Top Banner

of 93

Partition Coefficients for Metals in Surface Water, Soil and Waste

Jun 02, 2018

Download

Documents

St_Lair
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    1/93

    EPA/600/R-05/074

    July2005

    PARTITIONCOEFFICIENTSFOR

    METALS

    INSURFACEWATER,SOIL,ANDWASTE

    by

    JerryD.Allison,1,2

    TerryL.Allison,.2

    1HydroGeoLogic,Inc

    1155HerndonParkway,Suite900

    Herndon,VA20170

    2AllisonGeoscienceConsultants,Inc.

    3920PerryLane

    FloweryBranch,GA30542

    WorkAssignmentManager: RobertB.Ambrose,Jr.,P.E.

    ContractNo.68-C6-0020 EcosystemsResearchDivision

    NationalExposureResearchLaboratory

    960CollegeStationRoad

    Athens,GA30605

    U.S.EnvironmentalProtectionAgency

    OfficeofResearchandDevelopment

    Washington,DC20460

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    2/93

    NOTICE

    TheinformationinthisdocumenthasbeenfundedwhollybytheUnitedStates

    EnvironmentalProtectionAgencyundercontract68-C6-0020,WorkAssignment2-01to

    HydroGeoLogic,Inc.IthasbeensubjecttotheAgency'speerandadministrativereview,andit

    hasbeenapprovedforpublicationasanEPAdocument.Mentionoftradenamesofcommercialproductsdoesnotconstituteendorsementorrecommendationforuse.

    ii

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    3/93

    FOREWORD

    TheNationalExposureResearchLaboratoryEcosystemsResearchDivision(ERD)in

    Athens,Georgia,conductsprocess,modeling,andfieldresearchtoassesstheexposurerisksof

    humansandecosystemstobothchemicalandnon-chemicalstressors.Thisresearchprovides

    data,modeling,tools,andtechnicalsupporttoEPAProgramandRegionalOffices,stateandlocalgovernments,andothercustomers,enablingachievementofAgencyandORDstrategic

    goalsfortheprotectionofhumanhealthandtheenvironment.

    ERDresearchincludesstudiesofthebehaviorofcontaminants,nutrients,andbiotain

    environmentalsystems,andthedevelopmentofmathematicalmodelstoassesstheresponseof

    aquaticsystems,watersheds,andlandscapestostressesfromnaturalandanthropogenicsources.

    ERDfieldandlaboratorystudiessupportprocessresearch,modeldevelopment,testingand

    validation,andthecharacterizationofvariabilityandpredictionuncertainty.

    Leading-edgecomputationaltechnologiesaredevelopedtointegratecorescience

    researchresultsintomulti-media(air,surfacewater,groundwater,soil,sediment,biota),multi-stressor,andmulti-scale(organism,population,community,ecosystem;fieldsite,watershed,

    regional,national,global)modelingsystemsthatprovidepredictivecapabilitiesforcomplex

    environmentalexposurescenariosfacebytheAgency.

    ExposuremodelsaredistributedandsupportedviatheEPACenterforExposure

    AssessmentModeling(CEAM)(www.epa.gov/athens/ceampubl),theWatershedandWater

    QualityModelTechnicalSupportCenter(www.epa.gov/athens/wwqtsc),andthroughaccessto

    Internettools(www.epa.gov/athens/onsite).

    ThisresearchprojectisacomponentoftheERDhazardouswasteresearchprogram,

    whichseekstobetterunderstandtheenvironmentalcycling,exposure,andriskarisingfromthereleaseoforganicandinorganicpollutantsfromtreatmentfacilities.Inthisproject,metal

    partitioncoefficientsweredevelopedforthewatershed,surfacewater,andsourcemodelsused

    intheMultimedia,Multi-pathway,Multi-receptorExposureandRiskAssessment(3MRA)

    technology.Knowledgeanddatagainedinthisevaluationwillbeusedtoimproveexposure

    andriskanalysiscapabilitiesforheavymetalsevaluatedbythe3MRAandothermodelsused

    byEPAinvariousregulatoryprograms.

    EricJ.Weber,Ph.D.,ActingDirectorEcosystems

    ResearchDivision

    Athens,Georgia

    iii

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    4/93

    ABSTRACT

    Thisreportpresentsmetalpartitioncoefficientsforthesurfacewaterpathwayandfor

    thesourcemodelusedintheMultimedia,Multi-pathway,Multi-receptorExposureandRisk

    Assessment(3MRA)technologyunderdevelopmentbytheU.S.EnvironmentalProtectionAgency.Partitioncoefficientsvaluesarepresentedforpartitioningbetweensoilandwater;

    partitioningbetweenthesuspendedsedimentloadandthewaterinstreams,rivers,andlakes;

    partitioningbetweenriverineorlacustrinesedimentanditsporewater;andpartitioningbetween

    dissolvedorganiccarbon(DOC)andtheinorganicsolutionspeciesinthewaterofstreams,

    rivers,andlakes. Somepartitioncoefficientsarealsopresentedtorepresentmetalpartitioning

    betweenthesolidphaseofwasteanditsassociatedleachate.Partitioncoefficientsare

    presentedforantimony(Sb),arsenic(As),barium(Ba),beryllium(Be),cadmium(Cd),

    chromium(Cr),cobalt(Co),copper(Cu),lead(Pb),molybdenum(Mo),mercury(Hg),

    methylatedmercury(CH3Hg),nickel(Ni),selenium(Se),silver(Ag),thallium(Tl),tin(Sn),

    vanadium(V),andzinc(Zn).

    Atwo-phaseapproachwasusedindevelopingtheneededpartitioncoefficients.Inthe

    first-phase,aliteraturesurveywasperformedtodeterminetherangeandstatisticaldistribution

    ofvaluesthathavebeenobservedinfieldstudies. Thisincludedthecollectionofpublished

    partitioncoefficientsforanyofthemetalsinanyoftheenvironmentalmediaofinterest,orour

    estimationofpartitioncoefficientsfromreportedmetalconcentrationdatawhenfeasible.In

    thesecond-phaseeffort,statisticalmethods,geochemicalspeciationmodeling,andexpert

    judgementwereusedtoprovidereasonableestimatesofthosepartitioncoefficientsnot

    obtainedfromourliteraturesearchanddataprocessing.Thereportconcludeswithadiscussion

    ofthemanysourcesofuncertaintyinthereportedmetalpartitioncoefficients.

    iv

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    5/93

    TABLEOFCONTENTS

    page

    1.0 INTRODUCTIONANDBACKGROUND. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

    2.0 LITERATURESURVEYFORMETALPARTITIONCOEFFICIENTS . . . . . . . . 2-12.1 SELECTIONCRITERIAFORPARTITIONCOEFFICIENTS . . . . . . . . . . 2-3

    2.2 RESULTSOFTHELITERATURESURVEY. . . . . . . . . . . . . . . . . . . . . . . 2-3

    3.0 ANALYSISOFRETRIEVEDDATAANDDEVELOPMENTOF

    PARTITIONCOEFFICIENTVALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    3.1 DEVELOPMENTOFPARTITIONCOEFFICIENTSFOR

    NATURALMEDIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    3.1.1 EstimationfromRegressionEquationsBasedonLiteratureData. . . 3-2

    3.1.2 EstimationFromGeochemicalSpeciationModeling . . . . . . . . . . . . 3-3

    3.1.3 EstimationfromExpertJudgement . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

    3.2 DEVELOPMENTOFPARTITIONCOEFFICIENTSFORWASTESYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16

    3.2.1 EstimationfromAnalysisofDataPresentedintheLiterature. . . . . 3-17

    3.2.2 EstimationfromGeochemicalSpeciationModeling. . . . . . . . . . . . 3-19

    4.0 DISCUSSIONOFRESULTSANDSOURCESOFUNCERTAINTY . . . . . . . . . . 4-1

    5.0 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    APPENDICES

    APPENDIXA

    APPENDIXB

    APPENDIXC

    APPENDIXD

    APPENDIXE

    METALPARTITIONCOEFFICIENTSUSEDINSOMERECENTU.S.EPARISKASSESSMENTS

    SCATTERPLOTSFORLINEARREGRESSIONSUSEDTO

    ESTIMATEMEANLOGKINNATURALMEDIA

    EXAMPLEINPUTFILEFORTHEMINTEQA2MODEL

    USEDTOESTIMATEMETALPARTITIONINGIN

    SOIL/SOILWATERSYSTEMS

    EXAMPLEINPUTFILEFORTHEMINTEQA2MODEL

    USEDTOESTIMATEMETALPARTITIONINGTODOC

    EXAMPLEINPUTFILEFORTHEMINTEQA2MODEL

    USEDTOESTIMATEMETALPARTITIONINGIN

    WASTEMANAGEMENTSYSTEMS

    v

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    6/93

    LISTOFTABLES

    page

    Table1 Partitioncoefficients(logKdinL/kg)fromtheliteraturesearch.. . . . . . . . . 2-5

    Table2 LinearregressionequationsusedtoestimatemeanlogKdvalues(L/kg)innaturalmedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

    Table3 Metalpartitioncoefficients(logKd)inkg/Lforsoil/soilwater . . . . . . . . . . 3-8

    Table4 Metalpartitioncoefficients(logKd)inkg/Lforsediment/porewater . . . . . 3-10

    Table5 Metalpartitioncoefficients(logKd)inkg/Lforsuspendedmatter/water . . 3-12

    Table6 Metalpartitioncoefficients(logKd)inkg/Lforpartitioningbetween

    DOCandinorganicsolutionspecies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14

    Table7 Effectivemetalpartitioncoefficientsbasedonreportedsolidphaseandsolution

    phasemetalsconcentrationsfromleachtestsreportedintheliterature. . . . 3-18

    Table8 ImportantparametersandconstituentconcentrationsusedinMINTEQA2

    modelingoflandfillsintheacetogenicandmethanogenicstagesand

    MSWIandCKDmonofills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20Table9 Estimatedrangeinlogpartitioncoefficients(L/kg)inwasteforselected

    metalsdeterminedfromMINTEQA2modeling . . . . . . . . . . . . . . . . . . . . . 3-22

    vi

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    7/93

    LISTOFFIGURES

    page

    FigureB-1 DatausedtodevelopregressionequationtopredictsedimentKd

    fromsoilKd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1FigureB-2 DatausedtodevelopregressionequationtopredictsedimentKd

    fromsuspendedmatterKd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1

    FigureB-3 DatausedtodevelopregressionequationtopredictsoilKdfromsuspendedmatterKd(andviceversa) . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

    FigureB-4 DatausedtodevelopregressionequationtopredictwasteKdfromsoilKd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2

    vii

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    8/93

    1.0 INTRODUCTIONANDBACKGROUND

    Thepurposeofthisstudywastodevelopmetalpartitioncoefficientsforthesurfacewater

    pathwayandforthesourcemodelusedintheMultimedia,Multi-pathway,Multi-receptor

    ExposureandRiskAssessment(3MRA)technologyunderdevelopmentbytheU.S.

    EnvironmentalProtectionAgency.The3MRAtechnologyprovidesforscreening-levelhumanandecologicalriskassessmentsforchronicexposuretochemicalsreleasedfromland-based

    wastemanagementunits(WMUs)managedundertheHazardousWasteIdentificationRule

    (HWIR). Themultimedia3MRAmodelincludesasurfacewaterpathwaymodelthatrequires

    thepartitioncoefficientforeachmetaltobemodeled.

    Innaturalmedia,metalcontaminantsundergoreactionswithligandsinwaterandwithsurface

    sitesonthesolidmaterialswithwhichthewaterisincontact.Reactionsinwhichthemetalis

    boundtothesolidmatrixarereferredtoassorptionreactionsandmetalthatisboundtothe

    solidissaidtobesorbed.Themetalpartitioncoefficient(Kd;alsoknownasthesorption

    distributioncoefficient)istheratioofsorbedmetalconcentration(expressedinmgmetalper

    kgsorbingmaterial)tothedissolvedmetalconcentration(expressedinmgmetalperLofsolution)atequilibrium.

