Top Banner
Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2. PERCEPCIÓN REMOTA Y SIG EN LA PLANIFICACIÓN Y LA GESTIÓN AMBIENTAL Hugo Raúl Zerda Actualmente el hombre se enfrenta a diversos problemas ambientales, ocasionados frecuentemente por sus propias actividades, sin prever las consecuencias negativas que ocasiona tanto al ambiente como a la economía. El denominado cambio global, por el cual se verán alteradas las condiciones climáticas de todo el planeta, es actualmente una preocupación de los países más desarrollados, según diversos enfoques ideológicos y con diversos grados de compromisos ante el futuro de sus países. Según la Academia Nacional de Ciencias de los EEUU (NAS, 2001), se ha confirmado que el cambio global es real y particularmente fuerte en los últimos 20 años. Se estima que habrá grandes cambios climáticos a nivel regional, con variadas tendencias a sequías en algunas regiones e inundaciones en otras, generándose contextos climáticos diferentes, condicionantes del desarrollo de grandes regiones. Si bien la causa de mayor incidencia en el cambio global es el aumento de CO 2 (EPA, 2001), otra de las actividades del hombre que contribuyen al calentamiento global, es el cambio en el uso del suelo, por ejemplo a través del incremento del albedo por eliminación de la cobertura vegetal boscosa a pastizales y, los incendios de bosques y sabanas, todo lo cual produce un aumento de la desertificación y la emisión de gases y sólidos en suspensión a la atmósfera. En este marco de grandes dinámicas de cambio en los sistemas naturales en el que se encuentra nuestro planeta, el presente capítulo trata sobre las posibilidades del uso integrado de la percepción remota (PR), especialmente a partir de sensores satelitales y los sistemas de información geográfica (SIG); ambas, herramientas de apoyo para la planificación y la gestión del ambiente. Sobre la percepción remota y los SIG Percepción remota La adquisición de información satelital, primero aplicada casi con exclusividad en actividades militares, fue liberada al uso civil en 1972 a través del proyecto ERTS (Earth Resources Technology Satellite), actualmente Landsat. A partir de entonces, las diversas ciencias de la tierra se han adecuado a estas nuevas tecnologías disponibles para poder utilizarlas eficientemente y con diversos objetivos. Paralelamente, el progreso de otras áreas científicas y tecnológicas como la informática, la microelectrónica y las telecomunicaciones, incrementó notablemente las posibilidades de uso de la información satelital. La percepción remota (PR) puede definirse como la adquisición de información a distancia, sobre un evento, cuerpo o fenómeno, sin entrar en contacto directo con él. La PR se realiza a través de sensores 1 remotos, sistemas capaces de captar y registrar información territorial a distancia y, que pueden ser montados tanto en diversos tipos de aviones como en satélites artificiales. Las principales características de la información 1 Dispositivos que detectan una determinada acción externa, temperatura, presión, etc., y la transmite adecuadamente.
15

Percepción remota y SIG en la planificación y la gestión ambiental

Apr 27, 2023

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

PERCEPCIÓN REMOTA Y SIG EN LA PLANIFICACIÓN Y LA GESTIÓN AMBIENTAL

Hugo Raúl Zerda

Actualmente el hombre se enfrenta a diversos problemas ambientales, ocasionados frecuentemente por sus propias actividades, sin prever las consecuencias negativas que ocasiona tanto al ambiente como a la economía. El denominado cambio global, por el cual se verán alteradas las condiciones climáticas de todo el planeta, es actualmente una preocupación de los países más desarrollados, según diversos enfoques ideológicos y con diversos grados de compromisos ante el futuro de sus países. Según la Academia Nacional de Ciencias de los EEUU (NAS, 2001), se ha confirmado que el cambio global es real y particularmente fuerte en los últimos 20 años. Se estima que habrá grandes cambios climáticos a nivel regional, con variadas tendencias a sequías en algunas regiones e inundaciones en otras, generándose contextos climáticos diferentes, condicionantes del desarrollo de grandes regiones. Si bien la causa de mayor incidencia en el cambio global es el aumento de CO2 (EPA, 2001), otra de las actividades del hombre que contribuyen al calentamiento global, es el cambio en el uso del suelo, por ejemplo a través del incremento del albedo por eliminación de la cobertura vegetal boscosa a pastizales y, los incendios de bosques y sabanas, todo lo cual produce un aumento de la desertificación y la emisión de gases y sólidos en suspensión a la atmósfera.

En este marco de grandes dinámicas de cambio en los sistemas naturales en el que se encuentra nuestro planeta, el presente capítulo trata sobre las posibilidades del uso integrado de la percepción remota (PR), especialmente a partir de sensores satelitales y los sistemas de información geográfica (SIG); ambas, herramientas de apoyo para la planificación y la gestión del ambiente.

