Top Banner
Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics Winter Camp
31

Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Dec 28, 2015

Download

Documents

Philip Hamilton
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-1

Search for Gravitational Waves

Ho Jung PaikUniversity of Maryland

and Seoul National University

January 12, 2006Seoul, Korea

KIAS-SNU Physics Winter Camp

Page 2: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-2

Gravitational Waves

,0),(1

2

2

22

BEtc

Tc

GG

4

π8Field equation in General Relativity:

A wave equation, in the weak-field limit.

hghtc

,01

2

2

22

Transverse, spin 1

EM wave: Gravitational wave:

Transverse, spin 2

Page 3: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-3

Gravitational Wave Detection

Joseph Weber (c1960)

A gravitational wave will deposit energy into an elastic solid. (Weber, 1959)

Page 4: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-4

Resonant-Mass Detector 1

)(

)(

)(

)(

2221

1211

I

u

ZZ

ZZ

V

f

22m

1221

ZM

ZZ

• Antenna Transducer Amplifier

• Transducer is characterized by an impedance matrix.

• Electromechanical energy coupling:

f() u() I() V()ijZ

Page 5: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-5

Resonant-Mass Detector 2

• Condition to detect a GW pulse with strength h:

2

2

π

2 S

SNB

a

aa

22S2

TkQ

TkDhM B

• Optimal strategy:

noise. thermal thereduce toneeded is largeA

2 , 2

Na

aBN

S

S

S

T

Q

TkE

Signal Antenna noise Amplifier noise Thermal Wideband Backaction

Page 6: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-6

Resonant Transducer

• To get large , a resonant mass is attached to the antenna (Paik, 1972)

Displacement gain:(M/m)1/2 102

Energy transfer time: (/a) (M/m)1/2

• An additional resonant mass with = (Mm)1/2 can be added to increase S further.

Energy transfer time: (/a) (M/m)1/4

Page 7: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-7

S/C Inductive Transducer

MOUNTING FLANGE

ANTENNA

TEST MASS

DC SQUID

CIRCUIT BOARD

AIR FILTER

1.0~01.0

)2/(20

02

dm

AB

Page 8: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-8

ALLEGRO

4-K antenna at LSUwith a superconducting inductive transducer

Page 9: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-9

AURIGA

Best result obtained: h < 5 x 10-21 Hz-1/2 within ~100 Hz band

100-mK antenna in Italy with a capactive transducer coupled to a dc SQUID

Page 10: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-10

ExplorerSwitzerland

Allegro USA NiobeAustralia

Nautilus, italy

Auriga, Italy

Resonant Bar Detectors

Page 11: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-11

Network of Resonant Bars

Allegro Explorer Auriga

Nautilus

NiobeIGEC Network

Page 12: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-12

Rate(y –1)

Search threshold h

h ~ 2 10-18 ~ 0.02 M⊙ converted @ 10 kpc

• Upper limit on the rate of gravitational waves bursts from the Galactic Center (1997-2000)

The area above the blue curve is excluded with a coverage > 90%

P. Astone, et al. PRD 68 (2003) 022001

IGEC Coincidence Search

• No evidence for gravity wave bursts was found.

Page 13: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-13

Spherical Antenna

• Sphere is omni-directional.

• By detecting its 5 quadrupole modes, the source direction (, ) and wave polarization (h+, h) can be determined. (Wagoner & Paik, 1976)

• 6 radial transducers on truncated icosahedral configuration maintains “spherical” symmetry.(Johnson & Merkowitz, 1993)

TIGA (Truncated Icosahedral Gravitational Antenna)

Page 14: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-14

Resonant Spheres

• Much larger cross-section than a bar of the same resonance frequency (up to 70 x)

MiniGrailThe Netherlands

SchenbergBrazil

Page 15: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-15

Interferometer Concept

Laser used to measure relative lengths of two orthogonal arms

Arm lengths in LIGO are 4 km Measure difference in length to 10-19 m

Page 16: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-16

LIGO Hardware

6-W Nd:YAG laser

Fused silica mirror

Page 17: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-17

Limiting Noise Sources

Seismic noise limits at low frequencies.

Atomic vibrations (thermal noise) inside the components limit at mid frequencies.

Quantum nature of light (shot noise) limits at high frequencies.

Page 18: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-18

Evolution of LIGO Sensitivity

Page 19: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-19

Interferometer Detectors

LIGO Louisiana 4000m

TAMA Japan 300m

Virgo Italy 3000m

GEO Germany 600m

LIGO Washington 2000m & 4000m

Page 20: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-20

Network of Interferometers

LIGO

detection confidence

GEO VirgoTAMA

AIGO?locate the sourcesdecompose the polarization of

gravitational waves

Page 21: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-21

LIGO Science Has Begun

S1 run: 17 days (Aug - Sep 2002)Primarily methods papers Four astrophysical searches published (Phys. Rev. D 69, 2004):

Inspiraling neutron stars, bursts, known pulsar (J1939+2134) with GEO, stochastic background

S2 run: 59 days (Feb - April 2003)Analyses are mostly complete.

S3 run: 70 days (Oct 2003 – Jan 2004) Analysis is in full swing.

Page 22: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-22

Promising Source: Compact Binaries

Page 23: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-23

Matched Filtering

“chirps”

NS–NS: waveforms are well described

BH–BH: need better waveforms

Search: matched templates

Page 24: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-24

Advanced LIGO

Active Seismic

Multiple Suspensions

Improved Optics

Higher Power Laser

Page 25: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-25

Sensitivity Improvement

RateImprovement ~

104

narrow band optical

configuration

2008 +

Page 26: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-26

Gravitational Waves in Space

Three spacecraft form an equilateral triangle with armlength of 5 million km

LISA 2012 +

Page 27: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-27

LISA Accelerometer

The position of a reference mass is sensed by a capacitor bridge and used for drag-free control.

Page 28: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-28

• Y-shaped payload has two identical optical assemblies with transmit/receive telescopes.

• The inertial sensor consists of a free-falling proof mass inside a reference housing.

LISA Spacecraft

Page 29: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-29

Sources for LISA

Page 30: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-30

LISA and LIGO

Page 31: Paik-1 Search for Gravitational Waves Ho Jung Paik University of Maryland and Seoul National University January 12, 2006 Seoul, Korea KIAS-SNU Physics.

Paik-31

Status of Interferometers

Sensitivity toward gravitational wave detection is improving on many fronts.

Improved limits are being set for all major sources -- binary inspirals, periodic sources, burst sources, and stochastic background.

Data exchange and joint data analysis between detector groups is improving ability to make detections.

Need specific waveforms to improve search sensitivities!

Hopefully, detections will be made soon !!