Top Banner
Particle Physics Phenomenology 2. Phase space and matrix elements Torbj¨ orn Sj¨ ostrand Department of Astronomy and Theoretical Physics Lund University olvegatan 14A, SE-223 62 Lund, Sweden NBI, Copenhagen, 3 October 2011
52

Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Apr 26, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Particle Physics Phenomenology2. Phase space and matrix elements

Torbjorn Sjostrand

Department of Astronomy and Theoretical PhysicsLund University

Solvegatan 14A, SE-223 62 Lund, Sweden

NBI, Copenhagen, 3 October 2011

Page 2: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Four-vectors

four−vector : p = (E ;p) = (E ; px , py , pz)

vector sum : p1 + p2 = (E1 + E2;p1 + p2)

vector product : p1p2 = E1E2 − p1p2

= E1E2 − px1px2 − py1py2 − pz1pz2

= E1E2 − |p1| |p2| cos θ12

square : p2 = E 2 − p2 = E 2 − p2x − p2

y − p2z = m2

transverse mom. : p⊥ =√

p2x + p2

y

transverse mass : m⊥ =√

m2 + p2x + p2

y =√

m2 + p2⊥

E 2 = m2 + p2 = m2 + p2⊥ + p2

z = m2⊥ + p2

z

Warning: No standard to distinguish p = (E ; px , py , pz) and

p = |p| =√

p2x + p2

y + p2z , but usually clear from context.

When we remember, we will try to use p = |p|, since p = p.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 2/48

Page 3: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Decay widths and cross sections

Decay width at rest, 1 → n:

dΓ =|M|2

2MdΦn

Integrated it gives exponential decay rate

dPdt

= Γe−Γt and 〈τ〉 = 1/Γ

Collision process cross section, 2 → n:

dσ =|M|2

4√

(p1p2)2 −m21m

22

dΦn

Integrated it gives collision rate

N = σ

∫L(t) dt with L ≈ f

n1n2

A

in a theorist’s approximation of the luminosity L for a collider.Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 3/48

Page 4: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Phase space

n-body phase space:

dΦn = (2π)4δ(4)(P −n∑

i=1

pi )n∏

i=1

d3pi

(2π)32Ei

Lorentz covariant:

d4pi δ(p2i −m2

i ) θ(Ei ) = d4pi δ(E2i − (p2

i + m2i )) θ(Ei )

=d3pi

2Ei

with Ei =√

p2i + m2

i and using

δ(f (x)) =∑

xj ,f (xj )=0

1

|f ′(xj)|δ(x − xj)

Application: Lorentz invariant production cross sections E dσ/d3pTorbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 4/48

Page 5: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Spherical symmetry

Spherical coordinates:

d3p

E=

dpx dpy dpz

E=

p2 dp dΩ

E=

p EdE dΩ

E= p dE dΩ

where Ω is the unit sphere,

dΩ = d(cos θ) dφ = sin θ dθ dϕ

px = p sin θ cos ϕ

py = p sin θ sin ϕ

pz = p cos θ

and E 2 = p2 + m2 ⇒ E dE = p dp.

Convenient for use e.g. in resonance decays,but not for standard QCD physics in pp collisions.Instead:

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 5/48

Page 6: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Cylindrical symmetry and rapidity

Cylindrical coordinates:

d3p

E=

dpx dpy dpz

E=

d2p⊥ dpz

E= d2p⊥ dy

with rapidity y given by

y =1

2ln

E + pz

E − pz=

1

2ln

(E + pz)2

(E + pz)(E − pz)=

1

2ln

(E + pz)2

m2 + p2⊥

= lnE + pz

m⊥= ln

m⊥E − pz

The relation dy = dpz/E can be shown by

dy

dpz=

ddpz

(ln

E + pz

m⊥

)=

ddpz

(ln(√

m2⊥ + p2

z + pz)− lnm⊥

)

=

12

2p⊥√m2⊥+p2

z

+ 1√m2⊥ + p2

z + pz

=pz+E

E

E + pz=

1

E

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 6/48

Page 7: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Lightcone kinematics and boosts

Introduce (lightcone) p+ = E + pz and p− = E − pz .Note that p+p− = E 2 − p2

z = m2⊥.

