

CL - Cα

= 46 - 40

46 - 17

= 6

29 = 21 wt%

W L = CO - Cα

CL - Cα

= 23

29 = 79 wt%

40 Co

46 CL

17 Cα

220 S R

Cα = 17 wt% Sn

CL = 46 wt% Sn

Page 24: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• Co < 2 wt% Sn

• Result:

--at extreme ends --polycrystal of α grains

i.e., only one solid phase.

Microstructures In Eutectic Systems: I

0

L + α

200

T(°C)

Co , wt% Sn 10

2%

20 Co

300

100

L

α

30

α + β

400

(room Temp. solubility limit)

TE (Pb-Sn System)

α L

L: Co wt% Sn

α: Co wt% Sn

Page 25: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• 2 wt% Sn < Co < 18.3 wt% Sn

• Result: � Initially liquid

� Then liquid + α

� then α alone

� finally two solid phases

� α polycrystal

� fine β-phase inclusions

Microstructures in Eutectic Systems: II

Pb-Sn

system

L + α

200

T(°C)

Co , wt% Sn 10

18.3

20 0 Co

300

100

L

α

30

α + β

400

(sol. limit at TE)

TE

2 (sol. limit at T room )

L

α

L: Co wt% Sn

α β

α: Co wt% Sn

Page 26: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• Co = CE

• Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

Microstructures in Eutectic Systems: III

160 µm

Micrograph of Pb-Sn eutectic microstructure

Pb-Sn system

L + β

α + β

200

T(°C)

C, wt% Sn

20 60 80 100 0

300

100

L

α β

L + α

183°C

40

TE

18.3

α: 18.3 wt%Sn

97.8

β: 97.8 wt% Sn

CE 61.9

L: Co wt% Sn

45.1% αααα and 54.8% ββββ -- by Lever Rule

Page 27: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Lamellar Eutectic Structure

Page 28: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• 18.3 wt% Sn < Co < 61.9 wt% Sn

• Result: α crystals and a eutectic microstructure

Microstructures in Eutectic Systems: IV

18.3 61.9

S R

97.8

S R

primary α eutectic α

eutectic β

WL = (1- W α ) = 50 wt%

C α = 18.3 wt% Sn

CL = 61.9 wt% Sn S

R + S W α = = 50 wt%

• Just above TE :

• Just below TE :

C α = 18.3 wt% Sn

C β = 97.8 wt% Sn S

R + S W α = = 72.6 wt%

W β = 27.4 wt%

Pb-Sn

system L + β 200

T(°C)

Co, wt% Sn

20 60 80 100 0

300

100

L

α β

L + α

40

α + β

TE

L: Co wt% Sn L α L α

Page 29: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

L + α L + β

α + β

200

Co, wt% Sn 20 60 80 100 0

300

100

L

α β

TE

40

(Pb-Sn System)

Hypoeutectic & Hypereutectic Compositions

160 µm

eutectic micro-constituent

hypereutectic: (illustration only)

β

β β

β β

β

from Metals Handbook, 9th ed., Vol. 9, Metallography and

Microstructures, American

Society for Metals, Materials Park, OH, 1985.

175 µm

α

α

α

α α

α

hypoeutectic: Co = 50 wt% Sn

T(°C)

61.9

eutectic

eutectic: Co = 61.9 wt% Sn

Page 30: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

“Intermetallic” Compounds

Mg2Pb

Note: an intermetallic compound forms a line - not an area -

because stoichiometry (i.e. composition) is exact.

Adapted from Fig. 9.20, Callister 7e.

An Intermetallic Compound is also

an important part of

the Fe-C system!

Page 31: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

� Eutectoid: solid phase in equilibrium with two solid phases

S2 S1+S3

γγγγ αααα + Fe3C (727ºC)

intermetallic compound - cementite

cool

heat

� Peritectic: liquid + solid 1 in equilibrium with a single solid

2 (Fig 9.21)

S1 + L S2

δδδδ + L γγγγ (1493ºC) cool

heat

� Eutectic: a liquid in equilibrium with two solids

L αααα + ββββ

Eutectoid & Peritectic – some definitions

cool heat

Page 32: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Eutectoid & Peritectic

Cu-Zn Phase diagram

Adapted from Fig. 9.21, Callister 7e.

Eutectoid transition δ γ + ε

Peritectic transition γ + L δ

Page 33: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Iron-Carbon (Fe-C) Phase Diagram

• 2 important points

-Eutectoid (B):

γ ⇒ α + Fe3C

-Eutectic (A):

L ⇒ γ + Fe3C

Fe3C (cementite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ

(austenite)

γ +L

γ +Fe3C

α +Fe3C

L+Fe3C

δ

(Fe) Co, wt% C

1148°C

T(°C)

α 727°C = T eutectoid

A

S R

4.30

Result: Pearlite = alternating layers of α and Fe3C phases

120 µm

(Adapted from Fig. 9.27, Callister 7e.)