Sobre la percepción remota y los SIG

Percepción remota

La adquisición de información satelital, primero aplicada casi con exclusividad en

actividades militares, fue liberada al uso civil en 1972 a través del proyecto ERTS (Earth Resources Technology Satellite), actualmente Landsat. A partir de entonces, las diversas ciencias de la tierra se han adecuado a estas nuevas tecnologías disponibles para poder utilizarlas eficientemente y con diversos objetivos. Paralelamente, el progreso de otras áreas científicas y tecnológicas como la informática, la microelectrónica y las telecomunicaciones, incrementó notablemente las posibilidades de uso de la información satelital.

La percepción remota (PR) puede definirse como la adquisición de información a distancia, sobre un evento, cuerpo o fenómeno, sin entrar en contacto directo con él. La PR se realiza a través de sensores1 remotos, sistemas capaces de captar y registrar información territorial a distancia y, que pueden ser montados tanto en diversos tipos de aviones como en satélites artificiales. Las principales características de la información

1 Dispositivos que detectan una determinada acción externa, temperatura, presión, etc., y la transmite adecuadamente.

Page 2: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

tomada desde tales plataformas, define sus posibilidades de utilización. Estas capacidades surgen de considerar los conceptos enunciados a continuación.

- Resolución espacial: es la medida de los objetos más pequeños que pueden ser

registrados por un sensor. - Resolución espectral: es el número, intervalos y ancho de las bandas en el espectro

electromagnético en las que el sensor registra los datos. - Resolución radiométrica: es el rango dinámico o niveles de brillo en que el se graban

los datos registrados por el sensor. Por ejemplo, un sensor de 8 bits (28 = 256) registrará los datos en 256 tonos de grises.

- Resolución temporal: es la periodicidad con que se registra la misma porción de territorio.

Otra característica de gran importancia para definir posibles aplicaciones, es el

tamaño del área que registran los sensores (Tabla 1), en directa alusión a uno de los paradigmas de la planificación, la definición del área de estudio.

Page 3: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Cuadro 1. Diversos programas y sensores satelitales disponibles.

(Modificado y actualizado de Czaplewski,1998)

PROGRAMA ESPACIAL/SATÉLITE/SENSOR BANDAS

ESPECTRALES RESOLUCIÓN

ESPACIAL ANCHO DE REGISTRO

NOAA AVHRR 4 1.100 m 2.600 km OrbView-2 SeaWiFS 8 1.100 m 2.800 km

SPOT 4 y 5 Vegetation

4 1.000 m 2.000 km

MODIS 27 1.000 m

Espectrómetro de resolución 7 500 m

Sensores satelitales de

baja resolución

espacial, coberturas de grandes áreas moderada 2 250 m

1.150 km

5 175 m 360 km (5.600 km longitud)

SAC-C (Argentina) pancromático 35 m 180 km

4 20 m 80 m-160 m

260 m

113 km 120 km 890 km

CBERS 2 (Brasil)

pancromático 20 m 113 km termal 120 m (60 m*)

6 30 m

Landsat 5 Landsat 7*

pancromático * 15 m* 185 km 4 20 m (10 m*) SPOT 4 y SPOT 5 *

pancromático 10 m (5 m *) 60 km

multiespectral 23-188 m 141-810 km Indian Remote Sensing (IRS)

pancromático 6 m 70 km

Radarsat 2 3-100 m 20-500 km

Sensores satelitales de

resolución espacial

media, cobertura de

áreas medianas

TK-350 pancromático 10 m 200 km SOVINFORM-SPUTNIK Spin-2

(fotogramas digitalizados)

KVR-1000 pancromático 2-3 m 40 km

Space Imaging EOSAT 4 4 m Ikonos 1 pancromático 1 m

11 km

3 15 m 30 km EarthWatch-Earlybird pancromático 3 m 6 km

4 4 m 16,5 km EarthWatch-Quickbird pancromático 1 m 16,5 km

4 8 m 8 km 2 m

Sensores satelitales de

alta resolución

espacial, cobertura

menor OrbView-3

pancromático 1 m

4 km

Page 4: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Sistemas de información geográfica (SIG) En el año 1962, mucho antes de la expansión de la percepción remota satelital en

el sector de usuarios civiles, Tomlinson denominado el “padre del SIG” (Geoworld, 1996), tuvo la visión de utilizar computadores para el análisis espacial en el proyecto denominado “sistema de información geográfica canadiense” (CGIS). En forma paralela se desarrollaba el proyecto de “inventario de recursos naturales y uso de la tierra” (LUNR) en el estado de Nueva York, EEUU; nacían así los SIG operativos. Estas iniciativas sirvieron como plataforma de desarrollo de los conceptos básicos del manejo y análisis de geoinformación2 (Bosque Sendra, 1997), aunque el gran desarrollo llegaría en los años 70, con el crecimiento de los sistemas computacionales (Aronoff, 1989).

