Top Banner
Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics Outline: motivation: nucleosynthesis of heavy elements r process path: waiting point N=126 ultra-dense laser-accelerated ion beams novel reaction mechanism: fission-fusion experimental requirements at ELI-NP Peter G. Thirolf, LMU Munich ELI-NP Workshop, Bucharest, March 10-12, 2011
17

Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Jan 13, 2016

Download

Documents

Ralph Alexander
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

The ‘Fission–Fusion‘ Reaction Mechanism:The ‘Fission–Fusion‘ Reaction Mechanism:Using dense laser-driven ion beamsUsing dense laser-driven ion beams

for nuclear astrophysicsfor nuclear astrophysics

Outline: motivation: nucleosynthesis of heavy elements r process path: waiting point N=126

ultra-dense laser-accelerated ion beams novel reaction mechanism: fission-fusion

experimental requirements at ELI-NP

Peter G. Thirolf, LMU Munich

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 2: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

r process: waiting point r process: waiting point N=126N=126

- waiting point N=126: bottleneck for nucleosynthesis of actinides- last region of r process ‘close’ to stability

r process: - path for heavy nuclei far in ‚terra incognita‘ - astrophysical site(s) still unknown: core collapse SN II, neutron star merger ?

Au, Pt, Ir,Os

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 3: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

- cold compression of electron sheet, followed by electron breakout

- dipole field between electrons and ions

- ions + electrons accelerated as neutral bunch (avoid Coulomb explosion)

- solid-state density: 1022 - 1023 e/cm3

‘classical’ bunches: 108 e/cm3

Radiation Pressure AccelerationRadiation Pressure Acceleration

driver laser

ions electronsnmfoil

relativ. electrons at solid density

~ 1014 x density of conventionally accelerated ion beams

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 4: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Exp. Scheme for “Fission-Exp. Scheme for “Fission-Fusion” Fusion”

ELI-NP Workshop, Bucharest, March 10-12, 2011

~ 1 mm Fission fragments

Fusion products

Reaction targetProduction target

CD2: 520 nm

CH2 ~ 70 m

232Th: ~ 50m 232Th: 560 nm

APOLLON laser :

1.2.1023 W/cm2

32 fs, 273 J, 8.5 PW

1.0.1022 W/cm2

32 fs, 23 J, 0.7 PW

focus: ~ 3 m

232Th + p, C → FL + FH : beam-like fission fragments

beam (~ 7 MeV/u): d, C, 232Thtarget: p, C, 232Th

d, C + 232Th → FL + FH : target-like fission fragments

D. Habs, PT et al., Appl. Phys. B, in print

Page 5: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Fission Stage of Reaction Fission Stage of Reaction Scheme Scheme

232Th:<AL> ~ 91, AL ~ 14 amu (FWHM) AL ~ 22 amu (10%)<ZL> ~ 37.5 (Rb,Sr)

FL FH

fission mass distribution:

ELI-NP Workshop, Bucharest, March 10-12, 2011

fusion-evaporation calculations (PACE4): (Z=35,A=102) + (Z=35, A=102): Elab= 270 MeV (E* = 65 MeV) 190Yb (Z=70,N=126): 2.1 mb 189Yb ( N=125): 15.8 mb 188Yb ( N=124): 61.7 mb 187Yb ( N=123): 55.6 mb

Page 6: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Collective Stopping Power Collective Stopping Power ReductionReduction

p

D

D

e

e

e

vk

ke

vm

vm

eZn

dx

dE

lnln4

2

2

2

42eff

binary collisionskD = Debye wave number

long-range collective interactionp = plasma frequency

Bethe-Bloch for individual ion:

reduction of atomic stopping power for ultra-dense ion bunches:

- plasma wavelength (~ 5 nm) « bunch length (~560 nm):

only binary collisions contribute

- „snowplough effect“: first layers of ion bunch remove electrons of target foil - predominant part of bunch: screened from electrons (ne reduced)

reduction of dE/dx : avoids ion deceleration below VC:

allows for thick reaction targets for fusion reactions

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 7: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Exp. Scheme for “Fission-Exp. Scheme for “Fission-Fusion” Fusion”

collective stopping:

~ 1 mm Fission fragments

Fusion products

232Th: ~ 5 mm

CD2: 520 nm

232Th: 560 nm

ELI-NP Workshop, Bucharest, March 10-12, 2011

Reaction targetProduction target

APOLLON laser :

1.2.1023 W/cm2

32 fs, 273 J,8.5 PW

1.0.1022 W/cm2

32 fs, 23 J, 0.7 PW

focus: ~ 3 m

conventional stopping:

~ 1 mm Fission fragments

Fusion products

Reaction targetProduction target

CD2: 520 nm CH2 ~ 70 m

232Th: ~ 50m 232Th: 560 nm

APOLLON laser :

