Top Banner
Performance Analysis of Tandem-L Mission for Modeling Volcanic and Seismic Deformation Sources Homa Ansari 1,2 Kanika Goel 1 , Alessandro Parizzi 1 , Henriette Sudhaus 3 , Nico Adam 1 , Michael Eineder 1,2 > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de Chart 1 (1) German Aerospace Center (DLR) (2) Technical University of Munich (TUM) (3) University of Potsdam Technical University of Munich
31

Performance Analysis of Tandem-L Mission for Modeling ...seom.esa.int/fringe2015/files/presentation213.pdfModelling Precision-Okada II DLR.de • Chart 15 > Tandem-L Performance Analysis

Oct 19, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Performance Analysis of Tandem-L Mission for Modeling Volcanic and

    Seismic Deformation Sources

    Homa Ansari 1,2

    Kanika Goel 1, Alessandro Parizzi 1, Henriette Sudhaus 3, Nico Adam 1 , Michael Eineder 1,2

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 1

    (1) German Aerospace Center (DLR) (2) Technical University of Munich (TUM) (3) University of Potsdam

    Technical

    University

    of Munich

  • The Proposed Tandem-L Mission

    • Systematic monitoring of dynamic processes of the Earth

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 2

    Data Characteristics

    Wide Swath ~ 350 [km]

    High Resolution Rg.: 85 , 20 + 5 [MHz]

    Az. : 3 , 10 [m]

    Coherent Revisit 16 [Days]

    Wavelength ~ 24 [cm]

  • Tandem-L Coverage for Seismology and Volcanos

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 3

    • Biomass/forest areas

    • High strain areas (Twice in 16 days)

    • Volcanos (Twice in 16 days)

  • Why performance analysis

    • Assessing the geometric acquisition modes in deformation monitoring

    In particular: Do we need the expensive left-looking acquisition mode for better precision?

    • Assessing the performance of InSAR in deformation source modeling

    • Having a flavor of the significance of different InSAR noise components on the modeling

    • The achievable precision of the L-band data

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 4

    Satellite ground track

    Antenna right looking swath

    Antenna left looking swath

  • Why performance analysis

    • Assessing the geometric acquisition modes in deformation monitoring

    In particular: Do we need the expensive left-looking acquisition mode for better precision?

    • Assessing the performance of InSAR in deformation source modeling

    • Having a flavor of the significance of different InSAR noise components on the modeling

    • The achievable precision of the L-band data

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 5

  • Deformation Source Modeling with InSAR

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 6

    𝑑 → 𝑑𝐿𝑂𝑆

    Differential InSAR Geophysical model

    © ESA, Bam EQ

    𝑥7

    𝑥3

    𝑥4

    𝑥1

    𝑑 = 𝐺(𝑥 )

    Parameter Estimation : 𝒙 = 𝐺−1 𝑑𝐿𝑂𝑆

    𝒙 =

    𝑥1𝑥2⋮𝑥𝑛

    → Precision assessment: 𝒑𝒅𝒇(𝒙 )

  • Volcanic Modelling

    • Point source model: (Mogi)

    • Location of the centroid:

    East

    North

    Depth

    • Volume change inside the spherical chamber

    Δ𝑉

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 7

    centroid

    Depth

    Δ𝑉

  • Seismic Modelling

    Rectangular dislocation model: (Okada)

    Fault plane parameters

    Location: east, north, depth

    Extension: width, length

    Orientation: strike, dip

    Fault displacement parameters

    Magnitude of the relative displacement: slip

    Direction of the displacement: rake

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 8

    Depth

    dip

    strike width

    hypocenter

  • Precision Assessment

    • First order reliability method: 𝑗𝑖,𝑘 = 𝜕𝑑𝑖/𝜕𝑥𝑘

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 9

    1. Geometric assessment: (Acquisition and Ground Motion ) 𝑄𝑥 = 𝐽 . 𝐽𝑇

    2. Stochastic assessment: (InSAR noise) 𝑄𝑥 = 𝐽. 𝑄𝐼𝑛𝑆𝐴𝑅 . 𝐽𝑇

    𝑄𝑥 =

    𝜎21,1 𝜎1,2 … 𝜎1,𝑛

    𝜎2,1 𝜎22,2 … 𝜎2,𝑛

    ⋮𝜎𝑛,1

    ⋮𝜎𝑛,2

    ⋱…

    ⋮𝜎2𝑛,𝑛

    → 𝑄𝑖,𝑗 = 𝜎2𝑖,𝑖 𝜎𝑖,𝑗

    𝜎𝑖,𝑗 𝜎2𝑗,𝑗

    → Eigen Value Analysis →

    Error ellipses: cross section of the bivariate Gaussian distribution

    • Approximations: Gaussian pdf, linearization

  • Geometric Performance (Acquisition and Ground Motion)