Consider boost along z axis with velocity β, and γ = 1/√

1− β2.

p′x ,y = px ,y

p′z = γ(pz + β E )

E ′ = γ(E + β pz)

p′+ = γ(1 + β)p+ =

√1 + β

1− βp+ = k p+

p′− = γ(1− β)p+ =

√1− β

1 + βp− =

p−

k

y ′ =1

2ln

p′+

p′−=

1

2ln

k p+

p′−/k= y + ln k

y ′2 − y ′1 = (y2 + ln k)− (y1 + ln k) = y2 − y1

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 7/48

Page 8: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Pseudorapidity

If experimentalists cannot measure m they may assume m = 0.Instead of rapidity y they then measure pseudorapidity η:

y =1

2ln

√m2 + p2 + pz√m2 + p2 − pz

⇒ η =1

2ln|p|+ pz

|p| − pz= ln

|p|+ pz

p⊥

or

η =1

2ln

p + p cos θ

p − p cos θ=

1

2ln

1 + cos θ

1− cos θ

=1

2ln

2 cos2 θ/2

2 sin2 θ/2= ln

cos θ/2

sin θ/2= − ln tan

θ

2

which thus only depends on polar angle.η is not simple under boosts: η′2 − η′1 6= η2 − η1.You may even flip sign!Assume m = mπ for all charged ⇒ yπ; intermediate to y and η.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 8/48

Page 9: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

The pseudorapidity dip

By analogy with dy/dpz = 1/E it follows that dη/dpz = 1/p.

Thus

dy=

dη/dpz

dy/dpz=

E

p> 1

with limits

dy→ m⊥

p⊥for pz → 0

dy→ 1 for pz → ±∞

so if dn/dy is flat for y ≈ 0then dn/dη has a dip there.

η−y = lnp + pz

p⊥−ln

E + pz

m⊥= ln

p + pz

E + pz

m⊥p⊥

→ lnm⊥p⊥

when pz m⊥

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 9/48

Page 10: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Two-body phase space

Evaluate in rest frame, i.e. P = (Ecm, 0).

dΦ2 = (2π)4δ(4)(P − p1 − p2)d3p1

(2π)32E1

d3p2

(2π)32E2

=1

16π2δ(Ecm − E1 − E2)

d3p1

E1E2

=1

16π2δ(√

m21 + p2 +

√m2

2 + p2 − Ecm)p2 dp dΩ

E1E2

=1

16π2

δ(p − p∗

| p

E1+

p

E2|p2 dp dΩ

E1E2

=1

16π2

E1E2

E1 + E2

p dΩ

E1E2

=p dΩ

16π2 Ecm

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 10/48

Page 11: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

The Kallen function – 1

√m2

1 + p2 +√

m22 + p2 = Ecm

gives solution

E1 =E 2

cm + m21 −m2

2

2Ecm

E2 =E 2

cm + m22 −m2

1

2Ecm

p =1

2Ecm

√(E 2

cm −m21 −m2

2)2 − 4m2

1m22 =

1

2Ecm

√λ(E 2

cm,m21,m

22)

where Kallen λ function is

λ(a2, b2, c2) = (a2 − b2 − c2)2 − 4b2c2

= a4 + b4 + c4 − 2a2b2 − 2a2c2 − 2b2c2

= (a2 − (b + c)2)(a2 − (b − c)2)

= (a + b + c)(a− b − c)(a− b + c)(a + b − c)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 11/48

Page 12: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

The Kallen function – 2

Hides everywhere in kinematics, e.g.

dσ =|M|2

4√

(p1p2)2 −m21m

22

dΦn

has

4((p1p2)2 −m2

1m22) = (p2

1 + 2p1p2 + p22 −m2

1 −m22)

2 − 4m21m

22

= ((p1 + p2)2 −m2

1 −m22)

2 − 4m21m

22

= λ(E 2cm,m2

1,m22)

so

dσ =|M|2

2√

λ(E 2cm,m2

1,m22)

dΦn

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 12/48

Page 13: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Mandelstam variables

For process 1 + 2 → 3 + 4

s = (p1 + p2)2 = (p3 + p4)

2

t = (p1 − p3)2 = (p2 − p4)

2

u = (p1 − p4)2 = (p2 − p3)

2

In rest frame, massless limit: m1 = m2 = m3 = m4 = 0,

p1,2 =Ecm

2(1; 0, 0,±)

p3,4 =Ecm

2(1;± sin θ, 0,± cos θ)

s = E 2cm

t = −2p1p3 = − s

2(1− cos θ)

u = −2p2p4 = − s

2(1 + cos θ) s + t + u = 0

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 13/48

Page 14: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Mandelstam variables with masses

β34 =

√λ(s,m2

3,m24)

s

p3,4 =

√s

2

(1± m2

3 −m24

s;±β34 sin θ, 0,±β34 cos θ

)t = m2

1 + m23 −

s

2

(1 +

m21 −m2

2

s

)(1 +

m23 −m2

4

s

)+

s

2β12 β34 cos θ

dσ =|M|2

2√

λ(s,m21,m

22)

p34√s

d cos θ dϕ

16π2=|M|2

2sβ12

β34

2

d cos θ

assuming no polarization ⇒ no ϕ dependence

dt=

dcos θ

dcos θ

dt=

|M|2

16πs2β212

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 14/48

Page 15: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Mandelstam variables with final-state masses

Usually m1,2 ≈ 0, while often m3,4 non-negligible

t, u = −1

2

[s −m2

3 −m24 ∓ sβ34 cos θ

]dσ

dt=

|M|2

16πs2

s + t + u = m23 + m2

4

tu =1

4

[(s −m2

3 −m24)

2 − s2β234 cos2 θ

]=

1

4

[s2β2

34 + 4m23m

24 − s2β2

34 cos2 θ]

=1

4s2β2

34 sin2 θ + m23m

24 = sp2

⊥ + m23m

24

p2⊥ =

tu −m23m

24

s

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 15/48

Page 16: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

s-, t- and u-channel processes

Classify 2 → 2 diagrams by character of propagator, e.g.

Singularities reflect channel character, e.g. pure t-channel:

dσ(qq′ → qq′)dt

s2

4

9α2

s

s2 + u2

t2

peaked at t → 0 ⇒ u ≈ −s, so

dσ(qq′ → qq′)dt

≈ 8πα2s

9t2=

32πα2s

9s2(1− cos θ)2=

8πα2s

9s2 sin4 θ/2≈ 8πα2

s

9p4⊥

i.e. Rutherford scattering!Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 16/48

Page 17: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Order-of-magnitude cross sections

With masses neglected:

s−channel :dσ

dt∼ π

s2

t−channel, spin 1 :dσ

dt∼ π

t2

t−channel, spin1

2:

dt∼ π

−stu−channel : same with t → u

Add couplings at vertices:

qqg : CFαs

ggg : Ncαs

f fγ : e2f αem

f f ′W : |Vff′ |2αem

4 sin2θW

f f ′Z : (v2f + a2

f )αem

16 sin2θW cos2θWTorbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 17/48

Page 18: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Closeup: qg → qg

Consider q(1) g(2) → q(3) g(4):

t : pg∗ = p1 − p3 ⇒ m2g∗ = (p1 − p3)

2 = t ⇒ dσ/dt ∼ 1/t2

u : pq∗ = p1 − p4 ⇒ m2q∗ = (p1 − p4)

2 = u ⇒ dσ/dt ∼ −1/su

s : pq∗ = p1 + p2 ⇒ m2q∗ = (p1 + p2)

2 = s ⇒ dσ/dt ∼ 1/s2

Contribution of each sub-graph is gauge-dependent,only sum is well-defined:

dt=

πα2s

s2

[s2 + u2

t2+

4

9

s

(−u)+

4

9

(−u)

s

]Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 18/48

Page 19: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Scale choice

What Q2 scale to use for αs = αs(Q2)?