γ γ γ γ

R S

0.76

C eutectoid

B

Fe3C (cementite-hard)

α (ferrite-soft)

Max. C solubility in γ iron = 2.11 wt%

Page 34: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Hypoeutectoid Steel

Adapted from Figs. 9.24 and 9.29,Callister 7e. (Fig. 9.24 adapted from

Binary Alloy Phase Diagrams, 2nd ed., Vol.

1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH,

1990.)

Fe3C (cementite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ

(austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

(Fe) Co , wt% C

1148°C

T(°C)

α 727°C

(Fe-C System)

C0

0.76

proeutectoid ferrite pearlite

100 µm Hypoeutectoid

steel

R S

α

w α = S /( R + S )

w Fe3C

= (1- w α )

w pearlite = w γ pearlite

r s

w α = s /( r + s ) w γ = (1- w α )

γ γ γ

γ α

α α

γ γ γ γ

γ γ γ γ

Page 35: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Hypereutectoid Steel

Fe3C (cementite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ

(austenite)

γ +L

γ +Fe3C

α +Fe3C

L+Fe3C

δ

(Fe) Co , wt%C

1148°C

T(°C)

α

adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski

(Ed.-in-Chief), ASM International, Materials

Park, OH, 1990.

(Fe-C System)

0.76 Co

proeutectoid Fe3C

60 µm Hypereutectoid steel

pearlite

R S

w α = S /( R + S )

w Fe3C = (1- w α )

w pearlite = w γ pearlite

s r

w Fe3C = r /( r + s )

w γ =(1- w Fe3C )

Fe3C

γ γ

γ γ

γ γ γ γ

γ γ γ γ

Page 36: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Example: Phase Equilibria

For a 99.6 wt% Fe-0.40 wt% C at a temperature

just below the eutectoid, determine the

following:

a) composition of Fe3C and ferrite (αααα)

b) the amount of carbide (cementite) in grams that

forms per 100 g of steel

c) the amount of pearlite and proeutectoid ferrite (αααα)

Page 37: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Solution:

g 3.94

g 5.7 CFe

g7.5100 022.07.6

022.04.0

100xCFe

CFe

3

CFe3

3

3

=

=−

−=

−=

α+ α

α

x

CC

CCo

b) the amount of carbide

(cementite) in grams that

forms per 100 g of steel

a) composition of Fe3C and ferrite (α)

CO = 0.40 wt% C

Cα = 0.022 wt% C

CFe C = 6.70 wt% C 3

Fe3C (cementite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

Co , wt% C

1148°C

T(°C)

727°C

CO

R S

CFe C 3

Cαααα

Page 38: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Solution, cont: c) the amount of pearlite and proeutectoid ferrite (αααα)

note: amount of pearlite = amount of γγγγ just above TE

Co = 0.40 wt% C

Cα = 0.022 wt% C

Cpearlite = Cγ = 0.76 wt% C

γ

γ + α=Co −Cα

Cγ −Cα

x 100 = 51.2 g

pearlite = 51.2 g

proeutectoid α = 48.8 g

Fe3C (cementite)

1600

1400

1200

1000

800

600

400 0 1 2 3 4 5 6 6.7

L

γ (austenite)

γ +L

γ + Fe3C

α + Fe3C

L+Fe3C

δ

Co , wt% C

1148°C

T(°C)

727°C

CO

R S

Cγγγγ Cαααα Looking at the Pearlite: 11.1% Fe3C (.111*51.2 gm = 5.66 gm) & 88.9% α (.889*51.2gm = 45.5 gm)

∴ total α = 45.5 + 48.8 = 94.3 gm

Page 39: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Alloying Steel with More Elements

• Teutectoid changes: • Ceutectoid changes:

Adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)

Adapted from Edgar C. Bain, Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p. 127.)

T Eutectoid (°C)

wt. % of alloying elements

Ti

Ni

Mo Si W

Cr

Mn

wt. % of alloying elements

C eutectoid (wt%

C)

Ni

Ti

Cr

Si Mn

W Mo

Page 40: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Looking at a Tertiary Diagram

When looking at a Tertiary (3 element) P. diagram, like this

image, the Mat. Engineer represents equilibrium phases

by taking “slices at different 3rd

element content” from the 3 dimensional Fe-C-Cr phase

equilibrium diagram

What this graph shows are the increasing temperature of the euctectoid and the decreasing carbon content, and

(indirectly) the shrinking γ phase field

From: G. Krauss, Principles of Heat Treatment of Steels, ASM International, 1990

Page 41: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

Fe-C-Si Ternary

phase diagram at

about 2.5

wt% Si This is the

“controlling Phase

Diagram

for the ‘Graphite‘

Cast Irons

Page 42: PHASE EQUILIBRIA PRESENTATION1 - libvolume2.xyzlibvolume2.xyz/.../phaseequilibria/phaseequilibriapresentation1.pdfdissolve in the Solvent to form a “solid solution” at some ...

• Phase diagrams are useful tools to determine:

-- the number and types of phases,

-- the wt% of each phase,

-- and the composition of each phase

for a given T and composition of the system.

• Alloying to produce a solid solution usually

--increases the tensile strength (TS)

--decreases the ductility.

• Binary eutectics and binary eutectoids allow for

(cause) a range of microstructures.

Summary