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 10

  • InSAR Sensitivity to 3D Deformation

    • Single-aspect InSAR : Projection of 3D deformation on LOS

    𝑑𝐿𝑜𝑆 = 𝑒 𝐿𝑂𝑆 . 𝑑

    𝑒 𝐿𝑜𝑆 = −sin 𝜃 cos 𝛼 sin 𝜃 sin 𝛼

    cos 𝜃 , 𝑑 =

    𝑑𝑒𝑑𝑛𝑑𝑢

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 11

    Near-polar sun-synchronous orbit Min sensitivity to the north component

    • Multi-aspect fusion : improving the sensitivity to 3D motion

    Scenario Heading ang.: α Incidence ang.: θ Mode

    Single aspect -12° 43° Asc. R.

    Multi-aspect Right looking -12° 43° Asc. R.

    -168° 43°, 23° Desc. R.

    Multi-aspect Left/Right looking

    -12° 43° Asc. R.

    -168° 43° Desc. R.

    -12 -23° Asc. L.

    -168 -23° Desc. L.

    Normalization by the number of

    measurements

    ↓ Isolating the effect of geometry

  • Modelling Precision-Mogi

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 12

    -500 0 500-1000

    -500

    0

    500

    1000

    East Coor.

    No

    rth

    Co

    or.

    -500 0 500-1000

    -500

    0

    500

    1000

    East Coor.

    Dep

    th

    -500 0 500-2

    -1

    0

    1

    2x 10

    6

    East Coor.

    Vo

    lum

    e C

    han

    ge

    -1000 -500 0 500 1000-1000

    -500

    0

    500

    1000

    North Coor.

    Dep

    th

    -1000 -500 0 500 1000-2

    -1

    0

    1

    2x 10

    6

    North Coor.

    Vo

    lum

    e C

    han

    ge

    -1000 0 1000-2

    0

    2x 10

    6

    Depth

    Vo

    lum

    e C

    han

    ge

    Single Aspect

    Multi Aspect Right

    Multi Aspect Left/Right

    Single Aspect Multi Aspect Right Multi Aspect Left/Right175

    180

    185

    ST

    D [

    m]

    East Coor

    Single Aspect Multi Aspect Right Multi Aspect Left/Right190

    200

    210

    ST

    D [

    m]

    North Coor

    Single Aspect Multi Aspect Right Multi Aspect Left/Right230

    240

    250

    ST

    D [

    m]

    Depth

    Single Aspect Multi Aspect Right Multi Aspect Left/Right5.5

    6

    6.5x 10

    5

    ST

    D [

    m3]

    Volume Change

    Simulated source parameters: [east, north, depth, Volume change] = [0, 0, 3 km, 6 × 106 m³]

  • Modelling Precision-Okada I

    • Asymmetric horizontal deformation pattern governed by fault and slip orientation: strike, dip, rake

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 13

    Defo

    rmati

    on

    [m

    ]

    0

    0.2

    0.4

    0.6

    0.8

    1

    Defo

    rmati

    on

    [m

    ]

    0

    0.2

    0.4

    0.6

    0.8

    1

    First case: strike, dip, rake = 90°, 26°, 90° Second case: strike, dip, rake = 0°, 50°, 90°

    Min North Deformation Max North Deformation

    Simulated Source

    Parameters

    Mw 7

    Depth 5.5 [km]

    Length 20 [km]

    Width 11 [km]

    Slip 5 [m]

  • Modelling Precision-Okada I

    • Asymmetric horizontal deformation pattern governed by fault and slip orientation: strike, dip, rake

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 14

    Defo

    rmati

    on

    [m

    ]

