Top Banner
Advanced techniques to reduce quantum noise May. 2012 Tokyo Inst of Technology Kentaro Somiya
21

Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Mar 07, 2018

Download

Documents

truongdien
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Advanced techniques to reduce quantum noise

May. 2012

Tokyo Inst of TechnologyKentaro Somiya

Page 2: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Quantum Limit in GW detectors

1st

generation detector(~10kW)

2nd

generation detector(~1MW)

radiation pressure noise

shot noiseStandard Quantum Limit (SQL)

High precisionUncertainty Principle

Back action

Shot noise reduction Radiation pressure noise

A limit that cannot be exceeded by simply increasing power

2

px

Page 3: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

However, the limit can be circumvented

• Back-action evasion with quantum control

• Application of optical squeezing

• Change of dynamics with an optical spring

Several ways to overcome the limit

Page 4: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Source of quantum noise

Photon number fluctuation

radiation pressure

Photon phase fluctuation

Shot noise

time

amp.

time

amp.

Vacuum fluctuation fromthe dark port causes QN

laservacuum

photo-detector

Beamsplitter

mirror

The vacuum is the source of randomchoice of photons on the BS.

Page 5: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Back-action evasion

phase fluctuation

photon number opto-mech. coupling

shot noise

RP noise

phase noise

a sort of quantum control

Ref. light Shot noise only

RP noise

photon-number fluctuation

Compensation of noise bya simultaneous measurement

GW signal

Page 6: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Sensitivity with Back-action evasion

SQL

Ref angle=86 deg

angle = 80 deg

Solid: lossless, Dashed: with loss

Shot noise only

• Exceeding SQL in a narrow band• Weak against optical losses

Ref angle = 0 deg

Page 7: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

By the way...

How come we can exceed the SQL?

Was Heisenberg wrong??

Page 8: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

SQL in a GW detector

1kW

100kW

1MW

SQL

f -2

2)(2)(~

2)()(

2)()(

fmfx

mtxtx

tptx

Radiation pressure Shot noise

GW detector Heisenberg

Uncertainty Principle

222

)('2NoiseShotNoiseRP

fm

identical

Beatable Unbeatable

Page 9: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

GW detectors see the “force”

IFO

x

Radiation pressure (amp modulation)

detector

Vacuum field (amp + phase)x

RPGW FFxm

output y

We can try not to see the radiation pressure motion(though the mirror IS moving).

Page 10: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Various ways to overcome the SQL

• Back-action evasion

• Squeezed vacuum injection

• Optical spring

• Optical inertia

Page 11: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Squeezing

less fluctuationof photon number

less fluctuationof light phase7dB squeezing

Sensitivity depends on the shapeof vacuum:~ low shot noise (left)~ low radiation pressure (right)~ overcoming SQL (intermediate)

Make an imbalance betweenphoton-number

fluctuation

and phase

fluctuation usinga non-linear crystal.

image of vacuum

Page 12: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

How to make squeezing

Squeezer makes a correlation btwvacuum fields at

and .

Differential-mode field decreases while common mode increases.

Goda

et al, Nature Physics 2008

• Has been implemented in GEO and LIGO• An issue is the optical loss

Page 13: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Broadband squeezing

• Rotation of the squeeze angle in the filter cavity• Frequency-dependent squeezing can be realized

Optimal squeezing at each frequency

Kimble et al (2001)

10dB, Squeeze angle 45 deg

SQL

10dB, broadband

squeezing

orange: lossless, pink: with loss

Page 14: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Optical spring

• High freq peak: signal resonance

Opt spring signal resoSQL

GW signal

ITM-SRM distanceis detuned from N

detuned

not detuned

signal at a certainfreq resonates

Page 15: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Optical spring

• High freq peak: signal resonance• Low freq peak: radiation pressure causes optical spring

signal re-enters and moves massesby the pressure

Susceptibility to GW increases so one can exceedthe SQL defined for free mass measurement.

Opt spring signal resoSQL

detuned

not detuned GW signal

ITM-SRM distanceis detuned from N

Page 16: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Optical spring experimentsSomiya et al, Appl. Opt. 44, 16 (2005)Miyakawa et al, Phys. Rev. D 74, 022001 (2006)Corbitt et al, Phys. Rev. Lett. 98, 150802 (2007)optical spring

• Signal amplification can be tested by TF measurement• Spring freq is determined by mirror weight and power• Optical spring system is to be implemented in KAGRA

Page 17: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Optical spring response

SignalSignal (PM+AM) LASER + Signal (AM) generates

signal radiation pressure force

Signal (PM)

Amplification in narrowband

GWGW

xAB

AyByxx

Axy

2

2

~)(~~

~

x

y

Page 18: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Optical inertia in a Sagnac

interferometer

GWGW

xAB

AiyyBxx

xAy

1~)(~

~~

LASER + Signal (AM)

Signal (PM)

x

y

Differential probe

time derivative

Differential force

time derivative

Broadband amplification

Interference of CW and CCWbeams

Page 19: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Quantum noise spectrum of Sagnac

• Exceeding SQL in broadband• Bandwidth depends on the input power

* With arm cavities; optical parameters are well tuned

Page 20: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st

Theme of the quantum noise reduction

(1)

We need a regime that is strong against losses

(2)

Exceeding the SQL in broadband would be good

(3)

We need a regime to do so with low power

© KAGRA

New ideas are welcome!!

Page 21: Tokyo Inst of Technology Kentaro Somiya - JGW …gwdoc.icrr.u-tokyo.ac.jp/DocDB/0010/G1201057/001/Somiya...Tokyo Inst of Technology Kentaro Somiya Quantum Limit in GW detectors 1 st