Top Banner
Thermodynamic and thermoeconomic analysis and optimization of a novel combined cooling and power (CCP) cycle by integrating of ejector refrigeration and Kalina cycles Arak University of Technology – thermodynamic lab Dr. Hajizadeh Reza Barahmand – Sina Amiri Hezaveh rbarahmand.com
34

Performance improvement of ejector expansion refrigeration ...

Mar 24, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Performance improvement of ejector expansion refrigeration ...

Thermodynamic and thermoeconomic analysis and

optimization of a novel combined cooling and power (CCP)

cycle by integrating of ejector refrigeration

and Kalina cycles

Arak University of Technology – thermodynamic lab

Dr. Hajizadeh

Reza Barahmand – Sina Amiri Hezaveh

rbarahmand.com

Page 2: Performance improvement of ejector expansion refrigeration ...

Journal Information

2

Page 3: Performance improvement of ejector expansion refrigeration ...

Table of Contents

1 Introduction to paper

2 Description of cycle

development

3 Results• About abstract

• System description and assumptions

• *chemical Exergy

• Simulation of thermodynamical cycle

• Simulation Test

• Validation of Simulation and Results

4 Conclusions

3

5 Development

Page 4: Performance improvement of ejector expansion refrigeration ...

Introduction to paper1

• Prepose of this cycle

• Kalina cycle (KC)

• Ejector refrigeration cycle (ERC)

4

Page 5: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Inputs

• Assumptions

• Sate points

5

Page 6: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Inputs

6

Page 7: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Assumptions

• Energy

• The energy analysis for each control volume is conducted at steady state condition.

• The refrigerant leaving the condenser, evaporator, and separator outlet is saturated.

• Flow across the expansion valves is isenthalpic.

7

Page 8: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Assumptions

• Exergy

• Since the systems and their components are at rest relative to the environment, the kinetic and potential exergy rates are neglected.

• On account for the rare chemical reactions happening and its negligible value compared with the physical exergy in organic materials, the rate of chemical exergy* is neglected.

• All outer surface of the system is at constant reference temperature. So, the rate of exergy loss is neglected.

8

*chemical Exergy

Page 9: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Assumptions

• Exergy(*chemical Exergy)

9

*chemical Exergy

Energy, Environment AndSustainable Development(book)

N=14.007 g/mol

H=1.007 g/mol

O=15.008 g/mol

…………………………..

Ecch =95.5 kJ/mol

Ecch =0.0027 kJ/kg

chemical Exergy

Page 10: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Dead state

10

"Dead state"

T_0 = 293 [K]

P_0 = 1 [bar]

h_0 = Enthalpy(Water,T=T_0,P=P_0)

// this is only for water

s_0 = Entropy(Water,T=T_0,P=P_0)

// dead states for the NH3H2O defined in each state

Page 11: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Vapor Generator

11

"Vapor generator"

// Mass balance

m_dot_16 = 10 [kg/s]

m_dot_16 = m_dot_17

m_dot_1 = 0.3655 [kg/s]

// Assuming the inlet mass flow rate of the ejector cycle

m_dot_15 = m_dot_1

// Energy balance

// Check it afer EES

T_16 = 473.2 [K]

T_17 = T_16 - 35.4

P_16 = 1.5 [bar]

P_16 = P_17

// The procces inside the VG is constant pressure

// h_16 = Enthalpy(Water,T=T_16,P=P_16)

// h_17 = Enthalpy(Water,T=T_17,P=P_17)

h_16 = 475.8

h_17 = 439.6

T_1 = 463.2 [K]

P_1 = 1750/100 [bar]

// Assumed from the paper

Page 12: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Vapor Generator

12

// the procces inside the VG is constant pressure

x_1 = 0.15

x_15 = x_1

Call NH3H2O(123, T_1, P_1,x_1 : T_100, P_100, x_100, h_1, s_1, u_1, v_1, Qu_1)

// 123=> T_1,P_1,x_1

(m_dot_16*h_16) + (m_dot_15*h_15) = (m_dot_17*h_17) + (m_dot_1*h_1)

// Entroy balance

s_16 = 6.05

s_17 = 5.97

Call NH3H2O(234, P_15, x_15, h_15 : T_15, P_1500, x_1500, h_1500, s_15, u_15, v_15, Qu_15)

// 234=> P_15,x_15,h_15

(m_dot_16*s_16) + (m_dot_16*s_16) + S_dot_gen_vg = (m_dot_17*s_17) + (m_dot_1*s_1)