Para comprender la naturaleza y características de los SIG se presentan las siguientes definiciones:

- Poderoso conjunto de herramientas para colectar, almacenar, recuperar y visualizar

datos sobre el mundo real (Burrough, 1986). - El Centro Nacional para Información Geográfica y Análisis (NCGIA, 1990) define a

los SIG como: un sistema de hardware, software y procedimientos elaborados para facilitar la obtención, gestión, manipulación, análisis, modelado, representación y salida de datos espacialmente referenciados, para resolver problemas complejos de planificación y gestión.

- Un conjunto manual o computacional de procedimientos utilizados para almacenar y manipular datos georeferenciados (Aronoff, 1989).

El mismo Aronoff (1989) indica también que una gran componente de los SIG es la

organización y, dentro de ella, tiene especial importancia el factor humano. Debido a las diversas disciplinas que se relacionan con éstos y al muy variado tipo

de información que captan, procesan y producen, los SIG son sistemas altamente corporativos (Silveira, 2004); puede decirse entonces que en ellos convergen tecnologías y disciplinas tradicionales (NCGIA, 1990), como:

- Geografía: brinda el conocimiento sobre el mundo y la ubicación del hombre en él,

tiene larga tradición en el análisis espacial y, provee las técnicas básicas del análisis y perspectiva espacial en la investigación.

- Cartografía: elabora la visualización de la información espacial; la mayor fuente de datos para los SIG son los mapas, tiene larga tradición en la confección de mapas que son los resultados típicos de los SIG y, finalmente, la moderna cartografía digital provee los métodos para la representación virtual del territorio.

- Percepción remota: las imágenes aéreas y espaciales son ricas fuentes de datos de los SIG, brinda técnicas de bajo costo para el procesamiento de imágenes de cualquier lugar del mundo; comprenden sofisticadas funciones de análisis y las clasificaciones de datos digitales pueden incluirse directamente como capas de información en los SIG.

- Fotogrametría: utiliza métodos para realizar precisas mediciones a partir de fotografías aéreas, siendo una importante fuente de datos.

- Agrimensura: provee datos de alta calidad sobre posiciones de diferentes tipos de objetos geográficos.

- Geodesia: es la fuente de datos de control de alta precisión.

2 Es toda información que puede ser representada mediante mapas.

Page 5: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

- Estadística: de ella se derivan muchos modelos aplicados en los SIG, es importante para entender y evaluar el error y la incertidumbre de los datos que ingresan y la información que producen los SIG.

- Informática: provee los programas, el equipamiento (hardware) y técnicas para el ingreso, visualización y salidas gráficas de datos e información y su representación en 2 y 3 dimensiones; manejo de bases de datos, entre otros tantos recursos.

- Matemática: temas referidos a la geometría de los objetos geográficos y el territorio en general, son aplicables especialmente en el análisis espacial.

Debido a todas estas disciplinas que contribuyen a las funciones de los SIG,

también es amplia la gama de aplicaciones posibles. Câmara y Queiroz (2004) indican las siguientes grandes áreas de utilización:

- herramienta para producción de mapas, - soporte para el análisis espacial de fenómenos, - banco de datos geográficos, con avanzadas funciones de bases de datos.

Valiéndose de las tecnologías y disciplinas citadas, los SIG sintetizan el mundo

real en el mundo digital, por eso es importante la forma en que se representa y almacena la geoinformación. Básicamente, puede decirse que existen dos grandes grupos de modelos de datos que permiten representar el territorio: el raster y el vectorial.

VECTORIAL RASTER

Figura 1. Modelos de datos para representar la geoinformación en un SIG.

Cada tipo de representación tiene sus ventajas y desventajas, debido a la naturaleza

misma del modelo y al objetivo de la investigación que se desee abordar; las ventajas y desventajas de cada uno se muestran en la tabla 2. Existen también los modelos orientados a objetos, una moderna concepción de los SIG, tema que excede los objetivos del presente texto.

Page 6: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Cuadro 2. Comparación de los modelos de datos vectoriales y raster.

