Top Banner
Fundamentals of Fluid Film Lubrication Hamrock, Schmid & Jacobson ISBN No. 0-8247-5371-2 Toroidal Vortex Flow Figure 7.1 Toroidal vortex flow in a journal bearing. Conditions for vortex flow: Taylor Number: Reynolds Number:
52

performance characteristics of multilobe bearing

Jan 16, 2016

Download

Documents

Dharmendra Jain

mathematical modeling of multilobe bearing.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Toroidal Vortex Flow

Figure 7.1 Toroidal vortex flow in a journal bearing.

Conditions for vortex flow:

Taylor Number:

Reynolds Number:

Page 2: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Mass Flow

Figure 7.1 Mass flow through rectangular-section control volume. (a) x-y plane; (b) y-z plane; (c) x-y plane. [From Hamrock and Dowson (1981).]

Page 3: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation

Page 4: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.3 Density wedge. Figure 7.4 Stretch mechanism.

Page 5: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.5 Physical wedge mechanism.Figure 7.6 Normal squeeze mechanism.

Page 6: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Equation Terms

Figure 7.7 Translation squeeze mechanism.

Figure 7.8 Local expansion mechanism.

Page 7: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Possible Motion in Bearings

Figure 7.9 Normal squeeze and sliding velocities.

Page 8: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Possible Motion in Bearings

Figure 7.9 Normal squeeze and sliding velocities.

Page 9: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Surface Slider Bearing

Figure 8.1 Velocity profiles in a parallel-surface slider bearing.

Page 10: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Flow in Inclined Slider

Figure 8.2 Flow within a fixed-incline slider bearing (a) Couette flow; (b)

Poiseuille flow; (c) resulting velocity profile.

Page 11: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Thrust Bearing

Figure 8.3 Thrust bearing geometry.Figure 8.3 Force components and oil film geometry in a hydrodynamically lubricated thrust sector.

Page 12: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Surface Bearing

Figure 8.5 Parallel-surface slider bearing.

Page 13: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Bearing

Figure 8.6 Fixed-incline slider bearing.

Figure 8.7 Pressure distributions of fixed-incline slider bearing.

Page 14: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.8 Effect of film thickness ratio on normal load-carrying capacity.

Figure 8.9 Effect of film thickness ratio on force components.

Page 15: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.10 Effect of film thickness ratio on friction coefficient parameter.

Figure 8.11 Effect of film thickness ratio on dimensionless volume flow rate.

Page 16: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Bearing Results

Figure 8.12 Effect of film thickness ratio on dimensionless adiabatic temperature rise.

Figure 8.13 Effect of film thickness ratio on dimensionless center of pressure.

Page 17: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Streamlines in Fixed-Incline Slider Bearing

Figure 8.14 Streamlines in fixed-incline bearing at four film thickness ratios Ho. (a) Ho =2; (b) Ho =1 (critical value).

Page 18: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Streamlines in Fixed-Incline Slider Bearing

(cont.)

Figure 8.14 Concluded. (c) Ho = 0.5; (d) Ho = 0.25.

Page 19: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step Bearing

Figure 8.15 Parallel-step slider bearing.

Page 20: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step Pad Slider Bearing

Figure 9.1 Finite parallel-step-pad slider bearing.

Page 21: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Page 22: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Page 23: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel-Step-Pad Bearing Results

Figure 9.3 Shrouded-step slider bearings. (a) Semicircular step; (b) truncated triangular step.

Page 24: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline-Pad Slider Bearing

Figure 9.4 Side view of fixed-incline-pad bearing. [From Raimondi and Boyd (1955).]

Figure 9.5 Configurations of multiple fixed-incline-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 25: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Film Thickness for Given Surface Finish

Page 26: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.6 Chart for determining minimum film thickness corresponding to

maximum load or minimum power loss for various pad proportions - fixed-incline-pad

bearings. [From Raimondi and Boyd (1955).]

Page 27: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.7 Chart for determining minimum film thickness for fixed-incline-pad thrust bearings. [From Raimondi and Boyd (1955).]