// Exergy balance

Edxxxvg = S_dot_gen_vg*T_0

ex_16 = (h_16-h_0)-(T_0*(s_16-s_0))

ex_17 = (h_17-h_0)-(T_0*(s_17-s_0))

Call NH3H2O(123, T_0, P_0,x_1 : T_0100, P_0100, x_0100, h_01, s_01, u_01, v_01, Qu_01)

ex_1 = (h_1-h_01)-(T_0*(s_1-s_01))

ex_15 = (h_15-h_01)-(T_0*(s_15-s_01))

(m_dot_16*ex_16) + (m_dot_15*ex_15) = (m_dot_17*ex_17) + (m_dot_1*ex_1) + E_dot_dest_vg

Page 13: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Separator

13

"Seprator"

// Mass balance

m_dot_2 = 0.3827*m_dot_1

m_dot_1 = m_dot_4 + m_dot_2

// Energy balance

P_4 = P_1

// the process is constant pressure

P_2 = P_1

// the process is constant pressure

T_1 = T_4

// the process is constant Temparature

T_1 = T_2

// the process is constant Temparature

Qu_4 = 0

Qu_2 = 1

Call NH3H2O(128, T_4, P_4, Qu_4 : T_400, P_400, x_4, h_4, s_4, u_4, v_4, Qu_400)

Call NH3H2O(128, T_2, P_2, Qu_2 : T_200, P_200, x_2, h_2, s_2, u_2, v_2, Qu_200)

// (m_dot_1*h_1) = (m_dot_2*h_2) + (m_dot_4*h_4)

// Entropy balance

(m_dot_1*s_1) + S_dot_gen_sep = (m_dot_2*s_2) + (m_dot_4*s_4)

// Exergy balance

Edxxxsep = S_dot_gen_sep*T_0

Call NH3H2O(123, T_0, P_0,x_2 : T_0200, P_0200, x_0200, h_02, s_02, u_02, v_02, Qu_02)

Call NH3H2O(123, T_0, P_0,x_4 : T_0400, P_0400, x_0400, h_04, s_04, u_04, v_04, Qu_04)

ex_2 = (h_2-h_02)-(T_0*(s_2-s_02))

ex_4 = (h_4-h_04)-(T_0*(s_4-s_04))

m_dot_1*ex_1 = (m_dot_4*ex_4) + (m_dot_4*ex_4) + Ex_dot_dest_sep

Page 14: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Expander

14

"Expander"

// Mass balance

m_dot_3 = m_dot_2

// Energy balance

P_3 = P_2/1.5

// Pressure ratio of the Exp is 1.5

(m_dot_2*h_2) = (m_dot_3*h_3) + W_dot_exp

// h_3 is calculated from the entropy balance

// Entropy balance

// We used isentropic efficiency of turbine here

s_2 = s_3s

P_3s = P_3

x_2 = x_3

x_3s = x_3

Call NH3H2O(235, P_3s, x_3s, s_3s : T_3s, P_300s, x_300s, h_3s, s_300s, u_3s, v_3s, Qu_3s)

// 235=> P_3s,x_3s,s_3s

// eta_isen_exp: eta_isen_exp = W_real_exp/W_isen_exp

eta_isen_exp = 0.85

eta_isen_exp = (h_2 - h_3)/(h_2 - h_3s)

// eta 0.85 is one of our problem input, we just calculate h_3

Call NH3H2O(234, P_3, x_3, h_3 : T_3, P_300, x_300, h_300, s_3, u_3, v_3, Qu_3)

(m_dot_2*s_2) + S_dot_gen_exp = (m_dot_3*s_3)

// Exergy balance

Edxxxexp = S_dot_gen_exp*T_0

ex_3 = (h_3-h_0)-(T_0*(s_3-s_0))

(m_dot_2*ex_2) = (m_dot_3*ex_3)+W_dot_exp+Ex_dot_dest_exp

Page 15: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ cycle

15

Page 16: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Regenerator

16

"Regenarator"

// Mass balance

m_dot_5 = m_dot_4

m_dot_14 = m_dot_15

// Energy balance

P_5 = P_4

x_5 = x_4

(m_dot_4*h_4) + (m_dot_14*h_14) = (m_dot_5*h_5) + (m_dot_15*h_15)

// Entropy balance

Call NH3H2O(234, P_5, x_5, h_5 : T_5, P_500, x_500, h_500, s_5, u_5, v_5, Qu_5)

(m_dot_4*s_4) + (m_dot_14*s_14) + S_dot_gen_rg = (m_dot_15*s_15) + (m_dot_5*s_5)

// Exergy balance

Exxxrg = S_dot_gen_rg*T_0

ex_5 = (h_5-h_04)-(T_0*(s_5-s_04))

// ex_14 = (h_14-h_01)-(T_0*(s_14-s_01))

(m_dot_4*ex_4) + (m_dot_14*ex_14) = (m_dot_15*ex_15) + (m_dot_5*ex_5) +

E_dot_dest_rg

Page 17: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Expansion valve 1

17

"EX.V 1"

// Change the diagram and codes

// Mass balance

m_dot_7 = m_dot_6

// Energy balance

x_7 = x_6

P_7 = P_6 - 17.487 [kPa]

h_6 = h_7

// Entropy balance

s_6 = s_7

// Exsrgy balance

ex_7 = (h_7-h_04)-(T_0*(s_7-s_04))

(m_dot_6*ex_6) = (m_dot_7*ex_7) + E_dot_dest_exv1

Page 18: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Evaporator

18

"Evaprator"

// Change the diagram and codes

// Mass balance

m_dot_8 = m_dot_7

// Energy balance

x_8 = x_7

T_8 = 283 [K]

// Eva temprature outlet is an Input

P_8 = P_7

Call NH3H2O(123, T_8, P_8, x_8 : T_800, P_800, x_800, h_8, s_8, u_8, v_8, Qu_8)

Q_dot_cooling_eva = m_dot_7*(h_7-h_8)

(m_dot_7*s_7) + S_dot_gen_eva = (m_dot_8*s_8)

// Exergy Balanced

ex_8 = (h_8-h_04)-(T_0*(s_8-s_04))

(m_dot_8*ex_8)+(Q_dot_cooling_eva) = (m_dot_8*ex_8)+Ex_dot_dest_eva

Page 19: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Ejector

19

"Ejector"

// Change the diagram and codes

// Mass balance

m_dot_9 = m_dot_3 + m_dot_8

// Energy balance

// m_dot_9*h_9 = (m_dot_3*h_3) + (m_dot_8*h_8)

h_9 = ((h_3/(1+mu_ejc))+((h_8*mu_ejc)/(1+mu_ejc)))

(m_dot_9*x_9) = (m_dot_3*x_3) + (m_dot_8*x_8)

// Entropy balance

mu_ejc = m_dot_8/m_dot_3

P_9 = 0.3087 [bar]

// Ejectore is designable

Call NH3H2O(234, P_9, x_9, h_9 : T_9, P_900, x_900, h_900, s_9, u_9, v_9, Qu_9)

// Exergy balance

m_dot_9*s_9 = (m_dot_3*s_3)+(m_dot_8*s_8) + S_dot_gen_ejc

// S_dot_gen is alwasye at the inlet side of entropy balance

// Exergy Balanced

Call NH3H2O(123, T_0, P_0,x_9 : T_0900, P_0900, x_0900, h_09, s_09, u_09, v_09, Qu_09)

ex_9 = (h_9-h_09)-(T_0*(s_9-s_09))

(m_dot_9*ex_9) + Ex_dot_dest_ejc = (m_dot_8*ex_8) + (m_dot_3*ex_3)

Page 20: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Expansion valve 2

20

"EX.V 2"

// Change the diagram and codes

// Mass balance

m_dot_11 = m_dot_10

// Energy balance

x_11 = x_10

P_11 = P_9

h_11 = h_10

// Entropy balance

s_11 = s_10

// Exsrgy balance

ex_11 = (h_11-h_04)-(T_0*(s_11-s_04))

(m_dot_11*ex_11) = (m_dot_10*ex_10) + E_dot_dest_exv2

Page 21: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Expansion valve 1,2

21

"Valve"

m_dot_6 = 0.11*m_dot_5

m_dot_5 = m_dot_10 + m_dot_6

// Energy balance

P_6 = P_5

P_10 = P_5

x_6 = x_5

x_10 = x_5

h_6 = h_5

h_10 = h_5

// Entropy balance

s_10 = s_5

s_6 = s_5

// Exergy balance

ex_10 = ex_5

ex_6 = ex_5

Page 22: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Mixer

22

"Mixer"