CUALIDADES VECTORIAL RASTER

VENTAJAS - estructura compacta

- eficiencia en la codificación, mejora las operaciones

- mejor capacidad/calidad gráfica

- estructura simple - facilidad en operaciones de superposición de mapas

- excelente representación de la variabilidad espacial

- eficiente para manipular imágenes

DESVENTAJAS - estructura más compleja - dificultad en operaciones de superposición de mapas

- ineficiente representación de la variabilidad espacial

- problemas en el manejo y mejora de imágenes

- estructura menos compacta, se puede mejorar por compactación

- dificultad para establecer relaciones topológicas3

(Adaptado de Aronoff, 1989)

Continuando con el marco teórico, según Câmara y Queiroz (2004) pueden indicarse las siguientes componentes de los SIG:

- interfaz con el analista, - entrada e integración de datos, - funciones de consulta y análisis espacial, - visualización e impresión, - almacenamiento y recuperación de datos (organizados en forma de un banco de datos

geográficos). Según esta concepción sistémica de los SIG, los subsistemas se encuentran en un

orden jerárquico, vinculados mediante diversos tipos de funciones, que permiten ingresar informaciones, analizarlas y expresar resultados mediante cartografía y otros tipos de gráficos y tablas.

3 Comprende las propiedades no métricas de los objetos geográficos que conforman los mapas. Estas son: vecindad o adyacencia, inclusión, conectividad y orden. Es importante considerar que tales propiedades permanecen invariables al cambiar la forma, la escala o la proyección.

Page 7: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Figura 2. Estructuración de un SIG (adaptado de Câmara y Queiroz, 2004).

Finalmente, vale referirse a las funciones de los SIG, las cuales permiten una

representación resumida de la realidad mediante los denominados modelos cartográficos. Considerando un SIG moderno, como el IDRISI©4, éste organiza sus funciones en los módulos que se refieren a continuación.

- Búsquedas en bases de datos: reclasifica, superpone, compara y edita mapas raster,

calcula estadísticas básicas e incorpora un sistema de manejo de base de datos. - Operadores matemáticos: funciones de superposición de mapas. - Operadores de distancia: permite establecer entre temas y objetos en función de

distancias. - Operadores de contexto: agrupa, genera índices de paisaje y variabilidad espacial y

temática de mapas. - Estadísticas: permite obtener descriptores estadísticos, realizar muestreos, obtener

índices, análisis de correlación/regresión entre mapas. - Apoyo a la decisión: análisis multicriterios o multiobjetivos, muestreo y análisis de

errores - Análisis de cambios y series temporales: especialmente para monitoreo del ambiente. - Análisis de superficies: modelación de variables topográficas.

También los SIG pueden poseer módulos para el intercambio de datos de diversos

formatos (importación/exportación). En el caso de IDRISI y otros sistemas, es importante el módulo de funciones para el procesamiento y análisis de imágenes, como también para la visualización de modelos tridimensionales del terreno. Eventualmente pueden manejar

4 Idrisi Source Code copyright © 1987-2002 J. Ronald Eastman, Idrisi Production copyright © 1987-2002 Clark University.

Page 8: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

un lenguaje propio para incrementar sus funcionalidades o realizar tareas repetitivas o también, mediante una interfaz propia, pueden utilizar programas externos al sistema y elaborados en diversos lenguajes de programación.

Percepción remota y SIG en la planificación y la gestión ambiental Santos (2004) señala que: “en la planificación ambiental, se acostumbra a interpretar un conjunto de

informaciones regionales referenciadas en el espacio y presentadas de manera holística. Metodológicamente, esta concepción exige al principio, una definición de la unidad espacial de trabajo, a partir de la comprensión del área que contenga las interacciones y presiones sobre los sistemas naturales o creados por el hombre.”

Este mismo autor indica que variables como el área, la escala y el tiempo, son los

paradigmas de la planificación, en función de la enorme importancia que éstos tienen en tal proceso, por las características de los productos de la percepción remota (PR), y sus grandes capacidades para realizar mediciones en los campos propios a sus resoluciones, por ejemplo, en el espacio y en el tiempo. Debido a ello, existe una gran variedad y cantidad de posibilidades de aplicación de los datos provenientes de la PR, que mediante las tecnologías y los procedimientos de los SIG, pueden integrarse para resolver estas principales cuestiones del proceso de planificación.

La situación ambiental de la provincia de Santiago del Estero señala grandes problemas en aspectos, como ser: cambios en el uso y coberturas del suelo debido fundamentalmente a la deforestación para usos agrícolas y pecuarios; la excesiva utilización de los bosques también origina transformaciones en la cobertura vegetal en grandes superficies. También la deforestación incluye el uso del fuego para eliminar los residuos leñosos, fenómeno que se produce en grandes superficies (Figura 5).

Figura 3. Diagrama de interacciones debidas al cambio en el uso y coberturas del suelo en

la Provincia de Santiago del Estero. Lo mencionado hasta aquí en la provincia, sucede bajo la influencia directa de

grandes fuerzas, como el clima y su aporte de ciclos húmedos y, la economía, con altos precios para cultivos extensivos como la soja, el principal cultivo en los últimos años.

Page 9: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Esta dinámica del ambiente puede resumirse en la figura 3, donde en varias de sus componentes la PR y los SIG pueden realizar importantes aportes para la planificación y gestión de los recursos naturales.

Algunas aplicaciones en Santiago del Estero Los comienzos de la PR

El inicio de las actividades de PR en la Provincia de Santiago del Estero (PSDE)

muestra como antecedente y hacia fines de los años 70, el trabajo de la DIGID (1979) que mediante interpretación visual de imágenes satelitales Landsat MSS, produjo cartografía temática en escala 1:250.000 sobre coberturas y usos del suelo, geomorfología, dinámica de bañados, entre otros.

Varios años después, se presenta la primera investigación sobre el monitoreo de la deforestación en la provincia (Zerda, 1991), también mediante interpretación visual de imágenes satelitales Landsat MSS y cartografía 1:250.000.

A comienzos de los años 90, Thren y Zerda5 crean el primer laboratorio de procesamiento digital de imágenes satelitales, en el marco del proyecto conjunto entre la FCF-UNSE y la GTZ6 . A partir de esta iniciativa, dan comienzo las actividades basadas en datos satelitales en formato digital. La primera aplicación sería el inventario forestal piloto de los departamentos Copo y Alberdi (CFI, 1994), en el norte de la PSDE y utilizándose productos Landsat 4 TM adquiridos al INPE7. Las imágenes sirvieron para la planificación de los desplazamientos e inventario terrestre y la evaluación de las superficies y existencias maderables de los bosques.

Posteriormente, varios proyectos en las universidades locales y en el estado provincial, incorporan al procesamiento de imágenes satelitales digitales en diversas actividades.

Aplicaciones locales

A continuación, se muestran algunas aplicaciones referentes a procesos de

degradación de recursos naturales en nuestra provincia, como es el caso de la deforestación, las quemas e incendios de campos y bosques, el efecto de estos factores sobre la estructura del paisaje forestal y finalmente un caso de aplicación en inundaciones de campos.

En referencia a la deforestación, se indicó en el punto anterior sobre el comienzo de estos estudios en la provincia. Posteriormente, y siguiendo la investigación sobre este fenómeno, Zerda (1998) realiza clasificaciones automatizadas de datos Landsat MSS y TM. El resultado fueron mapas de diversos años, dando comienzo así a los primeros estudios de monitoreos forestales basados en métodos digitales. La dinámica de cambios en un paisaje dominado por aprovechamientos forestales muy severos se muestra en la figura 4. Aquí el método utilizado para la detección de cambios es la tabulación cruzada entre “mapas binarios de bosques”8 de dos fechas diferentes (1975-1992). El resultado

5 Experto de la GTZ y contraparte local del proyecto FCF-UNSE/GTZ, respectivamente. 6 FCF-UNSE: Facultad de Ciencias Forestales de la Universidad Nacional de Santiago del Estero; GTZ: Agencia Alemana de Cooperación Técnica. 7 INPE: Instituto Nacional de Investigaciones Espaciales de Brasil. 8 Mapa binario de bosques: representan solo las clases bosque (valor 1) y sin bosque (valor 0).

Page 10: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

cartográfico posibilita visualizar donde y qué cambios han ocurrido, la salida tabular indica cuánto ha cambiado.

Proporciones de cambio Clases Sin bosque 75 Bosque 75 Total Sin bosque 92 0,1675 0,4994 0,6669 Bosque 92 0,0321 0,3011 0,3331 Total 0,1996 0,8004 1,0000

Deforestación Sin cambios

Regeneración

Ventana de imagen de 15 km x 15 km

Figura 4. Mapa de cambios y su respectiva matriz, a partir de funciones de SIG.

Zerda y Moreira (2001, 2004) utilizando datos digitales Landtas 5 TM y Landsat 7

ETM+ y las históricas Landsat 1 y 2 MSS, mediante interpretación visual y digitalización, elaboran una base de datos sobre las superficies bajo uso agropecuario de la provincia de Santiago del Estero (Figura 5). Mediante el uso de un SIG, se realizaron diversos productos cartográficos obteniéndose la distribución espacial del fenómeno y, también las estadísticas a nivel provincial y departamental. Esta información permite observar claramente el desarrollo de la frontera agropecuaria en los sectores más húmedos del este y oeste provincial. Al igual que investigaciones anteriores (Zerda, 1991) se verificó que las explotaciones se han incrementado no solo en su número, sino en sus superficies, pasando de lotes de pequeño y mediano porte a grandes superficies de producción.

A partir de integrar datos de la PR y análisis mediante SIG, Zerda (1991) ha podido caracterizar la dinámica del fuego, como el mayor agente de degradación de la vegetación nativa en un área de investigación del NE santiagueño, en el período 1975-94. Aquí se utilizó la modelación cartográfica para cuantificar los cambios de las coberturas del suelo por efecto del uso del fuego. El mismo autor (Zerda, 1991), muestra la relación existente entre la infraestructura vial y la distribución espacial de áreas quemadas, en los departamentos Copo y Alberdi de la PSDE, la región de mayor importancia forestal, siendo un indicador del origen antrópico del fenómeno.

Imágenes del nuevo sensor multiespectral MMRS del satélite argentino SAC-C han sido utilizadas para la detección de superficies calcinadas y su monitoreo (Zerda y Moreira, 2002); siendo una de sus grandes ventajas su gran ancho de registro, el que permitió cubrir la provincia en un solo pasaje (tabla 3). Este aspecto es de gran trascendencia a considerar en el ámbito operativo, ya que en muchos estudios donde la disponibilidad cobertura de grandes áreas en el mismo momento sea lo más importante, los productos MMRS SAC-C podrían sustituir a los Landsat TM.

En Zerda (2003) se encuentra una compilación de varias experiencias sobre PR y SIG en estudios sobre el fenómeno del fuego en la PSDE, como así también de la teoría y aplicaciones en general sobre este tema.

Page 11: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

0 50 100 150 200 kilómetros

N

Años 70 - Superficie detectada = 748.469Año 2002 - Superficie detectada = 2.304.469Crecimiento = 1.556.395

Año 2002Años 70

Figura 5. Ocupación agropecuaria entre los años 70 y 2002 detectada mediante imágenes

satelitales. Cuadro 3. Ventajas comparativas del sensor MMRS SAC-C sobre ETM+ Landsat 7 para

un registro completo de la Provincia de Santiago del Estero.

DATOS SATELITALES

NO. DE BANDAS ESPECTRALES

NO. DE ESCENAS

VOLUMEN DE DATOS/ESCENA

VOLUMEN DE DATOS PSDE

ETM+ Landsat

8 * 11 472 MB 5 GB

MMRS SAC-C

5 porción** 37 MB 37 MB

* incluye una banda infrarroja termal registrada en dos modos y sin considerar la banda pancromática,

** para MMRS SAC-C es una porción de la escena de 5.600 km de largo x 360 km de ancho de registro.

Han sido de conocimiento público en la Argentina las inundaciones del año 2003

que afectaran a la ciudad de Santa Fe. Este fenómeno ha afectado también a la rica zona agrícola de Selva, Departamento Rivadavia, en el sureste de la provincia. Ante esto, el proyecto Monitoreo Ambiental de la UCSE9 (Zerda y Moreira, 2004) desarrollaron una aplicación para evaluar la magnitud del daño, en base a la captura de información con imágenes satelitales Landsat 5 TM. La investigación consistió en compilar información existente en un SIG: mapas catastrales y camineros, y tablas conteniendo datos alfanuméricos sobre las propiedades de la zona. La otra etapa consistió en realizar mapas del período de inundación, donde se utilizaron dos técnicas diferentes:

9 UCSE: Universidad Católica de Santiago del Estero.

Page 12: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

1. interpretación visual para el mapeo de la clase “suelos saturados de humedad”, discernibles en manera visual, pero muy difíciles de cartografiar mediante una clasificación digital;

2. clasificación digital para producir el mapa de “suelos cubiertos con agua” o “clase agua”, una categoría de cobertura notablemente diferenciada por las bandas espectrales infrarrojas.

Una vez colectada la información, se superpusieron estos mapas con los

correspondientes a los lotes, obteniéndose importantes estadísticas que incluyeron, por ejemplo, áreas inundada/anegada total, área inundada por zona de productores y área inundada por parcela (Figura 6).

Esta información básica fue luego utilizada por organizaciones de la zona afectada que en conjunto a encuestas y otras observaciones de terreno, estimaron la pérdida total en $ 34,5 millones, aproximadamente U$S 11,5 millones al momento de las inundaciones (El Liberal, 2004).

Como se vio hasta aquí, en una resumida presentación sobre algunas posibilidades de aplicación de la percepción remota (PR) y los sistemas de información geográfica (SIG), existen posibilidades de incorporar estas tecnologías y procesos en variadas actividades de planificación y gestión. Esto, particularmente desde las entidades gubernamentales que tienen que ver con la percepción de problemas a niveles de regiones provinciales; también la iniciativa privada podría hacer un uso eficiente de éstas en diversos campos de aplicación.