    0

    0.2

    0.4

    0.6

    0.8

    1

    Defo

    rmati

    on

    [m

    ]

    0

    0.2

    0.4

    0.6

    0.8

    1

    First case: strike, dip, rake = 90°, 26°, 90° Second case: strike, dip, rake = 0°, 50°, 90°

    Min North Deformation Max North Deformation

    Simulated Source

    Parameters

    Mw 7

    Depth 5.5 [km]

    Length 20 [km]

    Width 11 [km]

    Slip 5 [m]

  • Modelling Precision-Okada II

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 15

    First case: max. north deformation

    strike, dip, rake = 90°, 26°, 90°

    Second case: min. north deformation

    strike, dip, rake = 0°, 50°, 90°

    Simulated Source

    Parameters

    Mw 7

    Depth 5.5 [km]

    Length 20 [km]

    Width 11 [km]

    Slip 5 [m]

    Single Aspect Multi Aspect Right Multi Aspect Left/Right0

    0.5

    1

    1.5

    2

    ST

    D [

    deg

    ]

    Strike

    Dip

    Rake

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    0.06

    0.08

    0.1

    0.12

    ST

    D [

    m]

    Slip

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    60

    80

    100

    120

    140

    ST

    D [

    m]

    East Coor

    North Coor

    Depth

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    150

    200

    250

    ST

    D [

    m]

    Width

    Length

    Single Aspect Multi Aspect Right Multi Aspect Left/Right60

    80

    100

    120

    140

    STD

    [m

    ]

    East Coor

    North Coor

    Depth

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    150

    200

    250

    STD

    [m

    ]

    Width

    Length

    Single Aspect Multi Aspect Right Multi Aspect Left/Right0

    0.5

    1

    1.5

    2

    ST

    D [

    deg]

    Strike

    Dip

    Rake

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    0.06

    0.08

    0.1

    0.12

    ST

    D [

    m]

    Slip

  • Modelling Precision-Okada II

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 16

    First case: max. north deformation

    strike, dip, rake = 90°, 26°, 90°

    Second case: min. north deformation

    strike, dip, rake = 0°, 50°, 90°

    Simulated Source

    Parameters

    Mw 7

    Depth 5.5 [km]

    Length 20 [km]

    Width 11 [km]

    Slip 5 [m]

    Single Aspect Multi Aspect Right Multi Aspect Left/Right0

    0.5

    1

    1.5

    2

    ST

    D [

    deg

    ]

    Strike

    Dip

    Rake

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    0.06

    0.08

    0.1

    0.12

    ST

    D [

    m]

    Slip

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    60

    80

    100

    120

    140

    ST

    D [

    m]

    East Coor

    North Coor

    Depth

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    150

    200

    250

    ST

    D [

    m]

    Width

    Length

    Single Aspect Multi Aspect Right Multi Aspect Left/Right60

    80

    100

    120

    140

    STD

    [m

    ]

    East Coor

    North Coor

    Depth

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    150

    200

    250

    STD

    [m

    ]

    Width

    Length

    Single Aspect Multi Aspect Right Multi Aspect Left/Right0

    0.5

    1

    1.5

    2

    ST

    D [

    deg]

    Strike

    Dip

    Rake

    Single Aspect Multi Aspect Right Multi Aspect Left/Right

    0.06

    0.08

    0.1

    0.12

    ST

    D [

    m]

    Slip

    Necessity of the Left-looking Acquisition scenario in source modeling:

    • Complexity of the model in use

    • Asymmetry of the horizontal deformation in the model

    • Share of the north component in the total deformation

    Models constrain our view of the reality!

    Left looking scenario is more beneficial for retrieval of the model-free

    deformation field

  • Precision of Motion Decomposition-Single Point

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 17

    Data characteristics Azimuth resolution 10 m

    Range resolution Asc. [2.5 - 4.5] m

    Desc. [11 - 18] m

    Multi look window 50 × 50 m²

    Average coherence 0.4

    Ionospheric error [0.8 – 1.3] cm

    Tropospheric error 1.5 cm

    Estimation Precision 𝝈𝐸𝑎𝑠𝑡 [m]

    𝝈𝑁𝑜𝑟𝑡ℎ [m]

    𝝈𝑈𝑝 [m]

    Asc/Desc Right 0.02 0.32 0.05

    Asc/Desc Left/Right 0.02 0.09 0.01

    -0.04 -0.02 0 0.02 0.04-0.5

    0

    0.5

    East [m]

    Nort

    h [

    m]

    Cor =0.32

    Cor =0.12

    -0.04 -0.02 0 0.02 0.04-0.1

    0

    0.1

    East [m]

    Up [

    m]

    Cor =0.33

    Cor =0.013

    -0.4 -0.2 0 0.2 0.4-0.1

    0

    0.1

    North [m]

    Up [

    m]

    Cor =0.96

    Cor =0.26

    -0.04 -0.02 0 0.02 0.04-0.1

    0

    0.1

    East [m]

    Up

    [m

    ]

    Asc./Desc. Right

    Asc./Desc. Right/Left

  • Precision of Motion Decomposition-Single Point

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 18

    Estimation Precision 𝝈𝐸𝑎𝑠𝑡 [m]

    𝝈𝑁𝑜𝑟𝑡ℎ [m]

    𝝈𝑈𝑝 [m]

    Asc/Desc Right 0.02 0.32 0.05

    Asc/Desc Left/Right 0.02 0.09 0.01

    -0.04 -0.02 0 0.02 0.04-0.5

    0

    0.5

    East [m]

    Nort

    h [

    m]

    Cor =0.32

    Cor =0.12

    -0.04 -0.02 0 0.02 0.04-0.1

    0

    0.1

    East [m]

    Up [

    m]

    Cor =0.33

    Cor =0.013

    -0.4 -0.2 0 0.2 0.4-0.1

    0

    0.1

    North [m]

    Up [

    m]

    Cor =0.96

    Cor =0.26

    -0.04 -0.02 0 0.02 0.04-0.1

    0

    0.1

    East [m]

    Up

    [m

    ]

    Asc./Desc. Right

    Asc./Desc. Right/Left• Improved precision

    • Resolved correlation/ambiguity between

    the motion components

  • > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 19

    Stochastic Performance

  • InSAR Measurement Stochastic Model:

    • Stochastic model:

    𝑄InSAR = 𝑄Dec. + 𝑄APS + 𝑄Iono

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 20

    𝛾tot = 𝛾𝑖𝑖 → 𝜎𝜙 → 𝜎𝑑𝐿𝑂𝑆

    Residual ionospheric error after correction by the Split

    Bandwidth methods:

    𝜎𝑆.𝐵𝑊 → 𝜎𝑖𝑜𝑛𝑜 → 𝜎𝜙 → 𝜎𝑑𝐿𝑂𝑆 [2]

    Spatial covariance between the

    single measurements :

    𝐶𝑜𝑣 𝜌, 𝜎 𝐴𝑃𝑆 [1]

    [2] Gomba, G., et al., “Towards an Operational Split-Spectrum Processor for Compensation of Differential Ionospheric Propagation Delay in SAR Interferograms,” (in preparation)

    [1] Knospe, S., & Jonsson, S.. “Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise,” IEEE TGRS

  • Error Assessment-Volcanic Modelling

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 21

    Simulated Source Parameters

    East 0

    North 0

    Depth 3 [km]

    𝚫𝐕 𝟔 × 𝟏𝟎𝟔 [m]

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    60

    80

    100

    120

    140

    160

    Average Coherence

    ST

    D [

    m]

    East Coor

    North Coor

    Depth

    0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 12.5

    3

    3.5

    4

    4.5x 10

    5

    Average Coherence

    ST

    D [

    m3 ]

    V

    Multi-aspect right-looking (3 aspects)

    Fixed APS (𝜎 ∶ 15 𝑚𝑚 , 𝜌. 1.5 𝑘𝑚)

  • Error Assessment-Volcanic Modelling

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 22

    Simulated Source Parameters

    East 0

    North 0

    Depth 3 [km]

    𝚫𝐕 𝟔 × 𝟏𝟎𝟔 [m]

    0 5 10 15 20 25 30 35 400

    100

    200

    300

    400

    APS Error [mm]

    STD

    [m

    ]

    East Coor

    North Coor

    Depth

    0 5 10 15 20 25 30 35 400

    2

    4

    6

    8

    10

    12x 10

    5

    APS Error [mm]

    STD

    [m

    3 ]

    V

    Multi-aspect right-looking (3 aspects)

    Fixed Coherence (𝛾 ∶ 0.4)

  • Error Assessment-Volcanic Modelling

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 23

    Simulated Source Parameters

    East 0

    North 0

    Depth 3 [km]

    𝚫𝐕 𝟔 × 𝟏𝟎𝟔 [m]

    1000 1500 2000 2500 3000 3500 4000 4500 500060

    80

    100

    120

    140

    APS Correlation Length [m]

    ST

    D [

    m]

    East Coor North Coor Depth

    1000 1500 2000 2500 3000 3500 4000 4500 50002

    3

    4

    5

    6x 10

    5

    APS Correlation Length [m]

    ST

    D [

    m3 ]

    V

    Multi-aspect right-looking (3 aspects)

    Fixed Coherence (𝛾 ∶ 0.4)

    Correlation between the APS and

    geophysical signal with similar spatial scale

  • Correlation of the APS and the Geophysical Signal

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 24

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    2 3 4 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    2 3 4 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    2 3 4 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    2 3 4 5

    2

    4

    6

    8

    200

    400

    600

    800

    200

    400

    600

    800

    1000

    200

    400

    600

    800

    1000

    1200

    2

    4

    6

    8

    10

    12

    14

    x 105

    East North

    Depth 𝚫𝐕

    East North

    Depth 𝚫𝐕

    East

    APS Corr. Length [km]

    Mogi D

    epth

    [km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    3

    4

    5

    6

    7

    8

    North

    APS Corr. Length [km]

    Mogi D

    epth

    [km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    3

    4

    5

    6

    7

    8

    Depth

    APS Corr. Length [km]

    Mogi D

    epth

    [km

    ]1.5 2 2.5 3 3.5 4 4.5 5

    2

    3

    4

    5

    6

    7

    8Normalized Error

    APS Corr. Length [km]

    Mogi D

    epth

    [km

    ]

    2 3 4 5

    2

    3

    4

    5

    6

    7

    8

    No

    rmali

    zed

    Err

    or

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    4

    6

    8

    APS Cor. Length [km]

    So

    urc

    e D

    ep

    th [

    km

    ]

    1.5 2 2.5 3 3.5 4 4.5 5

    2

    4

    6

    8

    East North

    Depth 𝚫𝐕

  • Error Assessment-Seismic Modelling

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 25

    Simulated Source

    Parameters

    Mw 6.16

    Depth 4 [km]

    Length 10 [km]

    Width 8 [km]

    Slip 0.7 [m]

    0.2 0.4 0.6 0.8 10

    500

    1000

    1500

    2000

    2500

    Average Coherence

    ST

    D [

    m]

    East

    North

    Depth

    0.2 0.4 0.6 0.8 10

    0.5

    1

    1.5

    Average Coherence

    ST

    D [

    deg

    ]

    Strike

    Dip

    Rake

    0.2 0.4 0.6 0.8 10

    1000

    2000

    3000

    4000

    5000

    Average Coherence

    ST

    D [

    m]

    Width

    Length

    0.2 0.4 0.6 0.8 10.01

    0.015

    0.02

    0.025

    0.03

    Average Coherence

    ST

    D [

    m]

    Slip

    10 20 300

    1000

    2000

    3000

    4000

    APS Error [mm]

    ST

    D [

    m]

    East

    North

    Depth

    10 20 300

    0.5

    1

    1.5

    2

    2.5

    APS Error [mm]

    ST

    D [

    deg

    ]

    Strike

    Dip

    Rake

    10 20 300

    2000

    4000

    6000

    8000

    APS Error [mm]

    ST

    D [

    m]

    Width

    Length

    10 20 300.01

    0.02

    0.03

    0.04

    0.05

    0.06

    APS Error [mm]

    ST

    D [

    m]

    Slip

    1000 2000 3000 4000 50000

    500

    1000

    1500

    2000

    2500

    APS Cor. Length [m]

    ST

    D [

    m]

    East North Depth

    1000 2000 3000 4000 50000

    0.5

    1

    1.5

    APS Cor. Length [m]

