Top Banner

Click here to load reader

43

Parameterization Tricks

Apr 14, 2015

Download

Documents

Ahmed Akhbar

Awesome Calc III notes!
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Math 1920 Parameterization Tricks

Dr. Back

Nov. 3, 2009

Page 2: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Please Don’t Rely on this File!

In Math 1920 you’re expected to work on these topics mostlywithout computer aid.

But seeing a few better pictures can help understanding theconcepts.

A copy of this file is at

http://www.math.cornell.edu/̃ back/m1920

Page 3: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Page 4: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Parameters u and v just different names for x and y resp.

Page 5: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Use this idea if you can’t think of something better.

Page 6: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Page 7: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Note the curves where u and v are constant are visible in thewireframe.

Page 8: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Page 9: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Page 10: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Page 11: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Algebraically, we are rescaling the algebra behind polarcoordinates where

x = r cos θ

y = r sin θ

leads to r2 = x2 + y2.

Page 12: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.

Page 13: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.Plug x and y into z = x2 + 4y2 to get the z-component.

Page 14: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

Graph parametrizations are often optimal for paraboliccylinders.

Page 15: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

Page 16: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

Page 17: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

One of the parameters (v) is giving us the “extrusion”direction. The parameter u is just being used to describe thecurve z = x2 in the zx plane.

Page 18: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

The trigonometric trick is often good for elliptic cylinders

Page 19: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

3·√

2 cos v , u,√

3 sin v >=<√

6 cos v , u,√

3 sin v >

Page 20: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 21: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 22: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 23: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

What happened here is we started with the polar coordinateidea

x = r cos θ

z = r sin θ

but noted that the algebra wasn’t right for x2 + 2z2 so shiftedto

x =√

2r cos θ

z = r sin θ

Page 24: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

x =√

2r cos θ

z = r sin θ

makes the left hand side work out to 2r2 which will be 6 whenr =

√3.

Page 25: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

Page 26: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

~r(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

Page 27: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

~r(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

Page 28: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

Page 29: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

Page 30: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

~r(u, v) =< 2 sinh v , u, 2 cosh v >

Page 31: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

~r(u, v) =< 2 sinh v , u, 2 cosh v >

Page 32: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

The hyperbolic trick also works with saddles

Page 33: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

~r(u, v) =< u cosh v , u sinh v , u2 >

Page 34: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

~r(u, v) =< u cosh v , u sinh v , u2 >

Page 35: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

The spherical coordinate idea for ellipsoids with sin φ replacedby cosh u works well here.

Page 36: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

~r(u, v) =< cosh u cos v , cosh u sin v , sinh u >

Page 37: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

Page 38: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

Page 39: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

~r(u, v) =< sinh u cos v , sinh u sin v , cosh u >

Page 40: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

Page 41: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.

Page 42: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

~r(u, v) =< u cos v , u sin v , u >

Page 43: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

~r(u, v) =< u cos v , u sin v , u >