Page 13: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

20

263

255

275

2

117

3

230

9

31

15

1

4

43

89

8

98

273

229

99

274

122

45

46

59

93

118

27

258

67

42

245

37

14

52

5

6

80

247

29

260

114

116

115

25

5326

75

102

44

105

72

78

92

213

73

74

79

234

235

7

231

23

257

226

256

100

12084

38

8558

83

39

69 51

238

77

151

248

167

211

139 143

166

47

236

176

90

35

138

217

30

246

104

33

215

219

50

121

136150

34

279

91

62

228

10

11

60

155 156

63

88

76

180

153

36

3216

264

233

17

227 242

123

109

82

243

214

232

265

259

266

18

54

200

125

22 24

87

41

57

86

40

249

149

186

145

277

65

187

154169 157

144134

202

210

244

128

168

173

146137

159

206

95

204 175207

158

113

148

171

221

223

140

28

222

112

201

261

250

262

160

12

268

101

239

12955

162

68

132

165

70

185

272

225

108

119

Ubicación

20

263

255

275

2

117

3

230

9

31

15

1

4

43

89

8

98

273

229

99

274

122

45

46

59

93

118

27

258

67

42

245

37

14

52

5

6

80

247

29

260

114

116

115

25

5326

75

102

44

105

72

78

92

213

73

74

79

234

235

7

231

23

257

226

256

100

12084

38

8558

83

39

6951

238

77

151

248

167

211

139143

166

47

236

176

90

35

138

217

30

246

104

33

215

219

50

121

136

150

34

279

91

62

228

10

11

60

155 156

63

88

76

180

153

36

3216

264

233

17

227 242

123

109

82

243

214

232

265

259

266

18

54

200

125

22 24

87

41

57

86

40

249

149

186

145

277

65

187

154169 157

144

134

202

210

244

128

168

173

146137

159

206

95

204175

207

158

113

148

171

221

223

140

28

222

112

201

261

250

262

160

12

268

101

239

12955

162

68

132

165

70

185

272

225

108

119

Lotes

20

263

255

275

2

117

3

230

9

31

15

1

4

43

89

8

98

273

229

99

274

122

45

46

59

93

118

27

258

67

42

245

37

14

52

5

6

80

247

29

260

114

116

115

25

5326

75

102

44

105

72

78

92

213

73

74

79

234

235

7

231

23

257

226

256

100

12084

38

8558

83

39

6951

238

77

151

248

167

211

139143

166

47

236

176

90

35

138

217

30

246

104

33

215

219

50

121

136

150

34

279

91

62

228

10

11

60

155 156

63

88

76

180

153

36

3216

264

233

17

227 242

123

109

82

243

214

232

265

259

266

18

54

200

125

22 24

87

41

57

86

40

249

149

186

145

277

65

187

154169 157

144

134

202

210

244

128

168

173

146137

159

206

95

204175

207

158

113

148

171

221

223

140

28

222

112

201

261

250

262

160

12

268

101

239

12955

162

68

132

165

70

185

272

225

108

119

Lotes + área saturada de

humedad

20

263

255

275

2

117

3

230

9

31

15

1

4

43

89

8

98

273

229

99

274

122

45

46

59

93

118

27

258

67

42

245

37

14

52

56

80

247

29

260

114

116

115

25

5326

75

102

44

105

72

78

92

213

73

74

79

234

235

7

231

23

257

226

256

100

12084

38

8558

83

39

6951

238

77

151

248

167

211

139143

166

47

236

176

90

35

138

217

30

246

104

33

215

219

50

121

136

150

34

279

91

62

228

10

11

60

155 156

63

88

76

180

153

36

3216

264

233

17

227 242

123

109

82

243

214

232

265

259

266

18

54

200

125

22 24

87

41

57

86

40

249

149

186

145

277

65

187

154169 157

144

134

202

210

244

128

168

173

146137

159

206

95

204175

207

158

113

148

171

221

223

140

28

222

112

201

261

250

262

160

12

268

101

239

12955

162

68

132

165

70

185

272

225

108

119

Lotes + área cubierta de

agua

Red de caminos

Base de datos alfanuméricos

Figura 6. Geoinformación utilizada para la evaluación de las inundaciones en la zona de

Selva, Departamento Rivadavia PSDE (modificado de Zerda y Moreira, 2004).

Page 14: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Referencias Aronoff, S., 1989. Geographic Information Systems. A management perspectiva. WDL

Publications, Ottawa, Canadá. 294 págs. Bosque Sendra, J.,1997. Sistemas de información geográfica. Ediciones RIALP S.A.,

Madrid. 451 págs. Burrough, P.A., 1986. Principles fo GIS for land resource assessment. Clarendon Press. Câmara, G. y Queiroz, G. R, 2004. Arquitetura de sistemas de Informação Geográfica.

En: Câmara, C., Davis, C., Monteiro, A. M., (edit.) Introdução à Ciência da Geoinformação. São José dos Campos, INPE. En: URL:// www.dpi.inpe.br/gilberto/livro/introd/ (08.03.2005)

CFI, 1994. Inventario Forestal de los Departamentos Copo y Alberdi, Prov. de Santiago del Estero. Consejo Federal de Inversiones CFI, Buenos Aires, Argentina.