    ST

    D [

    deg

    ]

    Strike Dip Rake

    1000 2000 3000 4000 50000

    1000

    2000

    3000

    4000

    5000

    APS Cor. Length [m]

    ST

    D [

    m]

    Width

    Length

    1000 2000 3000 4000 50000.015

    0.02

    0.025

    0.03

    APS Cor. Length [m]

    ST

    D [

    m]

    Slip

  • Summary

    • Geometrical assessment:

    • Multi aspect InSAR from left/right looking acquisitions:

    • Improvement of the precision and resolving the ambiguity in motion decomposition

    • Improvement of the modeling precision depends on the:

    • Complexity of the model

    • Asymmetry of the horizontal deformation

    • Share of the north motion component

    • Stochastic assessment:

    • Quantification of the impact and significance of the coherence and correlated APS signals

    on the precision of the inverted deformation source parameters

    Ref. : Fringe2015 proceedings (Ansari et al.)

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 26

  • > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 27

    Thank you for your attention!

    [email protected]

  • > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 28

    Back-Up Slides

  • Precision of Motion Decomposition-Single Point (Az. Res. : 3 m)

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 29

    Data characteristics

    Azimuth resolution 3 m

    Range resolution Asc. [2.5 – 4.5 ] m

    Desc. [11 - 18] m

    Multi look window 50 × 50 m²

    Average coherence 0.4

    Ionospheric error [0.4 – 1] cm

    Tropospheric error 1.5 cm

    Estimation Precision 𝝈𝐸𝑎𝑠𝑡 [m]

    𝝈𝑁𝑜𝑟𝑡ℎ [m]

    𝝈𝑈𝑝 [m]

    Asc/Desc Right 0.02 0.25 0.04

    Asc/Desc Left/Right 0.02 0.07 0.01

    -0.02 -0.01 0 0.01 0.02-0.5

    0

    0.5

    East [m]

    Nort

    h [

    m]

    Cor =0.3

    Cor =0.05

    -0.02 -0.01 0 0.01 0.02-0.05

    0

    0.05

    East [m]

    Up [

    m]

    Cor =0.34

    Cor =0.01

    -0.4 -0.2 0 0.2 0.4-0.05

    0

    0.05

    North [m]

    Up [

    m]

    Cor =0.95

    Cor =0.20

    -0.04 -0.02 0 0.02 0.04-0.1

    0

    0.1

    East [m]U

    p [

    m]

    Asc./Desc. Right

    Asc./Desc. Right/Left

  • Azimuth Shifts In 3D Decomposition (Az. Resolution = 10 m)

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 30

    Estimation Precision 𝝈𝐸𝑎𝑠𝑡 [m]

    𝝈𝑁𝑜𝑟𝑡ℎ [m]

    𝝈𝑈𝑝 [m]

    Asc/Desc Right 0.02 0.32 0.05

    Asc/Desc R. + Shifts 0.02 0.29 0.05

    Asc/Desc Left/Right 0.02 0.09 0.01

    Data characteristics

    Azimuth resolution 10 m

    Range resolution Asc. [2.5 - 4.5] m

    Desc. [11 - 18] m

    Multi look window 50 × 50 m²

    Average coherence 0.4

    Ionospheric error [0.8 – 1.3] cm

    Tropospheric error 1.5 cm

  • Azimuth Shifts In 3D Decomposition (Az. Resolution = 3 m)

    > Tandem-L Performance Analysis > Homa Ansari • EGU 2015 > 15.04.2015 DLR.de • Chart 31

    Estimation Precision 𝝈𝐸𝑎𝑠𝑡 [m]

    𝝈𝑁𝑜𝑟𝑡ℎ [m]

    𝝈𝑈𝑝 [m]

    Asc/Desc Right 0.02 0.25 0.04

    Asc/Desc R. + Shifts 0.02 0.19 0.03

    Asc/Desc Left/Right 0.02 0.07 0.01

    Data characteristics

    Azimuth resolution 3 m

    Range resolution Asc. [2.5 – 4.5 ] m

    Desc. [11 - 18] m

    Multi look window 50 × 50 m²

    Average coherence 0.4

    Ionospheric error [0.4 – 1] cm

    Tropospheric error 1.5 cm