Page 28: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.8 Chart for determining dimensionless temperature rise due to viscous shear heating of lubricant in fixed-incline-pad thrust bearings. [From Raimondi and Boyd (1955)]

Page 29: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.9 Chart for determining performance parameters of fixed-incline-pad thrust bearings. (a) Friction coefficient; (b) power loss. [From Raimondi and Boyd (1955)].

Page 30: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Slider Results

Figure 9.9 Concluded. (c) Lubricant flow; (d) lubricant side flow.

Page 31: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Bearing

Figure 9.10 Side view of pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Figure 9.11 Configuration of multiple pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 32: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.12 Chart for determining pivot location corresponding to maximum load or minimum power loss for various pad proportions - pivoted-pad bearings. [From Raimondi and Boyd (1955).]

Page 33: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.13 Chart for determining outlet film thickness for pivoted-pad thrust bearings. [From Raimondi and Boyd (1955).]

Figure 9.14 Chart for determining dimensionless temperature rise due to viscous shear heating of lubricant for pivoted-pad thrust bearing. [From Raimondi and Boyd (1955).]

Page 34: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.15 Chart for determining performance parameters for pivoted-pad thrust bearings. (a) Dimensionless load; (b) friction coefficient. [From Raimondi and Boyd (1955).]

Page 35: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Pivoted-Pad Slider Results

Figure 9.15 Concluded. (c) Lubricant flow; (d) lubricant side flow; (e) power loss.

Page 36: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Journal Bearing

Figure 10.1 Hydrodynamic journal bearing geometry.

Figure 10.2 Unwrapped film shape in a journal bearing.

Page 37: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Sommerfeld Angle

Page 38: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Full Sommerfeld Solution

Figure 10.3 Pressure distribution for full Sommerfeld solution.

Sommerfeld substitution:

Pressure distribution:

Maximum pressure:

Page 39: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Forces for Sommerfeld Solution

Figure 10.4 Coordinate system and force components in a journal bearing.

Figure 10.5 Vector forces acting on a journal.

Page 40: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Reynolds Boundary Condition

Figure 10.6 Location of shaft center for full and half Sommerfeld journal bearing solutions.

Figure 10.7 Pressure profile for a journal bearing using Reynolds boundary condition.

Page 41: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Hydrodynamic Journal Bearings

Figure 11.1 Pressure distribution around a journal bearing.

Sommerfeld number:

Diameter-to-width ratio:

Page 42: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Film Thickness and Eccentricity

Figure 11.2 Effect of bearing number on minimum film thickness for four diameter-to-width ratios. [From Raimondi and Boyd (1958)].

Page 43: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Attitude Angle

Figure 11.3 Effect of bearing number on attitude angle for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 44: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Friction Coefficient

Figure 11.4 Effect of bearing number on friction coefficient for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 45: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fluid Flow

Figure 11.6 Effect of bearing number on volume side flow ratio for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Figure 11.5 Effect of bearing number on dimensionless flow rate for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 46: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Maximum Pressure & Location

Figure 11.8 Effect of bearing number on location of terminating and maximum pressures for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Figure 11.7 Effect of bearing number on dimensionless maximum film pressure for four diameter-to-width ratios. [From Raimondi and Boyd (1958).]

Page 47: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Effect of Radial Clearance

Figure 11.9 Effect of radial clearance on some performance parameters for a particular case.

Page 48: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Fixed-Incline Pad Journal Bearings

Page 49: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Effect of Preload

Figure 11.11 Effect of preload factor mp on two-lobe bearings. (a) Largest shaft that fits in bearing. (b) mp =0; largest shaft, ra; bearing clearance cb = c. (c) mp =1.0; largest shaft, rb; bearing clearance cb =0. [From Allaire and Flack (1980).]

Page 50: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Hydrodynamic Squeeze Film Bearings

Figure 12.2 Journal bearing with normal squeeze film action. Rotational velocities are all zero.

Figure 12.1 Parallel-surface squeeze film bearing.

Page 51: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Parallel Circular Plate

Figure 12.3 Parallel circular plate approaching a plane surface.

Load support:

Time of approach:

Page 52: performance characteristics of multilobe bearing

Fundamentals of Fluid Film LubricationHamrock, Schmid & JacobsonISBN No. 0-8247-5371-2

Rigid Cylinder

Figure 12.4 Rigid cylinder approaching a plane surface.

Load support:

Time of approach: