Top Banner
Time-Temperature Superposition of Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD) M.W. Witczak (ASU) USNCAM14 Blacksburg, VA June 24-28, 2002 Pavement Distress Modes Pavement Distress Modes d Permanent Deformation Fatigue Cracking Thermal Cracking + Reflection Cracking Material Characterization Models: Material Characterization Models: Pavement System Pavement System Stress Strain Log ε p Log N Stress Time Stress Nonlinearity Cyclic Loading Time Effects Viscoelasticity Viscoplasticity + Temperature, Moisture Dependence Problem Context Problem Context Comprehensive material model for AC must span all behavior phenomena: Viscoelasticity Microstructural damage (and damage localization) Viscoplasticity Major variables: Temperature Rate of loading Stress state Theoretical Background Theoretical Background ε t = (ε ve + ε d ) + ε vp Strain Decomposition Schapery Schapery Continuum Damage Model Continuum Damage Model ε t = total strain ε ve = viscoelasticity (linear recoverable) ε d = microstructural damage (nonrecoverable rate- independent) ε vp = viscoplasticity (nonrecoverable rate-dependent) Additional consideration: Post-peak localization (macrofracture)
5

Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

May 10, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

1

Time-TemperatureSuperposition of

Strain Componentsin Asphalt Concrete

C.W. Schwartz (UMD)J. Uzan (Technion)N.H. Gibson (UMD)M.W. Witczak (ASU)

USNCAM14Blacksburg, VA

June 24-28, 2002

Pavement Distress ModesPavement Distress Modes

d

Permanent Deformation

Fatigue CrackingThermal Cracking

+ ReflectionCracking

Material Characterization Models:Material Characterization Models:Pavement SystemPavement System

Strain

Stress

Strain

Log εp

Log N

Log εp

Log N

Stress

Time

Stress Nonlinearity Cyclic Loading

Time EffectsViscoelasticityViscoplasticity

+ Temperature, MoistureDependence

Problem ContextProblem Context

• Comprehensive material model for AC must span allbehavior phenomena:

ViscoelasticityMicrostructural damage (and damage localization)Viscoplasticity

• Major variables:TemperatureRate of loadingStress state

Theoretical BackgroundTheoretical Backgroundεt = (εve + εd) + εvpεt = (εve + εd) + εvp

Strain Decomposition

Schapery Schapery Continuum Damage ModelContinuum Damage Model

• εt = total strain• εve = viscoelasticity (linear recoverable)• εd = microstructural damage (nonrecoverable rate-

independent)• εvp = viscoplasticity (nonrecoverable rate-dependent)

Additional consideration: Post-peak localization (macrofracture)

Page 2: Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

2

ViscoelasticityViscoelasticity

0 0

1 ( ) t

ijRij

R T

dtE dE a

ξ ∂ε ′′ ′ε = ξ − ξ ξ ξ =

′∂ξ∫ ∫

Correspondence Principle:

• εijR = Pseudo-strain

• E(t) and aT(T) = material properties

MicrostructuralMicrostructural Damage Damage

Damage D = SD/S0≤D ≤1

( ) ( )D ii

W S f S∂σ ≡ = ε

∂ε

( 1, 2)m

m D

m

S W mt S

α ∂ ∂

= − = ∂ ∂ in which: αm = material properties

Damage Evolution Law:

Stress-Strain Relation:

in which: WD = energy density Si = internal state variables f(Si) = damage functions

ViscoplasticityViscoplasticity

Strain-Hardening Model:

( ) ( )1 11 11 11 11 11 1

( )

( )

1 1

vp pvp

q

p pq qp pp pvp

gA

g B

p pB t tA D

σεε

σ σ

ε σ σ+ ++ ++ +

=

=

+ + = =

• D, p, q = material properties

Problem StatementProblem Statement

• Material characterization requires extensive laboratorytesting

• “Brute force” approach (w/ exaggeration): 3 Temperatures x 3 Loading rates x 3 Deviator stresses x 2 Confining pressures x 3 Types of tests 162 Tests

How can this be reduced???How can this be reduced???

Time-Temperature Superposition ConceptsTime-Temperature Superposition Concepts

Log (Loading Time)

Log

(Stif

fnes

s)

T1 T2T0

t / aT1 t / aT2

““ThermorheologicallyThermorheologically Simple Material” Simple Material”-5

-3

-1

1

3

-10 10 30 50 70Temperature, °C

log

(aT)

5 °C25 °C40 °C60 °CPredicted

-5

-3

-1

1

3

-10 10 30 50 70Temperature, °C

log

(aT)

5 °C25 °C40 °C60 °CPredicted

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log (Reduced Time) [sec]

Dyn

amic

Mod

ulus

E*

[Gpa

]

5 °C25 °C40 °C60 °CPredicted

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log (Reduced Time) [sec]

Dyn

amic

Mod

ulus

E*

[Gpa

]

5 °C25 °C40 °C60 °CPredicted

Typical Results:Typical Results:FrequencyFrequency

SweepSweep

12.5 mm MSHASuperpave mix

Master Curve

Temperature Shift

Stress

Strain

Phase lag

Time

Stress

Strain

Phase lag

Time0

0*εσ

=E

Page 3: Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

3

Key QuestionsKey Questions

• Do time-temperature superposition concepts continue toapply to AC under non-small strain conditions?