// Mass balance

x_12 = x_1

m_dot_12 = m_dot_11 + m_dot_9

// Energy balance

m_dot_12*h_12 = (m_dot_11*h_11)+(m_dot_9*h_9)

// Entropy Balanced

P_12 = P_9

Call NH3H2O(234, P_12, x_12, h_12 : T_12, P_1200, x_1200, h_1200, s_12, u_12,

v_12, Qu_12)

m_dot_12*s_12 = (m_dot_11*s_11) + (m_dot_9*s_9) + S_dot_gen_mix

// Exergy Balanced

ex_12 = (h_12-h_01)-(T_0*(s_12-s_01))

m_dot_12*ex_12 = (m_dot_11*ex_11)+(m_dot_9*ex_9)+Ex_dot_dest_mix

Page 23: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ Condenser

23

"Condenser - Water"

// Mass balance

m_dot_13 = m_dot_12

m_dot_18 = 19.73 [kg/s]

m_dot_19 = m_dot_18

// Energy balance

x_13 = x_15

Qu_13 = 0

Q_dot_cond = m_dot_12*(h_12 - h_13)

// Saturated Liquid

P_13 = P_12

P_18 = 1 [bar]

P_19 = P_18

T_18 = 293.2 [K]

T_19 = T_18 + 5

Call NH3H2O(238, P_13, x_13, Qu_13 : T_13, P_1300, x_1300, h_13, s_13, u_13, v_13, Qu_1300)

ex_13 = (h_13-h_01)-(T_0*(s_13-s_01))

// Condenser pinch point is given

Page 24: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ pump

24

"Pump "

// Mass balance

// m_dot_14 = m_dot_13

// Energy balance

P_14 = 17.5 [bar]

// pressures after pumps and turbines are known and is constant

(m_dot_13*h_13)+(W_dot_pump) = m_dot_14*h_14

// h_14 is calculated from the entropy balance

// Entropy balance

// We used isentropic efficiency of pump here

s_13 = s_14s

P_14s = P_14

x_14 = x_13

x_14s = x_14

Call NH3H2O(235, P_14s, x_14s, s_14s : T_14s, P_14s00, x_14s00, h_14s, s_14s00, u_14s, v_14s, Qu_14s)

// eta_isen_pump: eta_isen_pump = W_isen_pump/W_real_pump

// eta_isen_pump = 0.85

eta_isen_pump = 0.85

eta_isen_pump = (h_14s - h_13)/(h_14 - h_13)

// eta 0.85 is one of our problem input, we just calculate h_14

// s_14

Call NH3H2O(234, P_14, x_14, h_14 : T_14, P_1400, x_1400, h_1400, s_14, u_14, v_14, Qu_14)

// Exergy balance

ex_14 = (h_14-h_01)-(T_0*(s_14-s_01))

(m_dot_13*ex_13)+(W_dot_Pump) = (m_dot_14*ex_14)+Ex_dot_dest_Pump

Page 25: Performance improvement of ejector expansion refrigeration ...

System description and assumptions2

• Sate points

❑ cycle

25

Page 26: Performance improvement of ejector expansion refrigeration ...

Results 2

• plots

❑ The effect of vapor generator pressure on the cooling output, net power output, thermal efficiency, exergy efficiency, and SUCP of the system.

26

Page 27: Performance improvement of ejector expansion refrigeration ...

Results 2

• plots

❑The effect of vapor generator temperature on the cooling output, net power output, thermal efficiency, exergy efficiency, and SUCP of the system.

27

Page 28: Performance improvement of ejector expansion refrigeration ...

Results 2

• plots

• The effect of evaporator temperature on the cooling output, net power output, thermal efficiency, exergy efficiency, and SUCP of the system

28

Page 29: Performance improvement of ejector expansion refrigeration ...

Results 2

• plots

❑The effect of ammonia concentration on the cooling output, net power output, thermal efficiency, exergy efficiency, and SUCP of the system.

29

Page 30: Performance improvement of ejector expansion refrigeration ...

Conclusion4

• Conclusion

30

Page 31: Performance improvement of ejector expansion refrigeration ...

Development5

31

Page 32: Performance improvement of ejector expansion refrigeration ...

Development5

32

Generator → Vaper Generator

Page 33: Performance improvement of ejector expansion refrigeration ...

Development5

33

W_dot_net = 750 kW

Q_cooling is same with Ejector cycle