1.2.1023 W/cm2

32 fs, 273 J, 8.5 PW

1.0.1022 W/cm2

32 fs, 23 J, 0.7 PW

focus: ~ 3 m

Page 8: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Fission-Fusion Yield / Laser Fission-Fusion Yield / Laser PulsePulse

laser acceleration (300 J, ~10%): normal stopping reduced stopping

232Th 1.2 . 1011 1.2 . 1011

C 1.4 . 1011 1.4 . 1011

protons 2.8 . 1011 1.8 . 1011

beam-like light fragments 3.7 . 108 1.2 . 1011

target-like light fragments 3.2 . 106 1.2 . 1011

fusion probability 1.8 . 10-4 1.8 . 10-4

FL(beam) + FL (target)

neutron-rich fusion products 1.5 4 . 104

(A≈ 180-190) laser development in progress: diode-pumped high-power lasers: increase of repetition rate expected

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 9: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Towards N=126 Waiting Towards N=126 Waiting PointPoint

r process path: - known isotopes ~15 neutrons away from r process path (Z≈ 70)

0.5 0.1x

visions:- test predictions: r process branch to long-lived (~ 109 a) superheavies (Z≥110) search in nature ?- improve formation predictions for U, Th- recycling of fission fragments in (many) r process loops ?

- lifetime measurements: already with ~ 10 pps

measure: - masses, lifetimes, structure --delayed n emission prob. P,n

0.001fisfus

key nuclei

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 10: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Experimental layoutExperimental layout

high powershort-pulselaser APOLLON

(gas-filled) separator

mirrortarget

concreteshielding

characterization of reaction products - decay spectroscopy

(tape) transport system

detector

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 11: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Experimental layoutExperimental layout

high powershort-pulselaser APOLLON

(gas-filled) separator

mirrortarget

concreteshielding

gas stopping cellcooler/buncher

Penning trapmass measurements (m/m= 10-8)

characterization of reaction products - decay spectroscopy

precision mass measurements: e.g. Penning trap

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 12: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

““The Way Ahead”The Way Ahead”

ELI-NP Workshop, Bucharest, March 10-12, 2011

exploratory experiments :

requirements:

- RPA target chamber - 232Th target development - ion diagnostics: Thomson parabola

- staged approach with tests of crucial ingredients at existing facilities prior to operation of ELI-NP

laser ion acceleration of Th ions collective effects of dense ion bunches (range enhancement)

Page 13: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

ConclusionsConclusions

novel laser ion acceleration (RPA):

- generation of ultra-dense ion bunches - enables fission-fusion reaction mechanism fusion between 2 neutron-rich fission fragments - reduction of electronic stopping ? - may lead much closer towards N=126 r-process waiting point

ELI-NP: unique infrastructure

- superior to ‘conventional’ radioactive beam facilities

The Way Ahead:

- exploratory experiments at existing laser beams (Thorium acceleration, collective range enhancement..) - collaboration has to be formed

ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 14: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Thanks to the Collaboration:Thanks to the Collaboration:

D. Habs (LMU, MPQ)T. Tajima (LMU, JAEA/Kyoto)J. Schreiber (LMU) M. Gross (LMU)A. Henig (LMU)D. Jung (LMU)D. Kiefer (LMU)G. Korn (MPQ)F. Krausz (MPQ, LMU)J. Meyer-ter-Vehn (MPQ)H.-C. Wu (MPQ)X.Q. Yan (MPQ, Univ. Beijing)

B. Hegelich (LANL, LMU)

V. Liechtenstein (Kurchatov Inst., Moscow)

Thank you for your attention !Thank you for your attention !ELI-NP Workshop, Bucharest, March 10-12, 2011

Page 15: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Requirements for E1 @ ELI-NP:Requirements for E1 @ ELI-NP:Floorspace layoutFloorspace layout

ELI-NP Workshop, Bucharest, March 10-12, 2011

production- separation area

measurement area

concrete shielding

18 m

12 m

12 m

15 m

recoil separator:- wide momentum acceptance- gas-filled ?

Page 16: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Experimental Requirements @ ELI-NPExperimental Requirements @ ELI-NP

110 m

12

0 m

ELI-NP Workshop, Bucharest, March 10-12, 2011

E1:laser-induced nuclear reactions

“fission-fusion”

experimental areas

Laser clean rooms

Page 17: Peter G. Thirolf, LMU München The ‘Fission–Fusion‘ Reaction Mechanism: Using dense laser-driven ion beams for nuclear astrophysics for nuclear astrophysics.

Peter G. Thirolf, LMU München

Cost EstimateCost Estimate

ELI-NP Workshop, Bucharest, March 10-12, 2011

component cost estimate:

- laser target chamber: ~ 200 kEUR- recoil separator : ~ 5000 kEUR

- tape station : ~ 150 kEUR- decay detectors : ~ 150 kEUR

- buffer gas cell : ~ 300 kEUR- mass analyzer : ~ 300 kEUR

- electronics, control, data acquisition : ~ 200 kEUR

total: ~ 6.3 MEUR