Should be characteristic virtuality scale of process!But e.g. for q g → q g: both s-, t- and u-channel + interference.At small t the t-channel graph dominates ⇒ Q2 ∼ |t|,at small u the u-channel graph dominates ⇒ Q2 ∼ |u|,in between all graphs comparably important ⇒ Q2 ∼ s ∼ |t| ∼ |u|.Suitable interpolation:

→ −t for t → 0

Q2 = p2⊥ =

tu

s→ −u for u → 0

→ s

4for t = u = − s

2

but could equally well be multiple of p2⊥, or more complicated

⇒ one limitation of LO calculations.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 19/48

Page 20: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Resonances

Resonance shape given by Breit-Wigner

1 7→ ρ(s) =1

π

(s −m2)2 + m2Γ2

7→ 1

π

sΓ(m)/m

(s −m2)2 + s2Γ2(m)/m2

where m 7→√

s in phase space and Γ(s) 7→ Γ(m)√

s/mfor gauge bosons, neglecting thresholds.Latter shape suppressed below and enhanced above peak; tilted.For s → 0 ρ(s) goes to constant or like s.PDF’s tend to be peaked at small x : convolution enhances small s.Can give secondary mass-spectrum “peak” in s → 0 region.But note that

|M|2 = |Msignal +Mbackground|2

so in many cases Breit-Wigner cannot be trusted except in theneighbourhood of the peak, where signal should dominate.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 20/48

Page 21: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Three-body phase space

Three-body final states has 3 · 3− 4 degrees of freedom.In massless case straightforward to show that, in CM frame,

dΦ3 = (2π)4δ(4)(P − p1 − p2 − p3)d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3

=1

8(2π)5dE1 dE2 d cos θ1 dϕ1 dϕ21

with θ1, ϕ1 polar coordinates of 1 andϕ21 azimuthal angle of 2 around 1 axis (Euler angles).Phase space limits 0 ≤ E1,2 ≤ Ecm/2 andE1 + E2 = Ecm − E3 > Ecm/2.

Same simple phase space expression holds in massive case,but phase space limits much more complicated!

Higher multiplicities increasingly difficult to understand.One solution: recursion!

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 21/48

Page 22: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Factorized three-body phase space

Drop factors of 2π, and don’t write implicit integral signs.Introduce intermediate “particle” 12 = 1 + 2.

dΦ3(P; p1, p2, p3)

∼ δ(4)(P − p1 − p2 − p3)d3p1

2E1

d3p2

2E2

d3p3

2E3δ(4)(p12 − p1 − p2) d4p12

= δ(4)(P − p12 − p3) d4p12d3p3

2E3

[δ(4)(p12 − p1 − p2)

d3p1

2E1

d3p2

2E2

]= δ(4)(P − p12 − p3) d4p12 δ(p2

12 −m212) dm2

12

d3p3

2E3dΦ2(p12; p1, p2)

= dm212

[δ(4)(P − p12 − p3)

d3p12

2E12

d3p3

2E3

]dΦ2(p12; p1, p2)

= dm212 dΦ2(P; p12, p3) dΦ2(p12; p1, p2)

Note: here 4 angles + 1 mass2; last slide 3 angles + 2 energies.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 22/48

Page 23: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Recursive phase space

Generalizes to

dΦn(P; p1, . . . , pn) = dm212...(n−1) dΦ2(P; p12...(n−1), pn)

× dΦn−1(P; p1, . . . , p(n−1))

Can be viewed as a sequentialdecay chain, with undeterminedintermediate masses.

Recall dΦ2(P; p1, p2) ∝

√λ(M2,m2

1,m22)

M2dΩ12

where dΩ12 is the unit sphere in the 1+2 rest frame.Now can write down e.g. 4-body phase space:

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 23/48

Page 24: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

The M-generator

dΦ4(P; p1, p2, p3, p4) ∝

√λ(M2;m2

4,m2123)

M2m123 dm123 dΩ1234

×

√λ(m2

123;m23,m

212)

m2123

m12 dm12 dΩ123

√λ(m2

12;m21,m

22)

m212

dΩ12

Mass limits coupled, but can be decoupled: pick two randomnumbers 0 < R1,2 < 1 and order them R1 < R2. Then

∆ = M − (m1 + m2 + m3 + m4)

m12 = m1 + m2 + R1∆

m123 = m1 + m2 + m3 + R2∆

uniformly covers dm12 dm123 space with weight√λ(M2;m2

4,m2123)

M

√λ(m2

123;m23,m

212)

m123

√λ(m2

12;m21,m

22)

m12

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 24/48

Page 25: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

RAMBO

For massless case a smart solution is RAMBO (RAndom Momentaand BOosts), which is 100% efficient:

RAMBO

1 Pick n massless 4-vectors pi according to

Eie−Ei dΩi

2 boost all of them by a common boost vector that brings themto their overall rest frame

3 rescale them by a common factor that brings them to thedesired mass M

Can be modified for massive cases, but then no longer 100%efficiency; gets worse the bigger

∑mi/M is.

MAMBO: workaround for high multiplicities

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 25/48

Page 26: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Efficiency troubles

Even if you can pick phase space points uniformly, |M|2 is not!A n-body process receives contributions from a large number ofFeynman graphs, plus interferences.Can lead to extremely low Monte Carlo efficiency.Intermediate resonances ⇒ narrow spikes when (pi + pj)

2 ≈ M2res.

t-channel graphs ⇒ peaked at small p⊥.

Multichannel techniques:

|M|2 =|∑

i Mi |2∑i |Mi |2

∑i

|Mi |2

so pick optimized for either |Mi |2 according to their relativeintegral, and use ratio as weight.Still major challenge in real life!

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 26/48

Page 27: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Composite beams

In reality all beamsare composite:p : q, g, q, . . .e− : e−, γ, e+, . . .γ : e±, q, q, g

Factorization

σAB =∑i ,j

∫∫dx1 dx2 f

(A)i (x1,Q

2) f(B)j (x2,Q

2) σij

x : momentum fraction, e.g. pi = x1pA; pj = x2pB

Q2: factorization scale, “typical momentum transfer scale”

Factorization only proven for a few cases, like γ∗/Z0 prodution,and strictly speaking not correct e.g. for jet production,

but good first approximation and unsurpassed physics insight .

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 27/48

Page 28: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Subprocess kinematics

If pA + pB = (Ecm; 0), A,B along ±z axis, and 1, 2 collinear withA,B then convinently put them massless:

p1 = (Ecm/2)(1; 0, 0, 1)

p2 = (Ecm/2)(1; 0, 0,−1)

such that s =(p1 + p2)2 = x1 x2 s = τ s. Velocity of subsystem is

βz =pz

E=

x1 − x2

x1 + x2

and its rapidity

y =1

2ln

E + pz

E − pz=

1

2ln

x1

x2

dx1 dx2 = dτ dy convenient for Monte Carlo.Historically xF = 2pz/Ecm = x1 − x2.Subprocess 2 → 2 kinematics for σ: s, t, u..

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 28/48

Page 29: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Matrix Elements and Their Usage

L ⇒ Feynman rules ⇒ Matrix Elements ⇒ Cross Sections+ Kinematics ⇒ Processes ⇒ . . .⇒

(Higgs simulation in CMS)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 29/48

Page 30: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 1 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 30/48

Page 31: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 2 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 31/48

Page 32: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 3 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 32/48

Page 33: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 4 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 33/48

Page 34: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 5 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 34/48

Page 35: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Loops and legs – 6 (Peter Skands)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 35/48

Page 36: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 1 (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 36/48

Page 37: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 2 (Frank Krauss)

Remember: to be squared for number of squared MEs.

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 37/48

Page 38: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 3 (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 38/48

Page 39: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 4 (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 39/48

Page 40: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 5 (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 40/48

Page 41: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Born level calculations – 6 (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 41/48

Page 42: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Next-to-leading order (NLO) graphs

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 42/48

Page 43: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Next-to-leading order (NLO) graphs

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 42/48

Page 44: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Next-to-leading order (NLO) graphs

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 42/48

Page 45: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

NLO calculations – 1

σNLO =

∫ndσLO +

∫n+1

dσReal +

∫ndσVirt

Simple one-dimensional example: x ∼ p⊥/p⊥max, 0 ≤ x ≤ 1Divergences regularized by d = 4− 2ε dimensions, ε < 0

σR+V =

∫ 1

0

dx

x1+εM(x) +

1

εM0

KLN cancellation theorem: M(0) = M0

Phase Space Slicing:Introduce arbitrary finite cutoff δ 1 (so δ |ε| )

σR+V =

∫ 1

δ

dx

x1+εM(x) +

∫ δ

0

dx

x1+εM(x) +

1

εM0

≈∫ 1

δ

dx

xM(x) +

∫ δ

0

dx

x1+εM0 +

1

εM0

=

∫ 1

δ

dx

xM(x) +

1

ε

(1− δ−ε

)M0 ≈

∫ 1

δ

dx

xM(x) + ln δ M0

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 43/48

Page 46: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

NLO calculations – 1

σNLO =

∫ndσLO +

∫n+1

dσReal +

∫ndσVirt

Simple one-dimensional example: x ∼ p⊥/p⊥max, 0 ≤ x ≤ 1Divergences regularized by d = 4− 2ε dimensions, ε < 0

σR+V =

∫ 1

0

dx

x1+εM(x) +

1

εM0

KLN cancellation theorem: M(0) = M0

Phase Space Slicing:Introduce arbitrary finite cutoff δ 1 (so δ |ε| )

σR+V =

∫ 1

δ

dx

x1+εM(x) +

∫ δ

0

dx

x1+εM(x) +

1

εM0

≈∫ 1

δ

dx

xM(x) +

∫ δ

0

dx

x1+εM0 +

1

εM0

=

∫ 1

δ

dx

xM(x) +

1

ε

(1− δ−ε

)M0 ≈

∫ 1

δ

dx

xM(x) + ln δ M0

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 43/48

Page 47: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

NLO calculations – 2

Alternatively Subtraction:

σR+V =

∫ 1

0

dx

x1+εM(x)−

∫ 1

0

dx

x1+εM0 +

∫ 1

0

dx

x1+εM0 +

1

εM0

=

∫ 1

0

M(x)−M0

x1+εdx +

(−1

ε+

1

ε

)M0

≈∫ 1

0

M(x)−M0

xdx +O(1)M0

NLO provides a more accurate answer for an integrated cross section:

Warning!Neither approach operateswith positive definite quantities.No obvious event-generatorimplementation.No trivial connection tophysical events

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 44/48

Page 48: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

NLO calculations – 2

Alternatively Subtraction:

σR+V =

∫ 1

0

dx

x1+εM(x)−

∫ 1

0

dx

x1+εM0 +

∫ 1

0

dx

x1+εM0 +

1

εM0

=

∫ 1

0

M(x)−M0

x1+εdx +

(−1

ε+

1

ε

)M0

≈∫ 1

0

M(x)−M0

xdx +O(1)M0

NLO provides a more accurate answer for an integrated cross section:

Warning!Neither approach operateswith positive definite quantities.No obvious event-generatorimplementation.No trivial connection tophysical events

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 44/48

Page 49: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Scale choices

Cross section depends on factorization scale µF

and renormalization scale µR :

σAB =∑i ,j

∫∫dx1 dx2 f

(A)i (x1, µF ) f

(B)j (x2, µF ) σij(αs(µR), µF , µR)

Historically common to put Q = µF = µR but nowadays variedindependently to gauge undertainty of cross section prediction.

Typical variationfactor 2±1 around“natural value”,but beware

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 45/48

Page 50: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Current status (N)(N)LO (Frank Krauss)

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 46/48

Page 51: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Colour flow in hard processes – 1

One Feynman graph can correspond to several possible colourflows, e.g. for qg → qg:

while other qg → qg graphs only admit one colour flow:

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 47/48

Page 52: Particle Physics Phenomenology 2. Phase space and matrix ...home.thep.lu.se/~torbjorn/ppp2011/lec2.pdf · Particle Physics Phenomenology 2. Phase space and matrix elements Torbjorn

Colour flow in hard processes – 2

so nontrivial mix of kinematics variables (s, t)and colour flow topologies I, II:

|A(s, t)|2 = |AI(s, t) +AII(s, t)|2

= |AI(s, t)|2 + |AII(s, t)|2 + 2Re(AI(s, t)A∗II(s, t)

)with Re

(AI(s, t)A∗II(s, t)

)6= 0

⇒ indeterminate colour flow, while• showers should know it (coherence),• hadronization must know it (hadrons singlets).Normal solution:

interferencetotal

∝ 1

N2C − 1

so split I : II according to proportions in the NC →∞ limit, i.e.

|A(s, t)|2 = |AI(s, t)|2mod + |AII(s, t)|2mod

|AI(II)(s, t)|2mod = |AI(s, t) +AII(s, t)|2(

|AI(II)(s, t)|2

|AI(s, t)|2 + |AII(s, t)|2

)NC→∞

Torbjorn Sjostrand PPP 2: Phase sapce and matrix elements slide 48/48