    (1)

    Duringtransportofmetalsinsoilsandsurfacewatersystems,metalsorptiontothesolidmatrix

    resultsinareductioninthedissolvedconcentrationofmetalandthisaffectstheoverallrateof

    metaltransport. Thus,transportmodelssuchasthoseusedinvariouspathwaysinthe3MRA

    incorporatethemetalKdintotheoverallretardationfactor(theratiooftheaveragelinear

    particlevelocitytothevelocityofthatportionoftheplumewherethecontaminantisat50percentdilution). TheuseofKdin3MRAtransportmodelingimpliestheassumptionthatlocal

    equilibriumbetweenthemetalsolutesandthesorbentsisattained. Thisimpliesthattherateof

    sorptionreactionsisfastrelativetoadvective-dispersivetransportofthemetal.

    Foraparticularmetal,Kdvaluesinsoilaredependentuponvariousgeochemicalcharacteristics

    ofthesoilanditsporewater. LikewiseforsurfacewatersystemstheKdforaparticularmetal

    dependsonthenatureofsuspendedsolidsorsedimentandkeygeochemicalparametersofthe

    water. GeochemicalparametersthathavethegreatestinfluenceonthemagnitudeofKdinclude

    thepHofthesystemandthenatureandconcentrationofsorbentsassociatedwiththesoilor

    surfacewater. Inthesubsurfacebeneathawastemanagementfacility,theconcentrationof

    leachateconstituentsmayalsoinfluencethemetalKdthroughcompetitionforsorptionsites.

    ThemetalsofinterestinHWIRmodelingareantimony(Sb),arsenic(As),barium(Ba),

    beryllium(Be),cadmium(Cd),chromium(Cr),cobalt(Co),copper(Cu),lead(Pb),

    molybdenum(Mo),mercury(Hg),nickel(Ni),selenium(Se),silver(Ag),thallium(Tl),tin

    1-1

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    9/93

    (Sn),vanadium(V),andzinc(Zn).Methylatedmercury(CH3Hg)andcyanide(CN)arealsoof

    interest. Inthesurfacewaterpathway,the3MRAincludesseveraltransportprocessesthat

    requiremetalpartitioncoefficients:(1)Theoverlandtransportofmetalcontaminantsinrunoff

    waterinthewatershedandtheconsequentpartitioningbetweensoilandwater;(2)partitioning

    betweenthesuspendedsedimentloadandthewaterinstreams,rivers,andlakes;(3)

    partitioningbetweenriverineorlacustrinesedimentanditsporewater;and(4)partitioningbetweendissolvedorganiccarbon(DOC)andtheinorganicsolutionspeciesinthewaterof

    streams,rivers,andlakes.

    The3MRAmodelingscenarioalsoincludesasourcemodelforvarioustypesofwaste

    managementunitsthatalsorequirespartitioncoefficients.Forthesourcemodel,thepartition

    coefficientsareusedtorepresenttheratioofcontaminantmassinthesolidphasetothatinthe

    leachate(water)phase. Therearefivetypesofwastemanagementunitsforwhichthesource

    modelrequirespartitioncoefficients:landapplicationunits,wastepiles,landfills,treatment

    lagoons(surfaceimpoundments),andaeratedtanks.

    Thisreportdescribesthetwo-phaseapproachusedindevelopingtheneededpartitioncoefficients. Inthepreferred(first-phase)methodofobtainingthecoefficients,aliterature

    surveywasperformedtodeterminetherangeandstatisticaldistributionofvaluesthathave

    beenobservedinfieldstudies.Thisincludesthecollectionofpublishedpartitioncoefficients

    foranyofthemetalsinanyoftheenvironmentalmediaofinterest,orourestimationof

    partitioncoefficientsfromreportedmetalconcentrationdatawhenfeasible.Thedataretrieved

    intheliteraturesearchwererecordedinaspreadsheetalongwithassociatedgeochemical

    parameters(suchaspH,sorbentconcentration,etc.)whenthesewerereported.Weanticipated

    thattheliteraturesearchwouldnotsupplyneededpartitioncoefficientsforallofthemetalsin

    alloftheenvironmentalmediaofinterest. Therefore,inthesecond-phaseeffort,statistical

    methods,geochemicalspeciationmodeling,andexpertjudgementwereusedtoprovide

    reasonableestimatesofthosepartitioncoefficientsnotobtainedfromourliteraturesearchanddataprocessing.

    2.0 LITERATURESURVEYFORMETALPARTITIONCOEFFICIENTS

    Aliteraturesurveywasconductedtoobtainpartitioncoefficientstodescribethepartitioningof

    metalsbetweensoilandsoil-water,betweensuspendedparticulatematter(SPM)andsurface

    water,betweensedimentandsediment-porewater,andbetweenDOCandthedissolved

    inorganicphaseinnaturalwaters. Inaddition,partitioncoefficientsweresoughtfor

    equilibriumpartitioningofmetalsbetweenwastematrixmaterialandtheassociatedaqueous

    phaseinlandapplicationunits,wastepiles,landfills,treatmentlagoons,andaeratedtanks.The

    literaturesurveyencompassedperiodicalscientificandengineeringmaterialsaswellassome

    non-periodicals,includingbooksandtechnicalreportspublishedbytheU.S.EPAandother

    2-1

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    10/93

    governmentagencies. Electronicsearchesofthefollowingdatabaseswereincludedaspartof

    theliteraturesurvey:

    AcademicPressJournals(1995-present)

    AGRICOLA(1970-present)

    AnalyticalAbstracts(1980-present) AppliedScienceandTechnologyAbstracts

    AquaticSciencesandFisheriesAbstractSet(1981-present)

    CABAbstracts(1987-present)

    CurrentContents(1992-present)

    DissertationAbstracts(1981-present)

    EcologyAbstracts(1982-present)

    EISDigestofEnvironmentalImpactStatements(1985-present)

    EITechIndex(1987-present)

    EnvironmentalEngineeringAbstracts(1990-present)

    GeneralScienceAbstracts(1984-present)

    GEOBASE(1980-present) GEOREF(1785-present)

    NationalTechnicalInformationService

    PapersFirst(1993-present)

    PeriodicalAbstracts(1986-present)

    ToxicologyAbstracts(1982-present)

    WaterResourcesAbstracts(1987-present)

    Twosearchstringswereusedintheelectronicsearches:distributioncoefficientand

    partitioncoefficient. Useofsuchgeneralstringshastheadvantageofgeneratingmany

    citations,decreasingtheprobabilitythatrelevantarticleswillbemissed,butalsocarryinga

    highlaborburdenbecauseeachcitationreturnedmustbeexaminedforusefuldata.Formetalsthatarenotaswellrepresentedinthepublishedliterature,evenmoregeneralsearchstrings

    wereused,sometimeswithbooleanoperators(e.g.,bariumandsoil,seleniumand

    partitioning).Theworkofidentifyingarticlescontainingusefuldatafromamongallthose

    retrievedwasmadeeasierbyfirstreviewingthetitlestoeliminatethoseofobviousirrelevance,

    thenreviewingtheabstracts,thatwereusuallyavailableon-line.Abstractsofcitationsthat

    showedpromiseforprovidingpartitioncoefficientswereprintedandgivenacodeconsistingof

    thefirsttwolettersoftheleadauthorslastnameandthelasttwodigitsoftheyearof

    publication. Thecode,alongwiththefirstfewwordsofthearticletitle,wasenteredinalog

    bookfortracking.Loggedarticleswerequicklyreviewedatlocaluniversityresearchlibraries,

    andthosecontainingrelevantdatawerecopiedforamorethoroughreviewatouroffice.Most

    ofthearticleswereobtainedfromtheUniversityofGeorgiaScienceLibraryortheGeorgia

    InstituteofTechnologyLibrary.Aseachcopiedarticleorreportwasreviewed,asummary

    pagecontainingtheassignedcodewasstapledtothefrontwithnotesindicatingthetypeofdata

    foundinthepaperandthelocation(pagenumber,tablenumber,etc.)ofusefuldata.Partition

    2-2

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    11/93

    coefficientsandotherdatafromthearticleswerethenenteredintoanEXCEL97spreadsheet

    forcompilationandanalysis.

    2.1 SELECTIONCRITERIAFORPARTITIONCOEFFICIENTS

    Thefollowingcriteriaandguidelineswerefollowedintheselectionofpartitioncoefficient

    valuesfromjournalarticles.Valueswereacceptedfromstudiescharacterizedby:

    C Useofwholenaturalmediafordeterminationofpartitioncoefficientsinnatural

    mediasystems(e.g.,rejectvaluesfromstudiesusingpuremineralphasesortreated

    soils)

    C Insoilsystems,useofanextractanthavinglowionicstrength(#0.1M);insurface

    watersystems,lowsalinity(freshwaterpreferred,salinityupto10partsperthousand

    acceptable)

    C Useoflowtotalmetalconcentrations(i.e.,ifcoefficientsweredeterminedatmultiple

    totalmetalconcentrations,choosethecoefficientcorrespondingtothelowestconcentrationwhereKdislesslikelytodependonmetalconcentration)

    C pHvaluesinthenaturalrange(4to10)

    C Noorganicchelatesintheextractant(e.g.,EDTA)

    C Onepartitioncoefficientpersystemstudied

    C Wheremultiplepartitioncoefficientsarepresentedforasystemduetoexperimental

    variationofpHorotherparameters,selectthepartitioncoefficientcorrespondingtothe

    conditionsmostcloselyapproximatingnaturalconditions.

    C Batchleachingtests(preferredovercolumntestsifbothareavailableforthesamestudy

    andsoil,butcolumntestsacceptable).

    Thegeochemicalparametersmostlikelytoinfluencethepartitioncoefficientwereenteredinthespreadsheetalongwithreportedorcalculatedcoefficientsifsuchwerespecifiedinthe

    sourcearticleorreport.ExamplesoftheseparametersarepH,totalconcentrationsofmetalin

    solutionandsorbed,andconcentrationsofimportantmetalcomplexingagents(including

    DOC),andweightfractionofparticulateorganicmatterandothersorbingmaterials.Physical

    parametersnecessarytoconvertsorbedconcentration(mg/kg)overdissolvedconcentration

    (mg/L)topartitioncoefficientsinlitersperkilogram(L/kg),i.e.,porosity,watercontent,and

    bulkdensity,werealsorecordedwhenreportedinthearticles.Equationsandrelationships

    presentedinjournalarticlesthatpresentKdasafunctionofpHorotherparameterswere

    recordedinaremarkfieldinthespreadsheet.

    2.2 RESULTSOFTHELITERATURESURVEY

    Approximately245articlesandreportswerecopiedandreviewed.Atotalof1170individual

    Kdvalueswereobtainedfromthesesources,eitherdirectlyorcalculatedfromreportedmedia

    concentrations. ThistotaldoesnotincludemeanestimatedKdvaluesreportedinpreviously

    publishedcompilationsofKdvalues(BaesandSharp,1983;Baesetal.,1984;Coughtreyetal.,

    2-3

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    12/93

    1985;Thibaultetal.,1990). (Thedatafromthesepreviouscompilationswererecordedinthe

    spreadsheetandusedinguidingthefinalestimatesofappropriatecentraltendencyvaluesas

    describedinSection3.1.3.) Approximately80%ofthe1170valuesweobtainedfromthe

    literaturepertainedtothemetalsCd,Co,Cr,Cu,Hg,Ni,Pb,andZn. MoreKdswere

    recoveredforCdthananyothermetal,followedcloselybyZn,Pb,andCu.Themost

    frequentlyreportedtypeofKdwasthatforsuspendedmatterinstreams,riversandlakes.(Datapertainingtomarineenvironmentsweregenerallyrejected,butsomedatafromestuarieswere

    includedifreportedascorrespondingtolowsalinity.)ThesecondmostfrequentlyreportedKdvaluespertainedtopartitioninginsoil.SuspendedmatterandsoilKdstogethertotaled68%of

    thereporteddata. Table1showsthemedianandrangeofKdvaluesretrievedinourliterature

    searchfornaturalmedia.(ValuesshownarelogKdvalues). Forsomecombinationsofmetal

    andmediatype,toofewpartitioncoefficientswerefoundintheliteraturetostateamedianor

    evenareasonablerange.Insomeofthesecases,meanormedianvalueswereavailablefrom

    previouscompilationsofpartitioncoefficients. InTable1,blankspacesinthetablecorrespond

    tonodatafound. Valuesinboldarefrompreviouscompilations.

    Nodirectlyreportedpartitioncoefficientsforthewastesystemsofinterestwerediscoveredintheliteraturesurvey,andnoneareincludedinTable1.Therearemanyreasonsforwishingto

    understandthebehaviorofmetalsinnaturalsystems.Therichliteratureofsoilscience,plant

    nutrition,aquaticchemistry,geology,andtoxicologyareallexamplesofinvestigativeareasof

    longstandingwheremetalpartitioncoefficientsarefrequentlyencountered.Theimpetusfor

    researchwithregardtowastesystemsissignificantlydifferentfromthatofnaturalsystems.

    Moreover,thebehaviorofmetalsinwastematerialsaretypicallystudiedandreportedpriorto

    theirdisposalandconsequentmixingwithahostofothersubstancesfewstudieshave

    focusedonthebehaviorofmetalswithinactualdisposalunitscontaininga(usuallyunknown)

    mixtureofmaterials.Moststudiesinvolvingmetalconcentrationsinwasteareconcernedwith

    predictingthemetalconcentrationinleachatebymeansofaphysicaltest(i.e.,aleachate

    extractiontest).Section3.2presentsfurtherfindingswithregardtoleachtestsandappropriatemetalpartitioncoefficientsforwastesystems.

    2-4

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    13/93

    Table1

    Partitioncoefficients(log KdinL/kg)fromtheliteraturesearch.

    Medianvalueslistedinboldfacearefromapreviouscompilation.

    Blankspacesrepresentinstancesforwhichnodatawasfoundortoo

    fewvalueswerefoundtoprovidemeaningfulstatistics.

    Metal Soil/Water

    Suspended

    Matter

    /Water

    Sediment/

    Water DOC/Water

    Ag

    median

    2.6 4.9 3.6

    range 1.0-4.5 4.4-6.3 2.1-5.8

    N 21 15

    As

    median

    3.4 4.0 2.5

    range 0.3-4.3 2.0-6.0 1.6-4.3

    N 22 25 18

    Ba

    median

    4.0

    range 0.7-3.4 2.9-4.5

    N 14

    Be

    median3.1 4.1

    range 1.7-4.1 2.8-6.8

    N 2 17

    Cd

    median

    2.9 4.7 3.6 5.2

    range 0.1-5.0 2.8-6.3 0.5-7.3 3.4-5.5

    N 41 67 21 4

    Co

    median

    2.1 4.7 3.3 4.5

    range (-1.2)-4.1 3.2-6.3 2.9-3.6 2.9-4.8

    N 11 29 3 2

    2-5

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    14/93

    Table1

    Partitioncoefficients(log KdinL/kg)fromtheliteraturesearch.

    Medianvalueslistedinboldfacearefromapreviouscompilation.

    Blankspacesrepresentinstancesforwhichnodatawasfoundortoo

    fewvalueswerefoundtoprovidemeaningfulstatistics.

    Metal Soil/Water

    Suspended

    Matter

    /Water

    Sediment/

    Water DOC/Water

    Cr(III)

    median

    3.9 5.1 4.5

    range 1.0-4.7 3.9-6.0

    N 43 25

    Cr(VI)

    median

    1.1

    range (-0.7)-3.3

    N 24

    Cu

    median

    2.7 4.7 4.2 5.5

    range 0.1-3.6 3.1-6.1 0.7-6.2 2.5-7.0

    N 20 70 12 17

    Hg

    median3.8 5.3 4.9 5.3

    range 2.2-5.8 4.2-6.9 3.8-6.0 5.3-5.6

    N 17 35 2 3

    CH3Hg

    median

    2.8 5.4 3.6

    range 1.3-4.8 4.2-6.2 2.8-5.0

    N 11 2 4

    Mo

    median

    1.1 2.5

    range (-0.2)-2.7

    N 8

    2-6

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    15/93

    Table1

    Partitioncoefficients(log KdinL/kg)fromtheliteraturesearch.

    Medianvalueslistedinboldfacearefromapreviouscompilation.

    Blankspacesrepresentinstancesforwhichnodatawasfoundortoo

    fewvalueswerefoundtoprovidemeaningfulstatistics.

    Metal Soil/Water

    Suspended

    Matter

    /Water

    Sediment/

    Water DOC/Water

    Ni

    median

    3.1 4.6 4.0 5.1

    range 1.0-3.8 3.5-5.7 4.7-5.4

    N 18 30 4

    Pb

    median

    4.2 5.6 5.1 5.0

    range 0.7-5.0 3.4-6.5 2.0-7.0 3.8-5.6

    N 33 48 24 9

    Sb

    median

    2.4 4.0

    range 0.1-2.7 2.5-4.8 2.7-4.3

    N 3

    Se

    median 1.0 3.6

    range -0.3-2.4 3.1-4.7

    N 23

    Sn

    median

    2.9 5.6 4.7

    range 2.1-4.0 4.9-6.3

    N 3

    Tl

    median3.2

    range 3.0-3.5

    N 6

    2-7

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    16/93

    Table1

    Partitioncoefficients(log KdinL/kg)fromtheliteraturesearch.

    Medianvalueslistedinboldfacearefromapreviouscompilation.

    Blankspacesrepresentinstancesforwhichnodatawasfoundortoo

    fewvalueswerefoundtoprovidemeaningfulstatistics.

    Metal Soil/Water

    Suspended

    Matter

    /Water

    Sediment/

    Water DOC/Water

    V

    median

    range 1.1-2.7

    N

    Zn

    median

    3.1 5.1 3.7 4.9

    range (-1.0)-5.0 3.5-6.9 1.5-6.2 4.6-6.4

    N 21 75 18 9

    CN

    median

    3.0

    range 0.7-3.6

    N 3

    PartitioncoefficientsusedinseveralrecentU.S.EPAriskassessmentsarepresentedinAppendixA.Becausetheoriginofthesedataisgenerallyunknown,theywerenotincludedin

    thecollectionofKdvaluesappearingelsewhereinourspreadsheet,norweretheyincludedin

    thestatistical summaryofKdvaluesobtainedfromtheliteratureasreportedherein.

    2-8

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    17/93

    3.0 ANALYSISOFRETRIEVEDDATAANDDEVELOPMENTOFPARTITION

    COEFFICIENTVALUES

    Thedatagatheredfrompublishedsourceswereinsufficienttoestablishareasonablerange

    and/ormedianvalueforthepartitioncoefficientforallmetalsinallmedia-types.Therefore,

    thesecondpartoftheeffortwasdirectedataugmentingthevaluesobtainedfromtheliteraturesoastoprovideareasonablerangeandcentraltendencyofKdforeachmetalineachmedia-

    type. Statisticalanalysisofretrieveddata,geochemicalmodeling,andexpertjudgementwere

    allusedtodevelopthesepartitioncoefficientvalues. Thenatureoftheavailabledatafor

    naturalmediaandwastesystemswasdifferenttotheextentthatitseemedbesttoconsider

    thesetwocategoriesseparately.

    3.1 DEVELOPMENTOFPARTITIONCOEFFICIENTSINNATURALMEDIA

    Inanalyzingthepartitioningdatacollectedfromtheliteratureforsoilandsurfacewater

    systems,weattemptedtoidentifytheshapeoftheprobabilitydistributionforeachmetalin

    eachmedium. Foraparticularmetalinaparticularmedium,thedegreetowhichtheliteraturesampleistrulyrepresentativeofthepopulationofmetalpartitioncoefficientsisdependenton

    thenumberofsamplepoints,theactualvariabilityofimportantmediumpropertiesthat

    influencepartitioning(pH,concentrationofsorbingphases,etc.),andhowwellthisvariability

    isrepresentedinthesample. Insomecases,itwasnecessarytoeliminatedatapointsfromthe

    literaturesampletoavoidobviousbias. Forexample,thesampleofliteratureKdvaluesfor

    Cr(III)insoilincludedvaluesobtainedinapHtitrationofthreesoilssuchthateachofthethree

    wasrepresentedbyeightdifferentKdvalues. Althoughtheyprovideinterestingdataonthe

    dependenceofKdonpHinthesesoils,multiplemeasurementsfromthesamesoilandvalues

    determinedatotherthantheambientsoilpHintroducebiasinthenaturalprobability

    distributionofKd. Therefore,incaseswhereKdassociatedwithmultiplepHvalueswere

    presented,theKdassociatedwiththepHvalueclosesttotheambientsoilpHwaschosen.IftheambientsoilpHwasnotspecified,thenasingleKdvaluewaspickedrandomlyfromamong

    thosepresentedandtheotherKdvaluesforthesoilwerediscarded.Inthisfashion,thesample

    ofliteraturedataforeachmetalandmedia-typewaseditedbeforeattemptingtoidentifythe

    underlyingprobabilitydistributionforKd.

    StatisticaltestswereperformedtodeterminetheshapeofthefrequencydistributionofKdfor

    eachmetalandmedia-type.Thesetestsemployedwidelyrecognizedtechniquesavailablein

    thestatisticalpackageAnalyze-It(version1.32),anadd-onmoduleforMicrosoftEXCEL97.

    TheShapiro-WilktestandtheKolmogorov-Smirnovtestwereusedtotestthesamplesfor

    normality.ApositivetestinShapiro-Wilkdoesnotensureanormaldistribution.Rather,it

    providesameasureofconfidencethatthesampledataarenotinconsistentwithanormal

    distribution. TheShapiro-Wilktestisageneraltestfornormality;itisnotnecessarytoknow

    thepopulationmeanorstandarddeviation. TheKolmogorov-Smirnovtestwasusedwhen

    resultsfromtheShapiro-Wilktestwerenegative. Inonlyafewcaseswerethedatasufficient

    toidentifytheunderlyingdistributionwithanydegreeofcertainty.Manyofthesamplesets

    (includingthemostcomplete(largest)samplesets),gaveapositivetestfornormalityafter

    3-1

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    18/93

    transformingtheavailabledatatologspace,suggestingthatthefrequencydistributionofthe

    underlyingpopulationofKdvaluesforaparticularmetalinaparticularmediumismostlikely

    log-normal.

    Insomecases,thereweretoofewrepresentativedatapointsinthesampletohaveconfidencein

    thedescriptivestatisticsofthedata. Inthesecases,threemethodswereusedtoaugmenttheavailabledatainestimatingthemean,standarddeviation,andminimumandmaximumKdvalues. Thethreemethodswere:estimationfromlinearregressionequationsdevelopedfrom

    theliteraturesamples,estimationfromtheresultsofgeochemicalspeciationmodeling,and

    estimationbyexpertjudgement. Eachmethodisdiscussedbelow.

    3.1.1 EstimationfromRegressionEquationsBasedonLiteratureData

    Ofthe13metalsforwhichliteraturedatawereretrievedcharacterizingKdinsoil,sediment,

    andsuspendedmatter,12ofthemexhibitedaprogressionofdecreasingaffinityforsorption

    materialintheordersuspendedmatter>sediment>soil. Inotherwords,comparisonofmean

    KdvaluesforparticularmetalsshowedtheresultthatKd,SPM>Kd,Sediment>Kd,Soil. IntwoothercaseswhereatleasttwooftheKdtypescouldbecharacterizedfromtheliteraturedata,both

    conformedtothissamepattern. Inaddition,asomewhatconsistentprogressioninKdmagnitudeformetalswithinthethreenaturalmediawasnoted.Forthebestrepresented

    metals,thefollowingpatternsofdecreasingKdwereobserved(basedonorderingthemeanKdvaluesfromhighesttolowestmagnitudeforeachmedium):

    Soils: Pb>Cr III>Hg>As>Zn=Ni>Cd>Cu>Ag>Co

    Sediment: Pb>Hg>CrIII>Cu>Ni>Zn>Cd>Ag>Co>As

    SPM: Pb>Hg>Cr III=Zn>Ag>Cu=Cd=Co>Ni>As

    TherewassomeshufflingaboutoftheKdmagnitudeorderingamongthesemedia-types,asmightbeexpectedforadatasetthatisundoubtedlyincomplete. Themostobvious

    inconsistencyintheprogressionofKdmagnitudeisforAs. Nevertheless,thesimilaritiesare

    worthyofnote.Someaspectsoftheoveralltrendareinagreementwiththehard-softacid-base

    (HSAB)conceptsofPearson(1963),however,PbandHghavegreateraffinitiesthanHSAB

    predicts.Certainly,therearemultipleadsorptionsurfacespresentinallofthesematerials.The

    consistencyofaffinityrelationshipsamongthesemetalssuggeststhatthedistributionofKdis

    partlyduetocharacteristicsuniquetothemetalsthemselvesandpartlyduetocharacteristics

    associatedwiththesorbingsurfaces.Regardlessofthereason,itappearsfeasibletoexploit

    thesetrendstoprovideanestimateofKdforagivenmetalinonemediumifitsvalueinanother

    mediumisavailable. Forexample,theliteraturedataprovidedareasonablenumberofKdvaluesinsoilsandsuspendedmatterfortheninemetalsAg,Cd,Co,Cr(III),Cu,Hg,Ni,Pb,

    andZn. Foreachofthesemetals,themeanvalueofKdinsoilwasintheneighborhoodoftwo

    ordersofmagnitudelessthanthemeanvalueinsuspendedmatter.Thistrendwas

    characterizedmoreexactlybydevelopingalinearregressionequation.Theregressionequation

    wasthenusedtoestimatemeanKdvaluesformetalsforwhichtheliteratureprovidedan

    estimateofmeanKdinsoil,butnotinsuspendedmatter. Inasimilarmanner,linearregression

    3-2

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    19/93

    equationsweredevelopedtoestimatethemeanKdinsedimentfromtheliteratureestimateof

    meanKdinsoilorsuspendedmatter,orthemeansoilKdfromthatinsedimentorsuspended

    matter. Theregressionequationsweredevelopedfromcaseswheretheliteraturesurveydata

    providedreasonableestimatesofthemeanKdforatleasttwoofthethreemedia.Themetals

    usedindevelopingtheregressionequationsincludedcadmium,copper,zinc,andothermetals

    thatwerebetterrepresentedintheliterature.ThedistributionofKdvaluesforaparticularmetalwasassumedtobelog-normalsothattheregressionequationswereactuallybasedon

    meanlogKdandwereusedtopredictmeanlogKd. Thestandarddeviationwasestimatedfrom

    themeanandminimumvaluesassumingtheminimumvaluerepresentstwostandard

    deviationsfromthemean. Thestandarddeviationwasalsoestimatedusingthemeanand

    maximumvaluesratherthanmeanandminimum. Thelargerofthetwoestimatesofstandard

    deviationwasretainedasthefinalestimate.TheregressionequationsusedareshowninTable

    2alongwiththenumberofobservationsuponwhicheachequationisbased,thecorrelation

    coefficient(r2),andthe95%confidenceintervalfortheslopeandintercept.Scatterplots

    showingtheregresseddatapointsandstraightlineregressionsareshowninAppendixB.

    Table2LinearregressionequationsusedtoestimatemeanlogKdvalues(L/kg)innaturalmedia.

    Usedto Independent slope intercept

    Estimate Variable (+/-95%CI) (+/-95%CI) r2 N

    meanlogKd meanlogKd 1.080 0.796 0.7 5

    sediment soil (1.035) (3.190) 9

    meanlogKd meanlogKd 1.418 -3.179 0.6 5

    sediment suspended (1.923) (9.868) 5

    matter

    meanlogKd meanlogKd 0.380 3.889 0.3 9

    suspended soil (0.444) (1.338) 7

    matter

    meanlogKd meanlogKd 0.969 -1.903 0.3 9

    soil suspended (1.136) (5.703) 7

    matter

    TheregressionequationswerealsousedtoestimatemeanKdvaluesforsuspendedmatterand

    sedimentsfromanestimateofthemeanKd

    insoilobtainedfromgeochemicalspeciation

    modelingasdiscussedinthenextsection.

    3.1.2 EstimationFromGeochemicalSpeciationModeling

    Geochemicalspeciationmodelingwasusedtoestimatesoil/waterpartitioningifdata-based

    regressionequationscouldnotbeused. ThepartitioningofmetalcationsbetweenDOCand

    3-3

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    20/93

    theinorganicportionofthesolutionphasewasalsoestimatedbyspeciationmodeling.Inboth

    cases,theU.S.EPAgeochemicalspeciationmodelMINTEQA2,version4.0(Allisonetal.,

    1990),wasusedtoestimatetheKdvalues. TheinputdataforMINTEQA2weredeveloped

    fromvarioussourcesaspresentedinthefollowingsections.

    MODELINGDETAILSANDINPUTDATAFORSOILPARTITIONCOEFFICIENTS

    Theconcentrationsofmajorionsusedingeochemicalspeciationmodelingforsoilswerethe

    averageconcentrationsinriverwaterasreportedbyStummandMorgan(1996).Thesoil-

    waterphosphateconcentrationwasobtainedfromBohnetal.(1979).Theionicstrengthwas

    heldconstantat0.005Mafterasensitivitytestintherange0.01to0.001Mrevealedthatthe

    impactonresultsofdoingsowassignificantlylessthantheeffectofvariabilityinother

    importantparameters. Modelinputvaluesforseveralofthemostsignificantmaster

    variablesaffectingKdwerevariedoverreasonablerangesinordertocapturetheexpectedrange

    ofKdvalues. ThesemastervariablesincludepH,concentrationofdissolvedorganiccarbon

    (DOC),concentrationofparticulateorganiccarbon(POC),andconcentrationofmetaloxide

    bindingsites.Therangeforeachofthesemastervariableswascharacterizedbylow,medium,andhighassignedvalues,andthemodelwasexecutedatallpossiblecombinationsofthese

    settings. ThepHrangecorrespondedtothatreportedfromtheSTORETdatabase(U.S.EPA,

    1996a)withaslightdownwardadjustment(6.5forthemediumvalueinsteadof6.8,and4.5for

    thelowvalueinsteadof4.9)toaccountforthemoreacidicenvironmentofsurfacewatershed

    soils. TheconcentrationsusedforDOCwere0.5,5.0,and50.0mg/L,takenasareasonable

    rangeinsoil-water. TheassignedPOCconcentrationvalueswereobtainedfromanalysisof

    datainadatabaseforshallow,silt-loamsoils(Carseletal.,1988andR.Parrish,personal

    communication). Thelow,medium,andhighvaluescorrespondedtothe10th,50th,and90th

    percentiles,respectively,forparticulateorganicmatterconcentration(0.41,1.07,and2.12

    wt%).

    Thedominantmetaloxidesorbingsurfacewasassumedtobehydrousferricoxide(HFO).

    Becausewehadlittlereliableinformationastotheappropriateconcentrationrange,andalsoin

    considerationoftheimportanceofthisvariableindeterminingKd,theHFOconcentrationwas

    usedasacalibratingvariable.Thelow,medium,andhighvalueswereinitiallysetto

    correspondtothevaluesusedinU.S.EPA(1996a). Thosevalueswerebasedonaspecialized

    extractionofreactiveFefromasetof12samplesfromvariousaquifersandsoils.Themean

    KdforCd,Cu,Ni,Pb,andZnwerecomputedusingthesevaluesinMINTEQA2. These

    computedKdvalueswerecomparedwithmeanKdvaluesforthesesamemetalsinsoilobtained

    fromourliteraturesurvey.Thelow,medium,andhighHFOconcentrationswerescaledin

    subsequentmodelingsuchthatthemeanKdvaluefromMINTEQA2waswithinthe95%

    confidenceintervalofthemeanliteratureKdvalueforeachofthesemetals. (EachMINTEQA2

    executionresultedin81differentKdvaluesduetoutilizingalldifferentcombinationsoflow,

    medium,andhighassignedvaluesforthefourdifferentmastervariables.Themeanvaluefrom

    MINTEQA2wastakenastheaverageofthethreeKdvaluescorrespondingtothemedium

    settingofpH,DOC,andHFOandthelowsettingofPOC;themediumsettingsofpH,DOC,

    andHFO,andthemediumsettingofPOC;andthemediumsettingsofpH,DOC,andHFO,

    3-4

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    21/93

    andthehighsettingofPOC.)AppendixCshowsatypicalMINTEQA2inputfileusedin

    estimatingKdforsoil/water.

    TheminimumandmaximumKdvalueswereestablishedbycombiningtheavailableliterature

    dataandMINTEQA2results.Again,thedistributionwasassumedtobelog-normal. Oncethe

    meanlogKd

    valueforametalwasestablishedforsoilfromthemodelingexercise,the

    previouslydescribedregressionequationsbasedonourliteratureanalysisprocesswereusedto

    estimatethemeanKdvaluesforsedimentandsuspendedmatterifthesewerelackingfromthe

    literaturedata. Thestandarddeviationwasestimatedasdescribedpreviouslyforthelinear

    regressionestimates.

    MODELINGDETAILSANDINPUTDATAFOR DOCPARTITIONCOEFFICIENTS

    ThepartitioningofmetalsbetweenDOCandotherinorganicformsinwaterisnotusually

    reported intermsofapartitioningcoefficient.Infact,specializedalgorithmswithinspeciation

    modelsarefrequentlyemployedtoestimatethefractionofmetalboundwithDOCbasedonthe

    pH,majorioncompositionofthesolution,andionicstrength. Thedevelopmentofsuch

    specializedmethodsforestimatingmetalbindingwithDOCisanongoingresearcharea.MINTEQA2includesaspecializedsub-modelforestimatingDOCinteractionstheGaussian

    distributionmodel(Dobbsetal.,1989;AllisonandPerdue,1994). ThismodelrepresentsDOC

    asamixtureofmanytypesofmetalbindingsites.Theprobabilityofoccurrenceofabinding

    sitewithaparticularlogKisgivenbyanormalprobabilityfunctiondefinedbyameanlogK

    andstandarddeviationinlogK. AlimitationoftheDOCbindingcalculationsinMINTEQA2

    andsimilarmodelsisthatthemetal-DOCreactionsnecessarytoobtainresultsareknownonly

    foralimitednumberofmetalcations,andfornoneoftheanionicmetals.MINTEQA2

    includesmeanlogKvaluesforthemetalcationsCd,Cu,Ba,Be,Cr(III),Ni,Pb,andZn.For

    othermetalcationsofinterest(Ag,Co,Hg(II),Sn(II),andTl(I)),itwasnecessarytoestimate

    themeanlogKforDOCbindingforusewiththeGaussianmodel.ForHg(II),theestimateof

    themeanlogKwasdeterminedfromaregressionofknownmeanlogKvaluesagainstthebindingconstantsforhumic-andfulvicacid(HAandFA,respectively)reportedbyTipping

    (1994). ThemetalsCd,Cu,Ni,Pb,andZnwerealsorepresentedinthedatabaseofHAandFA

    bindingconstants,sothesedatawereusedtodeveloptheregressionrelationshipshownin

    Equation(2).

    (2)

    Asderived,Equation(2)hasacorrelationcoefficient(r2)of0.95,andproducesanestimateof

    9.0forthemeanlogKforHg2+bindingwithDOC(meanlogKDOC,Hg). (NOTE: Thisequation

    givesthemeanlogKDOC,aformationconstantforuseintheMINTEQA2speciationmodelforthechemicalreactionbetweenDOCandHg.ItisnotthesameasthemeanKdforHgbinding

    withDOC. ThelatterisalwaysdesignatedKd;theobjectiveoftheMINTEQA2modelingisto

    estimatetheKdforthosemetalsforwhichliteraturedataislacking.)

    ThemeanlogKvaluesforDOCbindingtotheothercations(Ag+,Co2+,Sn2+,andTl+)were

    derivedfromalinearfreeenergyrelationshipusingthefirsthydrolysisconstants(logKOH)and

    3-5

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    22/93

    thebindingconstantforacetate(logKAcet). TheknownvaluesoflogKOHandlogKAcetforthe

    metalsCd,Cu,Fe,Ni,Pb,andZnwereusedtoderivethefollowingrelationship:

    (3)

    Thecorrelationcoefficient(r2)forEquation(3)is0.98. Equation(3)wasusedtoestimatethe

    meanlogKDOCvaluesforAg+,Co2+,Sn2+,andTl+foruseinMINTEQA2modeling.Themean

    logKDOCvaluesestimatedforthesemetalswere2.0,3.3,6.6,and1.0,respectively.

    Theestimationproceduresoutlinedpreviouslyinthissectioncannotreliablybeextendedto

    anions. However,anionsaretypicallynotasstronglyboundtoorganicmatter.Therefore,we

    usedMINTEQA2toestimateKdvaluesforbindingtoDOCforcationicmetalsonly,and

    includedconservativeestimatesofKdvaluesfortheanionsbasedonjudgementalone.

    Theconcentrationsofmajorionsusedinestimatingmetal-DOCbindingwithMINTEQA2weretheaverageconcentrationsinriverwaterasreportedbyStummandMorgan(1996).The

    concentrationofDOCandthepHweretreatedasmastervariables,witheachassignedthree

    levelscorrespondingtolow,medium,andhigh. Theassignedmediumvaluewasthemeanof

    thereportedriverandstreamsamplesfromtheliteraturesurvey,andthelowandhighvalues

    wereselectedtoencompasstherangeobservedintheliteraturesurveydata.Specifically,the

    low,medium,andhighconcentrationsofDOCwere0.89,8.9,and89mg/L,respectively,and

    thelow,medium,andhighpHwere4.9,7.3,and8.1,respectively.Thebindingofeachofthe

    metalcationswascomputedinninesimulationsthatrepresentedallpossiblecombinationsof

    pHandDOCconcentrationlevel. ThemeanKdvalueforeachcationwasspecifiedasthat

    valuecomputedbyMINTEQA2whenthepHandDOCconcentrationweresettotheirreported

    meanvaluesinsurfacewater. AtypicalMINTEQA2inputfileusedtoestimatemetal

    partitioningtoDOCisshowninAppendixD.

    TheresultscomputedusingMINTEQA2forbothsoilsandDOCwereusedtoaugmentthe

    partitioningdatacollectedintheliteraturesurvey.Althoughitwasconsideredreasonableto

    useMINTEQA2toestimatemeanpartitioncoefficients,itwasnotpossibletoestablishthe

    shapeoftheKdfrequencydistributioncurvefromtheMINTEQA2results.However,thereis

    nocompellingreasontosupposeotherthanthelog-normaldistributionsuggestedbythe

    literaturesurveydata.

    3.1.3 EstimationfromExpertJudgement

    WhenneithertheregressionequationsnorMINTEQA2couldreasonablybeusedtoestimatea

    neededmeanlogKd,themeanvaluewasestimatedsubjectivelyusingexpertjudgement.

    Factorsconsideredinthisprocessincludedanyvaluesobtainedfromourliteraturesurvey,

    reportedmeanvaluesorrangesfrompreviouscompilations,similaritiesofbehavioramong

    metals,andqualitativestatementsfromarticlesandreports.TheminimumandmaximumKd

    3-6

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    23/93

    valuesfromtheliteraturewerealsousedifreasonablevalueswereavailable.Otherwise,the

    extremesinKdwerealsoestimatedbyexpertjudgement.Ineithercase,thestandarddeviation

    wasestimatedasdescribedpreviouslyaboveforlinearregressioninSection3.1.1.

    Finally,arelativeconfidencelevel(CL)wassubjectivelyassignedtoeachofthefinalvalues

    presented. TheCLvaluesrangefrom1to4,withthehighestconfidencecorrespondingtoa

    valueof1andthelowesttoavalueof4. Ingeneral,estimatesbasedonourliteraturesurvey

    forawell-studiedmetalwithalargeliteraturesamplewasdeemedtomeritaCLof1. Datafor

    ametalnotrepresentedintheliteratureforwhichthefinalvalueswerepurelyestimatesfrom

    MINTEQA2orothermeanswithanotabledegreeofexpertjudgementinvolvedwereassigned

    aCLof4. ManyvaluesweredeterminedincircumstancesthatwarrantedaCLbetweenthese

    extremes(e.g.,arangewasgivenintheliterature,avaluewasavailablefromaprevious

    compilation,estimatesfromcombinationsoftheselattercircumstancescouldbecombinedwith

    estimatesfrommodeling,etc.). Inthesecases,aCLof2or3wasassignedasseemed

    appropriate.

    Thefinalvaluesweassignedtothemetalpartitioncoefficientsforsoil,sediment,suspendedmatter,andDOCarepresentedinTables3,4,5,and6,respectively.Themethodusedtoarrive

    ateachassignedvalue(useofallorasubsetofthecollectedliteratureKdvalues,useof

    regressionequations,modelingresults,orexpertjudgement)isindicatedforeachmetaland

    media-type,asisthesubjectivelyassignedconfidencelevel.

    3-7

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    24/93

    ---

    ---

    Table3

    Metalpartitioncoefficients(logKd)inL/kgforsoil/soilwater. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Ag(I) 2.6 2.6 0.8 1.0 4.5 Fromliteraturedata(raw,

    n=21);log-normal;CL=1

    Asa 3.4 3.2 0.7 0.3 4.3 Fromliteraturedata(raw,n=21);(log-normal

    assumed);oxidationstate

    usuallynotspecifiedin

    literature;CL=2

    Ba(II) 2.0 0.7 0.7 3.4 SuspendedmatterK dregressionequationfor

    mean;(log-normal

    assumed); CL=2

    Be(II) 2.2 1.0 1.7 4.1 SuspendedmatterK dregressionequationfor

    mean;(log-normal

    assumed); CL=3

    Cd(II) 2.9 2.7 0.8 0.1 5.0 Fromliteraturedata(edited,

    n=37);log-normal;CL=1

    Co(II) 2.1 2.1 1.2 -1.2 4.1 Fromliteraturedata(raw,

    n=11);log-normal;CL=1

    Cr(III) 3.9 3.8 0.4 1.0 4.7 Fromliteraturedata(raw,

    n=22);log-normal;CL=2

    Cr(VI) 1.1 0.8 0.8 -0.7 3.3 Fromliteraturedata(raw,

    n=24);(log-normal

    assumed); CL=2

    Cu(II) 2.7 2.5 0.6 0.1 3.6 Fromliteraturedata(raw,

    n=20);log-normal;CL=1

    3-8

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    25/93

    ---

    Table3

    Metalpartitioncoefficients(logKd)inL/kgforsoil/soilwater. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Hg(II) 3.8 3.6 0.7 2.2 5.8 Fromliteraturedata(raw,

    n=17);log-normal;CL=1

    MeHg 2.8 2.7 0.6 1.3 4.8 Fromliteraturedata(raw,n=11);log-normal;CL=2

    Mo(VI) 1.1 1.3 0.6 -0.4 2.7 Fromliteraturedata(raw,

    n=5);(log-normal

    assumed);oxidationstate

    notalwaysspecifiedin

    literaturedata;CL=3

    Ni(II) 3.1 2.9 0.5 1.0 3.8 Fromliteraturedata(raw,

    n=19);log-normal;CL=1

    Pb(II) 4.1 3.7 1.2 0.7 5.0 Fromliteraturedata(edited,n=31);(log-normal

    assumed); CL=2

    Sbb 2.3 1.1 0.1 2.7 Fromliteraturedata(mean

    istheaverageofseveral

    reportedmeanvalues,n=5);

    (log-normalassumed);

    CL=4

    Se(IV)c 1.4 1.3 0.4 -0.3 2.4 Fromliteraturedata(edited,

    n=11);(log-normal

    assumed); CL=2

    3-9

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    26/93

    ---

    ---

    ---

    ---

    ---

    Table3

    Metalpartitioncoefficients(logKd)inL/kgforsoil/soilwater. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Se(VI) -0.2 1.1 -2.0 2.0 Meanestimatedfrom

    MINTEQA2result;(log

    normalassumed);min,max

    fromexpertjudgement;

    CL=4

    Sn(II) 2.7 0.7 2.1 4.0 Fromliteraturedata;(log

    normalassumed);CL=3

    Tl(I) 0.5 0.9 -1.2 1.5 Estimatedfrom

    MINTEQA2result;(log

    normalassumed);CL=4

    V(V) 1.7 1.5 0.5 2.5 Mean,min,maxfrom

    suspendedmatterKdregressionequation;(log

    normalassumed);CL=4

    Zn(II) 3.1 2.7 1.0 -1.0 5.0 Fromliteraturedata(raw,

    n=21);(log-normal

    assumed); CL=1

    CN- 0.7 1.6 -2.4 1.3 Estimatedfrom

    MINTEQA2result;(log

    normalassumed);CL=4

    a PublishedpartitioningdataforAsdoesnotallowdifferentiationofAs(III)andAs(V).Itisprobablethatpublishedvaluesrepresentresultsinvolvingbothoxidationstates.

    b PublishedpartitioningdataforSbisrareanddoesnotallowdifferentiationofSb(III)

    andSb(V).

    PositiveresultinShapiro-Wilktestfornormalityofdatanotlog-transformed.But

    samplesizeissmallanddatamaynotbeveryrepresentative.

    3-10

    c

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    27/93

    ---

    ---

    ---

    ---

    ---

    Table4

    Metalpartitioncoefficients(logKd)inL/kgforsediment/porewater. Valuesinitalics

    wereestimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Ag(I) 3.6 1.1 2.1 5.8 MeanfromsoilK dregressionequation;(log

    normalassumed); min,max

    fromliteraturedata;CL=3

    Asa 2.2 2.4 0.7 1.6 4.3 Fromliteraturedata;log

    normal;oxidationstatenot

    specifiedinliteraturedata;

    CL=2

    Ba(II) 2.5 0.8 0.9 3.2 Mean,min,maxfrom

    suspendedmatterKdregressionequation;(log

    normalassumed);CL=3

    Be(II) 2.8 1.9 0.8 6.5 Mean,min,maxfrom

    suspendedmatterKdregressionequation;(log

    normalassumed);CL=3

    Cd(II) 3.7 3.3 1.8 0.5 7.3 Fromliteraturedata(n=14,

    edited);log-normal;CL=1

    Co(II) 3.1 1.0 2.9 3.6 MeanfromsoilK dregressionequation;(log

    normalassumed); min,max

    fromliteraturedata;CL=3

    Cr(III) 4.9 1.5 1.9 5.9 Mean,min,maxfromsoil

    Kdregressionequation;

    (log-normalassumed);

    CL=4

    3-11

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    28/93

    ---

    ---

    ---

    ---

    ---

    Table4

    Metalpartitioncoefficients(logKd)inL/kgforsediment/porewater. Valuesinitalics

    wereestimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Cr(VI) 1.7 1.4 0.0 4.4 Mean,min,maxfromsoil

    Kdregressionequation;

    (log-normalassumed);

    CL=4

    Cu(II) 4.1 3.5 1.7 0.7 6.2 Fromliteraturedata(raw,n

    =12);log-normal; CL=1

    Hg(II) 4.9 0.6 3.8 6.0 Fromliteraturedata(raw,

    n=2);(log-normal

    assumed); CL=2

    MeHg 3.9 0.5 2.8 5.0 Fromliteraturedata(edited,

    n=2);(log-normal

    assumed); CL=2

    Mo(VI) 2.5 0.8 0.4 3.7 Meanfromliteraturedata

    (reportedmeanvaluewith

    oxidationstatenot

    specified);(log-normal

    assumed);min,maxfrom

    soilKdregressionequation;

    CL=4

    Ni(II) 3.9 1.8 0.3 4.0 MeanfromsoilK dregressionequation;(log

    normalassumed); min,maxfromliteraturedata;CL=3

    Pb(II) 5.1 4.6 1.9 2.0 7.0 Fromliteraturedata(edited,

    n=14);log-normal;CL=1

    3-12

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    29/93

    ---

    ---

    ---

    ---

    ---

    ---

    Table4

    Metalpartitioncoefficients(logKd)inL/kgforsediment/porewater. Valuesinitalics

    wereestimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Sbb 3.6 1.8 0.6 4.8 Fromliteraturedata

    (reportedmeanvalue);(log

    normalassumed);CL=4

    Se(IV) 3.6 1.2 1.0 4.0 Meanfromliteraturedata

    (reportedmeanvalue);(log

    normalassumed); min,max

    fromexpertjudgement;

    CL=4

    Se(VI) 0.6 1.2 -1.4 3.0 Mean,min,maxfromsoil

    Kdregressionequation;

    (log-normalassumed);

    CL=4

    Sn(II) 3.7 0.7 3.1 5.1 Mean,min,maxfromsoil

    Kdregressionequation;

    (log-normalassumed);

    CL=3

    Tl(I) 1.3 1.1 -0.5 3.5 Mean,minfromsoilKdregressionequation;(log

    normalassumed); max

    fromliteraturedata;CL=4

    V(V) 2.1 0.9 0.4 3.2 Mean,min,maxfrom

    suspendedmatterKdregressionequation;(log

    normalassumed);CL=4

    Zn(II) 4.8 4.1 1.6 1.5 6.2 Fromliteraturedata(edited,

    n=13);(log-normal

    assumed); CL=1

    3-13

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    30/93

    ---

    Table4

    Metalpartitioncoefficients(logKd)inL/kgforsediment/porewater. Valuesinitalics

    wereestimatedbyregressionorfromMINTEQA2results.Anentryoflog-normal

    indicatesthatthesampledatagaveapositiveresultintheShapiro-Wilktestfor

    normalityofthelog-transformeddata.Anentryoflog-normalassumedin

    parenthesesmeansthatdatawerenotsufficienttoestablishthedistribution,butlognormalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalue

    of1to4(1=highest,4=lowest). Anentryof---forthemedianoccurswhere

    regressionequationswereusedtoestimatethemean,minimum,andmaximumvalues

    andnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    CN- 1.6 1.7 -1.8 2.2 Mean,min,maxfromsoil

    Kdregressionequation;

    (log-normalassumed);

    CL=4

    a PublishedmetalpartitioningdatadoesnotallowdifferentiationofAs(III)andAs(V).Itis

    probablethatthedatapresentedincluderesultsforbothoxidationstates.b PublishedpartitioningdataforSbisrareanddoesnotallowdifferentiationofSb(III)and

    Sb(V).

    3-14

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    31/93

    ---

    Table5

    Metalpartitioncoefficients(logKd)inL/kgforsuspendedmatter/water. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryof log-normalindicatesthat

    thesampledatagaveapositiveresultintheShapiro-Wilktestfornormalityofthelog-

    transformeddata.Anentryoflog-normalinparenthesesmeansthatdatawerenotsufficient

    toestablishthedistribution,butlog-normalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalueof1to4(1=highest,4=lowest). Anentryof---forthemedian

    occurswhereregressionequationswereusedtoestimatethemean,minimum,andmaximum

    valuesandnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Ag(I) 5.2 5.2 0.6 4.4 6.3 Fromliteraturedata(edited,n=9);

    log-normal;CL=2

    Asa 4.0 3.9 0.5 2.0 6.0 Fromliteraturedata(raw,n=25);

    (log-normalassumed);oxidationstatenotspecifiedintheliterature

    data;CL=2

    Ba(II) 4.0 4.0 0.4 2.9 4.5 Fromliteraturedata(raw,n=14);

    log-normal;CL=2

    Be(II) 4.1 4.2 0.7 2.8 6.8 Fromliteraturedata(raw,n=17);

    log-normal;CL=2

    Cd(II) 5.0 4.9 0.6 2.8 6.3 Fromliteraturedata(edited,

    n=38);log-normal;CL=1

    Co(II) 4.7 4.8 0.8 3.2 6.3 Fromliteraturedata(edited,

    n=20);log-normal;CL=1

    Cr(III) 5.1 5.1 0.4 3.9 6.0 Fromliteraturedata(raw,n=25);

    log-normal;assumesunspecified

    oxidationstateis(III);CL=2

    Cr(VI) 4.2 0.5 3.6 5.1 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    Cu(II) 4.7 4.7 0.4 3.1 6.1 Fromliteraturedata(edited,n=42);log-normal;CL=1

    Hg(II)b 5.3 5.3 0.4 4.2 6.9 Fromliteraturedata(edited,

    n=26);log-normal;CL=1

    3-15

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    32/93

    ---

    ---

    ---

    ---

    ---

    ---

    Table5

    Metalpartitioncoefficients(logKd)inL/kgforsuspendedmatter/water. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryof log-normalindicatesthat

    thesampledatagaveapositiveresultintheShapiro-Wilktestfornormalityofthelog-

    transformeddata.Anentryoflog-normalinparenthesesmeansthatdatawerenotsufficient

    toestablishthedistribution,butlog-normalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalueof1to4(1=highest,4=lowest). Anentryof---forthemedian

    occurswhereregressionequationswereusedtoestimatethemean,minimum,andmaximum

    valuesandnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    MeHg 4.9 0.7 4.2 6.2 MeanfromsoilK dregression

    equation;(log-normalassumed);

    min,maxfromliteraturedata;

    CL=3

    Ni(II)b 4.3 4.4 0.4 3.5 5.7 Fromliteraturedata(edited,

    n=25);log-normal;CL=1

    Mo(VI) 4.4 1.0 3.7 4.9 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    Pb(II)c 5.7 5.7 0.4 3.4 6.5 Fromliteraturedata(edited,

    n=38);(log-normalassumed);

    CL=1

    Sbd 4.8 0.5 3.9 4.9 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    Se(IV) 4.4 0.4 3.8 4.8 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    Se(VI) 3.8 1.0 3.1 4.6 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    Sn(II) 4.9 0.8 4.7 6.3 Mean,minfromsoilKdregressionequation;(log-normalassumed);

    maxfromliteraturedata;CL=4

    3-16

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    33/93

    ---

    ---

    ---

    c

    Table5

    Metalpartitioncoefficients(logKd)inL/kgforsuspendedmatter/water. Valuesinitalicswere

    estimatedbyregressionorfromMINTEQA2results.Anentryof log-normalindicatesthat

    thesampledatagaveapositiveresultintheShapiro-Wilktestfornormalityofthelog-

    transformeddata.Anentryoflog-normalinparenthesesmeansthatdatawerenotsufficient

    toestablishthedistribution,butlog-normalhasbeenassumed. RelativeconfidenceinthedataisindicatedbytheCLvalueof1to4(1=highest,4=lowest). Anentryof---forthemedian

    occurswhereregressionequationswereusedtoestimatethemean,minimum,andmaximum

    valuesandnoestimatewasmadeforthemedian.

    Metal Median Mean

    Std.

    Dev. Min Max Comments

    Tl(I) 4.1 1.0 3.0 4.5 MeanfromsoilKdregression

    equation;(log-normalassumed);

    otherparametersfromexpert

    judgement;CL=4

    V(V) 3.7 0.6 2.5 4.5 Meanfromliteraturedata(raw,

    n=5);(log-normalassumed);min,

    maxfromexpertjudgement;

    oxidationstatenotalways

    specifiedinliterature;CL=3

    Zn(II) 5.1 5.0 0.5 3.5 6.9 Fromliteraturedata(edited,

    n=47);log-normal;CL=1

    CN- 4.2 0.6 3.0 4.4 Mean,min,maxfromsoilKdregressionequation;(log-normal

    assumed); CL=4

    a PositiveresultforShapiro-Wilktestfornormalityofdatanotlog-transformed.Published

    metalpartitioningdatadoesnotallowdifferentiationofAs(III)andAs(V).Itisprobable

    thatthedatarepresentedincluderesultsforbothoxidationstates.b FailedShapiro-Wilktestfornormalityoflog-transformeddata,butpassedthe

    Kolmogorov-Smirnovtestandhistogramexhibitslog-normalcharacter.

    FailedShapiro-WilkandtheKolmogorov-Smirnovtestfornormalityoflog-transformed

    data,buthistogramexhibitslog-normalcharacterd PublishedpartitioningdataforSbisrareanddoesnotallowdifferentiationofSb(III)and

    Sb(V).

    3-17

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    34/93

    Table6

    Metalpartitioncoefficients(logKd)inL/kgforpartitioningbetweenDOCand

    inorganicsolutionspecies. Valuesinitalicswereestimatedbyregressionorfrom

    MINTEQA2results.Log-normaldistributionsareassumed.Relativeconfidenceinthe

    dataisindicatedbytheCLvalueof1to4(1=highest,4=lowest).

    Metal Mean

    Std.

    Dev. Min Max Comment

    Ag(I) 2.5 1.0 1.5 4.5 MeanestimatedfromMINTEQA2

    results;otherparametersfromexpert

    judgement;(log-normalassumed);

    CL=3

    As 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    (log-normalassumed);CL=4

    Ba(II) 3.6 1.0 2.5 4.0 MeanestimatedfromMINTEQA2

    results,valuesforotherparametersfrom

    expertjudgement;(log-normal

    assumed); CL=3

    Be(II) 2.1 1.0 1.1 3.8 Allparametersestimatedfrom

    MINTEQA2results;CL=3

    Cd(II) 3.8 0.9 2.0 5.5 MeanestimatedfromMINTEQA2

    results;min,maxfromexpert

    judgement;CL=3

    Co(II) 3.8 0.9 2.0 5.5 MeanestimatedfromMINTEQA2

    results;min,maxfromexpert

    judgement;CL=3

    Cr(III) 1.1 1.6 -0.6 4.3 MeanestimatedfromMINTEQA2

    results;min,maxfromexpert

    judgement;CL=4

    Cr(VI) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Cu(II) 5.4 1.1 2.5 7.0 Fromliteraturedata(raw,n=17);(log

    normalassumed);CL=2

    Hg(II) 5.4 1.2 3.0 6.0 Meanfromliteraturedata(raw,n=3);

    (log-normalassumed); min,maxfrom

    expertjudgement;CL=4

    3-18

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    35/93

    Table6

    Metalpartitioncoefficients(logKd)inL/kgforpartitioningbetweenDOCand

    inorganicsolutionspecies. Valuesinitalicswereestimatedbyregressionorfrom

    MINTEQA2results.Log-normaldistributionsareassumed.Relativeconfidenceinthe

    dataisindicatedbytheCLvalueof1to4(1=highest,4=lowest).

    Metal Mean

    Std.

    Dev. Min Max Comment

    MeHg 5.0 1.1 2.8 5.5 Mean,min,maxestimatedbasedon

    relativeKdsofHg(II)andMeHgfor

    suspendedmatterandHg(II)Kdwith

    DOC; (log-normalassumed);CL=4

    Ni(II) 3.7 0.9 1.9 5.4 MeanestimatedfromMINTEQA2

    results;min,maxfromexpert

    judgement;(log-normalassumed);

    CL=3

    Mo(VI) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Pb(II) 4.9 0.5 3.8 5.6 Fromliteraturedata(raw,n=9);(log

    normalassumed);CL=2

    Sb 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Se(IV) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Se(VI) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Sn(II) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Tl(I) 1.6 1.0 0.0 3.0 MeanestimatedfromMINTEQA2,

    valuesforotherparametersfromexpert

    judgement;(log-normalassumed);

    CL=4

    3-19

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    36/93

    Table6

    Metalpartitioncoefficients(logKd)inL/kgforpartitioningbetweenDOCand

    inorganicsolutionspecies. Valuesinitalicswereestimatedbyregressionorfrom

    MINTEQA2results.Log-normaldistributionsareassumed.Relativeconfidenceinthe

    dataisindicatedbytheCLvalueof1to4(1=highest,4=lowest).

    Metal Mean

    Std.

    Dev. Min Max Comment

    V(V) 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);

    CL=4

    Zn(II) 5.1 0.7 4.6 6.4 Fromliteraturedata(raw,n=9);(log

    normalassumed);CL=3

    CN 2.0 1.0 0.0 3.0 Nodata,valuesfromexpertjudgement

    (conservative);(log-normalassumed);CL=4

    3-20

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    37/93

    3.2DEVELOPMENTOFPARTITIONINGCOEFFICIENTSFORWASTESYSTEMS

    Themultimedia,multi-pathwayriskassessmentfor3MRAutilizesasourcemodelthatassumes

    equilibriumpartitioninginlandapplicationunits(LAUs),wastepiles,landfills,treatmentlagoons

    (surfaceimpoundments),andaeratedtanks. Theavailabledataforcharacterizingthepartitioningof

    metalsinwasteconsistsalmostexclusivelyofleachateextractiontestresultsforspecificwastes.

    Ourliteraturesearchdidnotproduceanystudythatspecificallyprovidesmeasuredpartitioning

    coefficientsformetalsinthemixedmaterialspresentinwastemanagementunits.

    Severalstudieshaveaddressedtheissueoftheapplicabilityofleachateextractiontestdatato

    predicttheleachatecompositionexitinglandfills(U.S.EPA,1991).TheU.S.EPAToxicity

    CharacteristicLeachingProcedure(TCLP)wasspecificallydesignedtocharacterizeleachate

    compositionsproducedbyspecificwastesco-disposedwithmunicipalsolidwaste.Recentpapers

    suggestthattheconcentrationobservedinanyleachtestdependsagreatdealonleachingtimeand

    thecumulativesolid-liquidratio(vanderSlootetal.,1996). Threeregimesarerecognizedinthe

    leachingprocess(deGrootandvanderSloot,1992).Inthefirstregime,theleachatecompositionis

    controlledbyinitialwash-offoflooselyadheredcontaminant;inthesecond,theleachatecompositioniscontrolledbydissolutionofprimarymaterialsandperhapsre-precipitationofmore

    stablephases;andinthethird,theleachatecompositioniscontrolledbythediffusionofwaste

    constituentsfromtheinteriorofwasteparticlestotheparticlesurface.Thetimeofonsetand

    durationoftheseregimesarehighlyvariable,anddependonthelife-cycleofthespecificwaste

    system(acetogenesis,methanogenesis,etc.).Theoverallchemicalcomposition(majorion

    concentrationandconcentrationofmetal-complexingorganicligands)isalsoimportantin

    determiningthemetalleachateconcentrationthatwillbeobservedinanyparticularcase.In

    general,itwouldseemthatthehighestmetalleachateconcentrationswouldbeexpectedduringthe

    initialwash-offperiod,withconcentrationsdecliningthereafter.Animmediatelyobviousquestion

    is:Whatperiodisofconcerninthemodelingforthe3MRAasusedforHWIRrulemaking?Since

    the3MRAmodeldoesnotallowatime-variablepartitioncoefficient,itwouldseemthatanaggregatepartitioncoefficientthatrepresentsanaverageoveranappropriateexposureorwaste

    managementunitlifetimewouldbedesired. Unfortunately,thereiscurrentlynowaytoknow

    whetherthepartitioningobservedinaTCLPtestcorrespondstosuchanaveragevalue. Most

    authorsseemtoregardtheTCLPasanaggressivetestthatmayoverestimatemetalleachate

    concentrations. However,thereisnoconsensusonthispoint.

    Inviewofthelackofdatadescribingpartitioningofmetalsindifferenttypesofwasteunits,the

    followingsimplificationsareproposed:

    1) Forlandapplicationunits,thepartitioncoefficientsforsoilspresentedinTable3shouldbe

    used. ThissimplificationassumesthatthepartitioningbehaviorofmetalsinanLAUislikelytobedominatedbythesorptivecharacteristicsofthesoilunderlyingtheunit.

    2) Forsurfaceimpoundmentsandaeratedtanks,thepartitioncoefficientsforsuspendedmatter

    presentedinTable5shouldbeused. Thisseemsareasonablestepinthatpartitioninginsuch

    systemsmustinvolvesorptiontosuspendedparticlesandsediments. Thecompositionand

    3-21

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    38/93

    quantityofsuspendedandsedimentedsorbingparticlesmustbequitevariable,butthereisno

    sourceofdataonwhichtobasemorespecificmodelingorotherestimatingtechniques.

    3) Wastepilesandlandfillsshouldbetreatedthesameasregardsmetalpartitioning.

    Adoptingthesesimplifications, itisonlynecessarytoderiveseparateestimatesofmetalpartition

    coefficientsspecificallyforwastepilesandlandfills.Thefollowingsectionsdetailhowtheselatter

    twosetsofwastemanagementunitcoefficientshavebeenestimatedfromavailableTCLPand

    similarleachateextractionteststhatcharacterizeboththesolidphaseandthecorresponding

    leachatemetalconcentrations. Wehavealsousedstatisticalmethodsandgeochemicalspeciation

    modelingtoextendresultstometalsnotrepresentedinreportedTCLPorotherleachtestresults,

    andtoexaminethesimilaritybetweenexpectedwastepartitioningandpartitioninginnaturalmedia.

    3.2.1 EstimationfromAnalysisofDataPresentedintheLiterature

    TherearenumerouspapersandjournalarticlesdescribingresultsfromaTCLPorsimilarleachtest

    foraparticularwaste. Thesepublishedstudiesoftenfocusonwasteconstituentleachabilitybeforeandafterawastestabilizationortreatmentprocess. Therearemanypublishedstudiesofthe

    leachabilityofmetalsfromincineratorash,withtheaimofinvestigatingthesuitabilityoftheash

    materialsfordisposalorforuseinconstruction.Unfortunately,leachateextractiontestresults

    (metalleachateconcentrations)oftenarereportedwithoutthecorrespondingconcentrationinthe

    solidphase. Thisomissionmakesthosedatauselessinestimatingexpectedmetalspartitioning.

    Ourliteraturesurveyproduced203leachtestresultsforwhichbothleachateandsolidphasedata

    werepresented.Table7showstherangeandmeanvaluesofeffectivepartitioncoefficients

    calculatedforeachmetalforwhichsufficientdatawasfound.Werefertotheseaseffective

    partitioncoefficientsbecausetheyaresimplytheratioofmetalconcentrationinthesolidphaseto

    thatinthesolutionphaseasrepresentedintheleachtestresults. Thesecoefficientsmayormaynot

    representequilibriumpartitioning.

    Severalauthorsdiscussedthesimilaritiesinmetalleachabilityoverarangeofdifferentmaterials.A

    studybyvanderSlootetal.(1996)examinedtheleachingbehaviorofCdandZnfromvariousash

    materials,shreddedmunicipalsolidwaste,sewagesludge-amendedsoil,andsoil.Similar

    characteristicswerenotedinpHdependentleachingofbothCdandZnfromtheninedifferent

    materialsstudied.Differencesamongthedifferentmaterialswereattributedtowaste-specific

    chemicalparametersthatcausedadifferentchemicalspeciation.Forexample,theauthorscite

    possibleCdcomplexationwithchloridethattheyinvestigatedusingMINTEQA2.Theyfoundthat

    anincreasedleachabilityofCdinsomeoftheashmaterialswascorrelatedwithincreasedchloride

    concentrationinthewaste.

    Flyhammar(1997)concludedthattherearesimilaritiesinthemetalbindingpropertiesofmunicipal

    solidwaste(MSW)andsediments. Hefoundthatthefractionationofmetalsamongvarious

    availableandreactiveforms(asdeterminedbysequentialchemicalextractions)wassimilarbetween

    freshMSWandanoxicsediment. Similaritieswerealsofoundinthefractionationpatternsofaged

    MSWandanoxicsediments.

    3-22

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    39/93

    Table7

    Effectivemetalspartitioncoefficientsbasedonreportedsolidphaseandsolutionphasemetals

    concentrationsfromleachtestsreportedintheliterature.Nisnumberofsamples;meanand

    rangeareexpressedinlogunits(L/kg).

    Metal N Mean Range

    As 11 2.8 1.0-5.1

    Ba 7 3.0 1.8-3.7

    Be 2 2.8 2.7-6.8

    Cd 31 1.3 0-3.9

    Co 6 2.8 1.6-3.8

    Cr(III) 27 3.0 0.6-6.2

    Cr(VI) 6 4.1 2.2-6.2

    Cu 16 3.3 2.0-5.1

    Hg 8 3.1 1.7-4.4

    Ni 12 2.3 1.3-4.7

    Pb 31 2.7 0.0-4.9

    Sb 4 2.7 1.7-3.2

    V 4 2.9 2.7-3.1

    Zn 23 2.6 1.2-4.7

    TheconsistencyinthemetalspartitioningaffinityrelationshipsnotedinSection3.1.1andthe

    similaritiesnotedbytheselatterauthorsinthefractionationandbehaviorofmetalsinwasteversus

    thatinsoilsandsedimentsleadstothesuppositionthatthepartitioningbehaviorofmetalsinmixed

    wastesystemsmightnotbealtogetherdifferentfromthatinanaturalmedium.Itwouldperhapsbe

    surprisingiftherelativeaffinitiesfordifferentmetalsinwasteweremarkedlydifferentfromtheir

    relativeaffinitiesinnaturalmaterials. Theremaycertainlybesomedeviationsduetothepresence

    ofoneormorecomplexingagentsinwastesystemsthathaveapreferenceforcombiningwith

    certainofthemetals;however,intheabsenceofdatatoquantifythiseffect,andalsoin

    considerationofthepaucityofactualpartitioningdataforwastesystems,wehavedevelopeda

    regressionequationthatpredictswasteKdfromsoilKdforusewithmetalsforwhichlittleorno

    datawasfound.WechosetousesoilKdasthepredictorbecauseacomparisonofKdvaluesfor

    soils,sedimentsandsuspendedmattersuggestedthatthesolidtoliquidconcentrationratiois

    importantindeterminingthemagnitudeofKd. (ThisapparentdependenceofKdonsolidtoliquid

    ratiohasbeennotedinotherstudiesandissometimesreferredtoastheparticleconcentration

    3-23

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    40/93

    effect.) Thissolidtoliquidconcentrationratioforlandfillsandwastepilesisprobablymore

    similartothatofsoilsthantoanyothermedium.Also,wenotethatlandfilledwasteistypically

    coveredwithsoiltoformsoil/wastelayerswithinalandfillcell.Indevelopingourregression

    relationship,weusedtheeffectivepartitioncoefficientsforthemetalsforwhichwehadthemost

    complete(largest)sample.Theregressionequationthusdeterminedis:

    (4)

    Thisrelationshiphasaratherlowcorrelationcoefficient(r2)of0.4implyingthatonly40%ofthe

    variationinlogKd,wastefromtheleachtestdataisaccountedfor.TheimplicationisthatlogKdvaluespredictedbymeansofthisequationmustberegardedashighlyuncertain.AppendixB

    showsthescatterplotofdatafromwhichthisrelationshipwasdeveloped.

    3.2.2 EstimationfromGeochemicalSpeciationModeling

    TheMINTEQA2geochemicalspeciationmodelwasusedtoinvestigatethepossiblerangeofmetal

    partitioncoefficientsforlandfills. Theinputrequirementsofthemodelforestimatingmetalpartitioningincludetheconcentrationsofmajorsoluteions,thepH,theconcentrationsofsorbing

    phases,andtheDOCconcentration. Fourlandfillmodelingscenariosweredeveloped,

    distinguishedprimarilybytheconcentrationsofmajorsoluteions,theDOCconcentration,thePOC

    concentration,andthepH.Thesescenariosincludedlandfillscontainingmunicipalsolidwastein

    theacetogenicstageandinthemethanogenicstage,amonofillcontainingashfromincinerationof

    municipalsolidwaste(MSWIash),andamonofillcontainingcementkilndust(CKD).

    ForeachoftheMINTEQA2modelingscenarios,ahydrousferricoxidesorbingphasewasassumed.

    AparticulateorganiccarbonsorbentwasalsoassumedfortheacetogenicandmethanogenicMSW

    landfills.Particulateorganiccarbonwasassumedtohavebeenconsumedintheincinerationprocess

    fortheMSWIandCKDscenarios. Theconcentrationofthesorbentiscrucialindeterminingthe

    numberofsitesavailableformetalsorption. Unfortunately,theconcentrationofsorbent

    appropriateinthevariouswastemanagementsystemsissubjecttoaveryhighdegreeofuncertainty.

    Theuncertaintyarisesfromthevariablecompositionofwastesthataredisposedinlandfillsandthe

    possiblechangesincompositionovertimeasleachatepercolatesthroughthematerials.Itislikely

    thatsolidsurfacesexposedtolandfillgasandleachateundergochangeswithrespecttotheir

    sorptivecharacterovertime. Possiblechangesincludedissolutionorprecipitationofoxideor

    organicsurfacecoatings.Theseprocesseshavenotbeenstudiedinactuallandfillsamplesin

    sufficientdetailtoallowquantitativerepresentation. Kerstenetal.(1997)citedevidenceofsorption

    controlofPbleachinginMSWIleachtests.TheyattemptedtomodeltheobservedPb

    concentrationsbyutilizingaspeciationmodelwithsurfacecomplexationsorptionreactionsparameterizedfortheconstantcapacitancemodelassuminghydrousferricoxide(HFO)asthe

    sorbent.Theyobtainedreasonableresultsassuming0.7g/LfortheHFOconcentrationandusinga

    sitedensityof1.35x10-4molsites/gHFO. TheMINTEQA2modelingpresentedhereutilizeda

    similarsurfacecomplexationmodel(thediffuse-layermodel).Kerstenetal.(1997)hadnotedthat

    theirsorbentconcentrationwasperhapstoolow,soourmodelingwasconductedbothwiththeir

    3-24

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    41/93

    valueof0.7g/L,andusing7g/Lasareasonableupper-rangevalue.Inbothcases,asitedensity

    1.35x10-4molsites/gHFOwasused.

    Thevaluesofotherparametersandconstituentconcentrationsusedinourmodelingforthefour

    landfillscenariosareshowninTable8. Afterconcentrationofsorbingsites,themostcriticalmodel

    parameterispH,sothemodelingwasconductedatthreedifferentpHvaluesforeachscenario.The

    threepHvaluesusedfortheacetogenicandmethanogenicscenarios(4.5,6.1,7.5and7.5,8.0,9.0,

    respectively)wereinkeepingwiththeminimum,maximumandmeanpHcitedfortheselandfill

    stagesinastudyof15landfillsbyEhrig(1992).Themajorionconcentrationsfortheacetogenic

    andmethanogenicscenarioswerealsoasspecifiedinEhrig(1992).ThethreepHvaluesforthe

    MSWIscenario(8.0,9.0,10.0)wereselectedtodefineareasonablerangeandcentraltendency

    valueforthisscenario. Thesevalueswerebasedondatacollectedintheliteraturereviewportionof

    thisstudy,aswerethemajorionconcentrationsfortheMSWIscenario.ThepHvaluesassociated

    withtheCKDscenario(9.0,10.0,11.0)wereselectedwithdueconsiderationtothehighlyalkaline

    conditionsassociatedwiththismaterial,buttheylackstatisticalsignificance.Anexample

    MINTEQA2inputfileforeachofthescenariosispresentedinAppendixE.

    Itshouldbenotedthattheconfidencelevelassociatedwithallofthemodelingparametersforwaste

    systemsislow.Thereisnotanextensivedatabaseofobservationsfromwhichtoextractreasonable

    modelvaluesformostoftheseparameters,especiallytheconcentrationofsorbentsandsorbing

    sites. Withoutreliableinformationforcharacterizingthesorbents,itisnotpossibletoaccurately

    establishthetotalsystemconcentrationsofcompetingions(Ca,Mg,etc.)thatshouldbeusedinthe

    model. Theresultsmustbeinterpretedinlightofthisshortcoming.

    Table8

    ImportantparametersandconstituentconcentrationsusedinMINTEQA2

    modelingoflandfillsintheacetogenicandmethanogenicstagesandMSWIand

    CKDmonofills.

    Model

    Parameter

    Scenario

    MSW

    Acetogenic

    MSW

    Methanogenic

    MSWI

    Ash

    Monofill

    CKD

    Monofill

    pH 4.5,6.1,7.5a 7.5,8.0,9.0a 8.0,9.0,

    10.0b9.0,10.0,

    11.0c

    IonicStrength(M)

    0.1c 0.1c 0.1c 0.1c

    Ca (mg/L) 6000d 975d 1,700b 2850f

    Mg

    (mg/L)

    625d 500d 10b 10f

    3-25

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    42/93

    c

    Table8

    ImportantparametersandconstituentconcentrationsusedinMINTEQA2

    modelingoflandfillsintheacetogenicandmethanogenicstagesandMSWIand

    CKDmonofills.

    Model

    Parameter

    Scenario

    MSW

    Acetogenic

    MSW

    Methanogenic

    MSWI

    Ash

    Monofill

    CKD

    Monofill

    Na (mg/L) 1350e 1350e 300b 300f

    K (mg/L) 1100e 1100e 380b 400f

    CO3 (mg/L) 500c 250c 50c 50f

    Cl (mg/L) 2100e 2100e 1,200b 380f

    Fe (mg/L) 780e 0 0 0

    SO4 (mg/L) 500d 80d 1,400b 630f

    DOC (mg/L) 100c 50c 15c 15c

    POC (mg/L) 100,000c 50,000c 0 0a Minimum,average,andmaximumvaluesreportedinEhrig(1992).

    b ObtainedfromanalysisofMSWIdataobtainedinourliteraturesurvey.

    Reasonableguesses.d ComputedfromtypicaldissolvedvaluesreportedinEhrig(1992),assumingequilibrium

    withthemodelsorbentsatthemedianpHforacetogenicandmethanogeniccases.e ReportedastypicalvaluesinEhrig(1992).f GeneratedfromsimulationofTCLPonCKDusingMINTEQA2(U.S.EPA,1998b).

    ThepartitioningcoefficientsforselectedwastesestimatedfromtheMINTEQA2modelingexercise

    forseveralmetalsareshowninTable9. Thepartitioncoefficientswerecalculatedastheratioof

    thesimulatedsorbedanddissolvedconcentrationsasexpressedinEquation(1). TheunitsofKdwereconvertedtoL/kgbyassumingthatoneliterofleachatesolutionisassociatedwith5kgof

    wastematerial. Therangeinestimatedpartitioncoefficientsisshownforeachlandfillmodeling

    scenario. Ininterpretingtheseresults,itmustberememberedthatnostatisticalsignificancecanbe

    assignedbecausenonecanbeassociatedwithmostofthemodelinputparameters.Atbest,these

    resultsshouldberegardedasindicatingapossiblerangeofcentraltendencyvalues,andeventhismustbequalifiedbecausetheresultsaresosensitivetoseveralpoorlycharacterizedparameters,

    mostnotably,theconcentrationofsorbents.Theresultsalsoreflectonlyasinglesetof

    concentrationvaluesforthemajorambientionsvariabilityintheseconcentrationswillinfluence

    metalpartitioning. Someionsexertgreaterinfluenceonthepartitioningofparticularmetals.For

    example,thelowpartitioncoefficientsassociatedwithCdinTable9appeartoberelatedto

    complexationwithchloridethatisenteredatrelativelyhighambientconcentrationinallscenarios.

    3-26

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    43/93

    Thiseffectisinkeepingwithobservationsbyothers(vanderSlootetal.,1996).Anothermajor

    ambientionwhoseconcentrationlevelcaninfluencemetalpartitioningiscalcium.Atthehigh

    concentrationsofcalciumcationsfoundinwastesystems,especiallyMSWIashandCKD,the

    competitionforbindingsitescanbecomeveryimportantwithregardtotracemetalbinding.For

    thosetracemetalswhosepartitioningissignificantlyinfluencedbytheconcentrationlevelofa

    majorambientionsuchaschlorideorcalcium,itisexpectedthatthisfactalonewouldcontributeto

    abroaderrangeofobservedpartitioncoefficientsinrealsystemsthanthatcalculatedinthis

    modelingexercise.

    Table9

    Estimatedrangeinlogpartitioncoefficients(L/kg)inwasteforselectedmetalsdetermined

    fromMINTEQA2modeling.

    Metal

    EstimatedlogKd(L/kg)

    MSWAcetogenesis

    MSWMethanogenesis

    MSWI

    AshMonofill

    CKDMonofill

    Be 0.8-3.9 3.3-4.4 (-0.4)-4.0 (-2.7)-2.4

    Cd (-0.3)-0.0 0.6-1.7 (-1.0)-1.1 (-0.4)-1.2

    Co 0.2-0.3 0.9-1.8 (-0.9)-0.4 (-2.0)-0.2

    Cr(III) 1.1-3.5 3.8-4.8 (-0.2)-3.2 (-2.5)-2.3

    Cu 1.1-1.9 2.0-2.5 0.0-2.9 (-2.0)-2.1

    Ni 0.2-0.4 1.1-1.9 (-0.04)-1.1 (-1.5)-0.9

    Pb 1.7-2.7 3.3-4.2 2.4-3.6 0.7-3.4

    Zn 0.4-0.7 1.5-2.1 (-0.6)-1.3 (-2.7)-1.1

    WecomparedthepartitioncoefficientsestimatedforwastesusingMINTEQA2withvalues

    predictedbythepreviouslydiscussedregressionequation(logKd,waste=0.7logKd,soil+0.3;see

    Section3.2.1). Thedegreeofagreementvariedamongmetals.(Wedefinedthemeasureof

    agreementforametaltobewhetherthevaluepredictedbytheregressionequationusingthemean

    soilKdvalueofTable3fallswithintherangeofMINTEQA2estimatesforthatmetal.Usingthis

    ratherlaxrequirementforagreement,theMINTEQA2-modeledKdvaluesforBe,Cr(III),Cu,and

    Pbagree,thoseofCdandNidonotagree,andthoseofCoandZnaremarginal.)In

    agreementwiththeliterature-reportedKdvaluesfornaturalmedia,PbandCr(III)tendtohavehigh

    KdestimatesfromtheMINTEQA2wastesimulations.Ingeneral,theMINTEQA2resultsforthe

    acetogenicandmethanogeniclandfillscenariosagreedmorecloselywithvaluesestimatedbythe

    regressionrelationshipbasedonsoilKdvaluesthanforthemorealkalineashandCKDlandfill

    3-27

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    44/93

    scenarios. ItisprobablethatthelowerKdvaluesinthelatterscenariosareduetothecombination

    ofhighermajorambientionconcentrationsthatcompetewiththetracemetalsforsorbingsitesand

    solubilizethemetalsbycomplexation,plustheassumedabsenceofparticulateorganiccarboninthe

    modellandfillsystems.

    3-28

  • 8/10/2019 Partition Coefficients for Metals in Surface Water, Soil and Waste

    45/93

    4.0DISCUSSIONOFRESULTSANDSOURCESOFUNCERTAINTY

    Partitioncoefficientsobtainedfromliteraturedataaresubjecttonumeroussourcesofuncertainty.

    Manypreviousstudieshavedemonstratedthatinavarietyofsoilsandforavarietyofmetals,

    partitioncoefficientsvarywithpHandwiththeconcentrationofsorbingphasesinthesoilmatrix

    (e.g.,weightpercentorganicmattercontentandweightpercenthydrousferricoxidesand

    correspondingoxidesofaluminumandmanganese)(Janssenetal.,1997;HassanandGarrison,

    1996;BangashandHanif,1992;AndersonandChristensen,1988).Itiswellknownthatdissolved

    ligandspresentinsoilporewater(e.g.,dissolvedorganicmatter,anthropogenicorganicacids)can

    complexwithmetals,reducingtheirpropensityforsorptioninproportiontotheconcentrationofthe

    ligands(Christensenetal.,1996). Inmulti-metalsystems,competitionamongmetalsforsorption

    sitesandtheattendantreductioninthepartitioncoefficientincomparisonwithsingle-metalsystems

    hasalsobeenreported(Jinetal.,1996).Withinthepopulationofsoils,thenaturalvariabilityin

    soilcompositionandcompositionofassociatedsoilporewateraresuchastoresultinvariationinKdoverordersofmagnitude,evenforasinglemetal.Forthisreason,anycomprehensivecompilation

    ofKdvaluesselectedfromtheliteratureshouldbeexpectedtopresentvaluesthatdefinea

    distribution. Infact,foranyparticularmetal,Kddependsontheseandothercharacteristicsofthenaturalmediasystem(soil,sediment,surfacewater),andinanationwideriskassessmentitis

    desirabletosamplethenationalpopulationofsuchnaturalmediasystemstoobtainafrequency

    distributionofKd.

    Unfortunately,thecollectionofnaturalmediasystemschosenforstudybyvariousresea