Czaplewski, R., 1998. Use of Advanced remote sensing technologies for annual State Inventories. USDA Forest Service, Rocky Mountain Research Station, Forest Inventory and Monitoring Environmetrics. Unpublished Analysis Paper.

DIGID, 1979. Evaluación de recursos naturales por información obtenida mediante teledetección satelitaria. Convenio Dirección General de Investigación y Desarrollo del Ministerio de Defensa DIGID, Consejo Federal de Inversiones CFI y Provincia de Santiago del Estero. Argentina.

El Liberal, 2004. Pérdidas ocasionadas por la última inundación asciende a $ 34,5 millones. Consorcio Caminero Selva-Los Encantos. Diario El Liberal, Sección Agro, 02.01.2004. Santiago del Estero.

EPA, 2001. Global Warming Site. Environmental Protection Agency of USA. En: URL://www.epa.gon/globalwarming (08.03.2005)

Geoworld, 1996. Roger Tomlinson: The Father of GIS. Geoworld. En: URL://www.geoplace.com/gw/1996/0496/0496feat2.asp (08.03.2005)

NAS, 2001. New evidence helps reconcile global warming discrepancies; confirms that earth´s surface temperature is rising. National Academics of Sciences, News arch., 12 jan. 2000. En: URL: // www4.nationalacademies.org/news.nsf/ (30.03.2005)

NCGIA, 1990. Introduction to GIS, Core curriculo, Vol. I. National Center for Geographic Information and Analysis. University of California, Santa Barbara, California, USA.

Santos, R. F. dos, 2004. Planejamento ambiental: teoria e prática. Ed. Oficina de textos, Sao Paulo, Brasil.

Silveira, V. F., 2004. Geoprocessamento como instrumento de gestão ambiental. En: Philippi Jr., A. , Romero, M. A. y Bruna, G. C., (edit.). Curso de gestão ambiental. Coleção ambiental 1. Univ. Sao Paulo. Ed. Manole, Barueri, SP, Brasil.

Zerda, H.R., 1991. Monitoreo y Evaluación de los Desmontes en el NO de Santiago del Estero a través de la Utilización de Imágenes Satelitales MSS Landsat. En: Resúmenes de Iras. Jornadas de Ciencia y Técnica del NOA, CICyT, Universidad Nacional de Santiago del Estero.

Zerda, H.R., 1998. Monitoring der Vegetations- und Landnutzungs_ veränderungen durch Brandrodung und Übernutzung im Trocken-Chaco Argentiniens mit Satellitenfernerkundung und GIS. Cuvillier Verlag, Goettingen, Alemania. 175 págs.

Zerda, H.R., 1999. Geoprocesamiento, una aplicación para el estudio de la fragmentación del bosque chaqueño. En: Resúmenes de XIX Reunión Argentina de Ecología, Univ. Nac. de Tucumán, S. M. de Tucumán, 21-23 abril 1999.

Page 15: Percepción remota y SIG en la planificación y la gestión ambiental

Zerda H. (2005) Percepción remota y SIG en la planificación y la gestión ambiental. En: Santiago del Estero: una mirada ambiental. Giannuzo A. y Ludueña M. (comp.), págs. 333-354. Ed. Universidad

Nacional de Santiago del Estero, Santiago del Estero, Argentina. ISBN: 987-99083-9-2.

Zerda, H. R., 2000. SIG para el estudio de la fragmentación del Bosque Chaqueño. En: Resúmenes del IX Simposio de la Sociedad de Especialistas Latinoam. Percepción Remota-SELPER, Pto. Iguazú, Misiones, nov. 2000.

Zerda, H.R. y Moreira, M. L., 2002. Monitoreo de quemas en la Provincia de Santiago del Estero, mediante el sensor MMRS del satélite argentino SAC-C. En: Disperati, A. A. y Dos Santos, J. R. (edit.). Anais do V Seminario de Atualização em Sensoriamento Remoto e Sistemas de Informações Aplicados à Engenharia Florestal. Fundação de Pesquisas Florestais do Paraná, UNICENTRO, Curitiba, Brasil.

Zerda, H.R., 2003. Percepción Remota y SIG para estudio del fuego (Capítulo 27). En: Kunts, C., Bravo, S. y Panigatti, J. L., (edit.). Fuego en los ecosistemas de argentinos, Ed. INTA.

Zerda, H. R. y Moreira, M. L., 2001. Monitoreo ambiental: investigación sobre los incendios de bosques y el avance de las fronteras agropecuarias en Santiago del Estero. Informe final de proyecto de investigación 2000-1. Universidad Católica de Santiago del Estero. Inédito, 63 págs., mapas y anexos.

Zerda, H. R. y Moreira, M. L., 2004. Monitoreo ambiental. Informe final de proyecto de investigación 2002-3. Universidad Católica de Santiago del Estero. Inédito, 64 págs., mapas y anexos.