Top Banner
Development & Application of Fluid & Oxygen Transport Models for the Microcirculation Mr Paul Sweeney & Dr Rebecca Shipley, MechEng, UCL Dr Simon Walker-Samuel, Centre for Advanced Biomedical Imaging, UCL Dr Jaime Grutzendler & Dr Robert Hill, Centre for Experimental Neuroimaging, Yale University Background Methods Results Future Development References Simultaneous, in vivo measurement of microvascular (< 200 μm) perfusion and structure is prac4cally infeasible . Thus, understanding the rela4onship between vascular structure and blood transport has yet to be clarified. Computa@onal limita@ons and the size of structural data sets (>10 5 vessel segments) now available mo@vates a con@nuum modelling approach. Here we present a discretecon4nuum mathema4cal model to predict flow and pressure distribu@ons through @ssue by combining a discrete method applied to the branching arterioles and a con@nuum approach applied to the meshlike capillary structure. Case studies: (A) Development of models using a rat mesentery network 1 as a test bed. (B) Study the impact of an ischaemic stroke on @ssue oxygena@on in 3D mouse cortex data 2 . (A) (B) 1. Pries, A. Dept. of Physiology, Charité Universitätsmedizin Berlin. 2. Grutzendler, J. & Hill, R. Centre for Experimental Neuroimaging, Yale University. 3. Shipley, R.J. et al. Spa$al Averaging of Microcirculatory Blood Flow. Math. Med. & Bio. Submi]ed. 4. Secomb, T.W. Green’s Func$on Methods for Analysis of Oxygen Delivery to Tissue by Microvascular Networks. Annals of Biomed Eng. 2004. Discrete Model Along with flow and pressure boundary condi@ons, the model takes structural data that has been segmented into a series of cylindrical tubes of constant circular crosssec@on. At the microvascular scale, blood flow is viscous dominated. Hence, Poiseuille’s Law is valid, where N is the no. of nodes, q j ,M jk and p k are the flow, conductance and fluid nodal pressure of segment j. DiscreteCon4nuum Model 3 Darcy’s law is describes the coupling between blood velocity, u, and pressure, p, with the aid of κ, the permeability of the capillary network to fluid transport. Bloody supply into the capillaries is represented by influx condi@ons at point sources represen@ng connec@ons between arterioles and capillaries. Oublow to the venules is accounted for by a constant drainage term, β, chosen to conserve mass. Conserva@on of mass yields where p v is constant venous pressure, N t is the no. of @ssue points and C j are source strengths. Green’s Func4on Method for Oxygen Delivery 4 Oxygen is bound to RBCs, dissolved in plasma and diffuses into @ssue then metabolised by cells. Oxygen sources represent blood vessels and a set of discrete oxygen sinks represent @ssue. Using Fick’s law of diffusion and conserva4on of mass, the Green’s func@on, G(x;x*), for a given domain may be defined as the PO 2 at a point x resul@ng from a unit point source at x* is the solu@on to where D and α are oxygen diffusivity and solubility. UCL MECHANICAL ENGINEERING q j = M jk p k k N ∇⋅ u = κ 2 p = β ( p p v ) + C j ( x ) δ ( x x j ) j =1 N t D α2 G = δ ( x x*) Figure 1. Rat mesentery (a) Discrete modelling of fluid pressure (mean segment pressure mmHg). (b) Discrete con@nuum model predic@ons of the pressure profiles in both the arteriolar network and capillary domain. Case Study (A) – Rat Mesentery Discrete Model – max. blood pressure was 81.56 mmHg along with a min. of 13.8 mmHg (venous oublow pressure, p v ). Mean capillary pressure was 26.23 mmHg. DiscreteCon4nuum Model – capillary permeability, κ, was chosen by comparing metrics for known pressure and flow condi@ons in the discrete model. % errors in the mean and standard devia@on of the source pressures was within 10%. % errors in the mean and standard devia@on of source flows was less successful, at ~40%. Case Study (B) – Mouse Cortex Oxygen Delivery – simula@ons were run on both a healthy and ischaemic stroke induced network to compare PO 2 levels. Healthy – mean & max. PO 2 of 32.11 and 93.27 mmHg with a SD of 3.72. Stroke – mean & max. PO 2 of 29.44 and 71.39 mmHg and a SD of 3.43. A clear shim in PO 2 can be seen (Fig. 2) when a stroke is induced, indica@ng an increase in hypoxia. Figure 2. Mouse Cortex (a) Tissue PO 2 levels in (i) Healthy (blue) & (ii) stroke induced (red) simula@ons (b) O 2 delivery to healthy @ssue (mmHg). Extend to 3D domain and incorporate discrete venular network. Apply DiscreteCon@nuum model to mouse cortex. Study effects of microvascular blockages on PO 2 transport. Incorporate inters44al flow to predict 4ssuescale fluid and drug transport in porous and healthy blood vessels.
1
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PaulSweeney_POSTER_2015

Development & Application of Fluid & Oxygen Transport Models for the Microcirculation Mr Paul Sweeney & Dr Rebecca Shipley, MechEng, UCL Dr Simon Walker-Samuel, Centre for Advanced Biomedical Imaging, UCL Dr Jaime Grutzendler & Dr Robert Hill, Centre for Experimental Neuroimaging, Yale University

Background

Methods

Results

Future Development

References

Simultaneous,   in   vivo  measurement  of  microvascular   (<  200  μm)  perfusion   and   structure   is   prac4cally   infeasible.   Thus,  understanding   the   rela4onship   between   vascular   structure   and  blood   transport  has   yet   to   be   clarified.   Computa@onal   limita@ons  and   the   size   of   structural   data   sets   (>105   vessel   segments)   now  available   mo@vates   a   con@nuum   modelling   approach.   Here   we  present  a  discrete-­‐con4nuum  mathema4cal  model  to  predict  flow  and  pressure  distribu@ons   through  @ssue  by   combining  a  discrete  method   applied   to   the   branching   arterioles   and   a   con@nuum  approach  applied  to  the  mesh-­‐like  capillary  structure.  Case  studies:  (A) Development   of   models   using   a   rat   mesentery   network1   as   a  

test  bed.  (B)  Study  the   impact  of  an   ischaemic  stroke  on  @ssue  oxygena@on  

in  3D  mouse  cortex  data2.  

(A) (B)

1.  Pries,  A.  Dept.  of  Physiology,  Charité  Universitätsmedizin  Berlin.  

2.  Grutzendler,  J.  &  Hill,  R.  Centre  for  Experimental  Neuroimaging,  Yale  University.  

3.  Shipley,  R.J.  et  al.  Spa$al  Averaging  of  Microcirculatory  Blood  Flow.  Math.  Med.  &  Bio.  Submi]ed.  

4.  Secomb,  T.W.  Green’s  Func$on  Methods  for  Analysis  of  Oxygen  Delivery  to  Tissue  by  Microvascular  Networks.  Annals  of  Biomed  Eng.  2004.  

Discrete  Model  

•  Along  with  flow  and  pressure  boundary  condi@ons,  the  model  takes  structural  data  that  has  been  segmented  into  a  series  of  cylindrical  tubes  of  constant  circular  cross-­‐sec@on.    

•  At   the  microvascular   scale,   blood  flow   is  viscous   dominated.  Hence,  Poiseuille’s  Law  is  valid,  

 

where  N  is  the  no.  of  nodes,  qj,  Mjk  and  pk  are  the  flow,    conductance  and  fluid  nodal  pressure  of  segment  j.  

Discrete-­‐Con4nuum  Model3  

•  Darcy’s   law   is  describes  the  coupling  between  blood  velocity,  u,  and  pressure,  p,  with   the  aid  of  κ,   the  permeability  of   the  capillary  network  to  fluid  transport.  