• Do similar rate processes apply to different components ofthe material response?

ViscoelasticityDamage (micro/macro)Viscoplasticity

Constant Strain Rate TestsConstant Strain Rate Tests

12.5 mm MSHASuperpave mix

Strain

Time

ε

Temperature T

Test FactorialSee

Schwartz et al.TRB 2002

Unconfined Compression, 25oC

0.00

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100Time (sec)

Stra

in

Unconfined Compression, 25oC

0.00

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100Time (sec)

Stra

in

Unconfined Compression, 25oC

0

2000

4000

6000

8000

0.00 0.01 0.02 0.03 0.04 0.05Strain

Stre

ss (k

Pa)

0.00050.00150.00450.0135ReplicateReplicate

Unconfined Compression, 25oC

0

2000

4000

6000

8000

0.00 0.01 0.02 0.03 0.04 0.05Strain

Stre

ss (k

Pa)

0.00050.00150.00450.0135ReplicateReplicate

ConstantConstantCrossheadCrossheadRateRate

ε

σ

ε

σ

ε

σ

T1 T2 T3

C

B

A

F

ED

GH

IIncreasingStrain Rate

IncreasingStrain Rate

IncreasingStrain Rate

ε1 ε1 ε1

log t

log σ

ε = ε1

T1

T2

T3

A

D

G

B

E

H

C

F

I

Cross-Plotting Methodology - Part 1Cross-Plotting Methodology - Part 1

Cross-Plotting Methodology - Part 2Cross-Plotting Methodology - Part 2

log t

log σ

ε = ε1

T1

T2

T3

A

D

G

B

E

H

C

F

I

log tR

log σε = ε1

T0 = T2

log aT

T

ε = ε1

T1

T2

T3

ε = 0.0025

100

1000

10000

100000

-4 -2 0 2 4 6

Log Reduced Time (sec)

Stre

ss (k

Pa)

5 C 25 C 40 C 60 C

ε = 0.0025

100

1000

10000

100000

-4 -2 0 2 4 6

Log Reduced Time (sec)

Stre

ss (k

Pa)

5 C 25 C 40 C 60 C

ε = 0.0125

100

1000

10000

100000

-2 0 2 4 6

Log Reduced Time (sec)

Stre

ss (k

Pa)

ε = 0.0125

100

1000

10000

100000

-2 0 2 4 6

Log Reduced Time (sec)

Stre

ss (k

Pa)

ε = 0.0200

100

1000

10000

100000

-2 0 2 4 6

Log Reduced Tim e (sec)

Stre

ss (k

Pa)

ε = 0.0200

100

1000

10000

100000

-2 0 2 4 6

Log Reduced Tim e (sec)

Stre

ss (k

Pa)

Cross-PlottingCross-PlottingResultsResults Early

Response

Peak RegionPost-Peak

Page 4: Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

4

Stress Master CurvesStress Master Curves

100

1000

10000

100000

-2 0 2 4 6log Reduced Time (sec)

Stre

ss (k

lPa)

0.00250.00500.00750.01000.01250.01500.01750.02000.02250.0250

Increasing Strain Level

100

1000

10000

100000

-2 0 2 4 6log Reduced Time (sec)

Stre

ss (k

lPa)

0.00250.00500.00750.01000.01250.01500.01750.02000.02250.0250

Increasing Strain Level

Temperature Shift FactorsTemperature Shift Factors

-5

-4

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70

Temperature (oC)

log

a T

Freq.Sweeps0.00250.00500.00750.01000.01250.01500.01750.02000.02250.0250

Increasing Strain Level

Increasing Strain Level

-5

-4

-3

-2

-1

0

1

2

3

0 10 20 30 40 50 60 70

Temperature (oC)

log

a T

Freq.Sweeps0.00250.00500.00750.01000.01250.01500.01750.02000.02250.0250

Increasing Strain Level

Increasing Strain Level

Large Strain Temperature Shift

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log Reduced Time, sec

E* [

Gpa

] 5 °C25 °C40 °C60 °CPredicted

Large Strain Temperature Shift

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log Reduced Time, sec

E* [

Gpa

] 5 °C25 °C40 °C60 °CPredicted

Small Strain Temperature Shift

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log Reduced Time, sec

E* [

Gpa

]

5 °C25 °C40 °C60 °CPredicted

Small Strain Temperature Shift

0

1

10

100

-7 -5 -3 -1 1 3 5 7Log Reduced Time, sec

E* [

Gpa

]

5 °C25 °C40 °C60 °CPredictedR2 = 0.99

R2 = 0.98

Strain influenceon aT is notsignificant?