•  Bloody   supply   into   the   capillaries   is   represented   by   influx  condi@ons  at  point  sources  represen@ng  connec@ons  between  arterioles  and  capillaries.  Oublow  to  the  venules  is  accounted  for  by  a  constant  drainage  term,  β,  chosen  to  conserve  mass.  

•  Conserva@on  of  mass  yields  

where  pv  is  constant  venous  pressure,  Nt  is  the  no.  of  @ssue  points  and  Cj  are  source  strengths.  

Green’s  Func4on  Method  for  Oxygen  Delivery4  

•  Oxygen  is  bound  to  RBCs,  dissolved  in  plasma  and  diffuses  into  @ssue  then  metabolised  by  cells.  

•  Oxygen  sources  represent  blood  vessels  and  a  set  of  discrete  oxygen  sinks  represent  @ssue.    

•  Using   Fick’s   law   of   diffusion   and   conserva4on   of   mass,   the  Green’s   func@on,  G(x;x*),   for  a  given  domain  may  be  defined  as  the  PO2  at  a  point  x  resul@ng  from  a  unit  point  source  at  x*  is  the  solu@on  to  

 

where  D  and  α  are  oxygen  diffusivity  and  solubility.  

UCL MECHANICAL ENGINEERING

qj = M jk pkk∈N∑

∇⋅u = −κ ∇2p = −β(p − pv )+ Cj (x)δ (x − x j )j=1

Nt

Dα∇2G = −δ (x − x*)

Figure  1.  Rat  mesentery  -­‐  (a)  Discrete  modelling  of  fluid  pressure  (mean  segment  pressure  -­‐  mmHg).  (b)  Discrete-­‐con@nuum  model  predic@ons  of  the  pressure  profiles  in  both  the  arteriolar  network  and  capillary  domain.    

Case  Study  (A)  –  Rat  Mesentery  

•  Discrete  Model  –  max.  blood  pressure  was  81.56  mmHg  along  with  a  min.  of  13.8  mmHg  (venous  oublow  pressure,  pv).  Mean  capillary  pressure  was  26.23  mmHg.  

•  Discrete-­‐Con4nuum   Model   –   capillary   permeability,   κ,   was  chosen   by   comparing   metrics   for   known   pressure   and   flow  condi@ons  in  the  discrete  model.  

•  %  errors  in  the  mean  and  standard  devia@on  of  the  source  pressures  was  within  10%.  

•  %   errors   in   the   mean   and   standard   devia@on   of   source  flows  was  less  successful,  at  ~40%.  

Case  Study  (B)  –  Mouse  Cortex  

•  Oxygen  Delivery  –  simula@ons  were  run  on  both  a  healthy  and  ischaemic  stroke  induced  network  to  compare  PO2  levels.  

•  Healthy   –   mean   &  max.   PO2   of   32.11   and   93.27   mmHg  with  a  SD  of  3.72.  

•  Stroke  –  mean  &  max.  PO2  of  29.44  and  71.39  mmHg  and  a  SD  of  3.43.  

•  A  clear   shim   in  PO2   can  be   seen   (Fig.  2)  when  a   stroke   is  induced,  indica@ng  an  increase  in  hypoxia.  

Figure  2.  Mouse  Cortex  -­‐  (a)  Tissue  PO2  levels  in  (i)  Healthy  (blue)  &  (ii)  stroke  induced  (red)  simula@ons  (b)  O2  delivery  to  healthy  @ssue  (mmHg).  

•  Extend   to   3D   domain   and   incorporate   discrete   venular  network.  

•  Apply  Discrete-­‐Con@nuum  model  to  mouse  cortex.  •  Study  effects  of  microvascular  blockages  on  PO2  transport.  •  Incorporate   inters44al   flow   to   predict   4ssue-­‐scale   fluid  

and  drug  transport  in  porous  and  healthy  blood  vessels.