ViscoplasticViscoplastic Creep and Recovery Tests Creep and Recovery Tests

Time

Load

T ime

Load

T ime

Load

T ime

Load

Constant Stress/Increasing Time

• Determines time exponent p

Increasing Stress/Constant Time

• Determines stress exponent q

Confirmation of LargeConfirmation of LargeStrain Time-TemperatureStrain Time-TemperatureSuperposition:Superposition:Creep and RecoveryCreep and RecoveryTestsTests

0.00.20.40.60.81.01.2

0 50 100Reduced Time

Load

Low Temperature High Temperature

0.00.20.40.60.81.01.2

0 50 100Reduced Time

Load

Low Temperature High Temperature

Low Temperature

0.00.20.40.60.81.01.2

0 50 100Time

Load

Low Temperature

0.00.20.40.60.81.01.2

0 50 100Time

Load

High Temperature

0.00.20.40.60.81.01.2

0 50 100Time

Load

High Temperature

0.00.20.40.60.81.01.2

0 50 100Time

Load

(Large-strain temperature shift)

25o and 35o C

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 1000 2000 3000 4000 5000Reduced Time, sec

Stra

in, % 35C (Shifted)

25C (Unshifted)

25o and 35o C

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 1000 2000 3000 4000 5000Reduced Time, sec

Stra

in, % 35C (Shifted)

25C (Unshifted)

35oand 45oC

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 500 1000 1500 2000Reduced Time, sec

Stra

in, %

45C (Shifted)35C (Unshifted)

35oand 45oC

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0 500 1000 1500 2000Reduced Time, sec

Stra

in, %

45C (Shifted)35C (Unshifted)

Creep andCreep andRecoveryRecovery

Confirmstime-temperature

superposition.

Page 5: Pavement Distress Modes Strain Componentsschwartz/presentations/unnctam14_2002.… · Strain Components in Asphalt Concrete C.W. Schwartz (UMD) J. Uzan (Technion) N.H. Gibson (UMD)

5

Viscoplasticity Viscoplasticity ParametersParameters

0.0001

0.001

0.01

0.0001 0.001 0.01

Measured Viscoplastic Strain (mm/mm)

Pred

icte

d Vi

scop

last

ic S

trai

n

25C & 35C 'Fixed Stress' Data

35C 'Fixed Time' Data

35C & 45C Verification 'FixedStress' Data

0.0001

0.001

0.01

0.0001 0.001 0.01

Measured Viscoplastic Strain (mm/mm)

Pred

icte

d Vi

scop

last

ic S

trai

n

25C & 35C 'Fixed Stress' Data

35C 'Fixed Time' Data

35C & 45C Verification 'FixedStress' Data

D = 1.30E+15p = 1.53q = 2.09

( )1 111 111 p q pp

vpp tD

ε σ+ +++ =

Verification -Creep and Recovery

25oC, σ ≅ 1500 kPa

Replicate 1

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

Replicate 1

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

Replicate 3

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

Replicate 3

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

Replicate 2

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

Replicate 2

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

3.0E-02

3.5E-02

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0005/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 5 10 15 20 25

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0005/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 5 10 15 20 25

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0015/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 1 2 3 4 5 6 7 8 9

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0015/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 1 2 3 4 5 6 7 8 9

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0045 (Replicate 2)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 0.5 1 1.5 2 2.5 3 3.5

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0045 (Replicate 2)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

0 0.5 1 1.5 2 2.5 3 3.5

Time (sec)

Stra

in

Measured TotalVE + DamageVPComputed Total

0.0135/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

1.0E-02

0 0.2 0.4 0.6 0.8 1 1.2

Time (sec)

Stra

in

Me a su r e d To t a lVE + Da m a g eVPCo m p u t e d To t a l

0.0135/sec (Replicate 1)

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

5.0E-03

6.0E-03

7.0E-03

8.0E-03

9.0E-03

1.0E-02

0 0.2 0.4 0.6 0.8 1 1.2

Time (sec)

Stra

in

Me a su r e d To t a lVE + Da m a g eVPCo m p u t e d To t a l

Verification: Constant Strain Rate (25oC)ConclusionsConclusions

• Time-temperature superposition appears to remain valid atvery large strains

Confirming data from tension CSR, creep-and-recovery tests(Kim/NCSU)Confirming trends from repeated load permanent deformation,static creep tests (Witczak/ASU)

• Enhanced Schapery continuum damage model captures thekey aspects of asphalt concrete behavior (pre-localization)

ViscoelasticityMicrostructural damageViscoplasticity

• Validation against independent laboratory tests isunderway