Top Banner
QCD and High P T Physics Organisers T. Muta (Hiroshima) B. L loffe (ITEP, Moscow) P arallel Session 34
102

P arallel Session 34

Mar 27, 2023

Download

Documents

Khang Minh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: P arallel Session 34

QCD and High PT Physics

Organisers

T. Muta (Hiroshima)

B. L loffe (ITEP, Moscow)

P arallel Session 34

Page 2: P arallel Session 34

M E A S U R E M E N T O F T H E STRONG C O U P L I N G C O N S T A N T as

F R O M E V E N T S H A P E VARIABLES O F H A D R O N I C Z°-DECAYS

T h e ALEPH Collaboration

presented by

T . LOHSE

C.E.R.N., CH-mi Geneva 23

A B S T R A C T : Using 55000 hadronic events obtained in the 1989 and 1990 LEP runs with the ALEPH detector at energies close to the Z° resonance peak, we attempt a measurement of the strong coupling constant a8 from an analysis of global event shape variables as well as energy-energy correlations (EEC). We show that the differential two-jet rate, # 3 » evaluated in the EQ recombination scheme, is very little affected by higher order QCD corrections and hadronization effects and is the most reliable gloabal variable for the determination of a,. The classical EEC for final state hadrons, however, is very sensitive to higher order QCD corrections and a direct comparison to second order QCD calculations is not justified. We therefore propose to study a variation of the EEC variable in which the hadrons are first combined in clusters, according to a minimal scaled invariant mass cut, y cut) before the EEC is computed. We show that for yCut > 0.005 direct comparison to second order QCD is adequate. We find as preliminary results a , ( M | ) = O.mtl'Tu from the ^-distribution, and a,{M2

z) = 0-117±S5io f r o m t h e modified EEC.

I N T R O D U C T I O N The determination of the strong coupling constant as from

the structure of hadronic events at L E P energies is generally at tempted by means of direct comparison to the structure of partonic final s tates as calculated in second order perturba-tive Quantum-Chromo-Dynamics ( Q C D ) . T h e event shape is characterized by a set of well suited variables which are in­frared and collinear stable, sensitive to three je t topologies but insensitive to yet larger je t multiplicities. A list of candi­date variables is given in reference [1] together with the com­plete second order perturbative Q C D prediction based on the Ellis-Ross-Terano ( E R T ) matr ix elements [2].

The A L E P H detector has been described in detail elsewhere [3]. T h e efficiency of the trigger was practically 100% for hadronic events. T h e measurements presented here are based on the charged particles measured by the tracking devices of the A L E P H detector. Charged tracks are required to have at least four three-dimensional coordinates , to extrapolate to within 2 cm of the b e a m line and to within 5 c m of the origin in the direction along the beam. In addit ion, the angle with respect to the b e a m is required to be at least 20° , and the momentum component in the direction perpendicular to the beam must be at least 200 M e V / c . Using tracks which meet these criteria, the sphericity axis and the tota l charged en­ergy are computed . Events are required to have at least five accepted charged tracks, the polar angle of the shericity axis between 35° and 145°, and a tota l charged energy of at least 15 GeV.

The experimental distributions were corrected for effects of geometrical acceptance, detector efficiency and resolution, decays, missing neutrals, secondary interactions and initial state photon radiation, using hadronic event generators and the A L E P H detector s imulation program. Details of the pro­cedure can be found in references [4].

All results presented here are preliminary.

G L O B A L E V E N T S H A P E V A R I A B L E S We have measured the global event-shape variables Thrust ,

Oblateness, C-parameter, Heavy Jet Mass , Mass Difference and Differential Two-Je t Rate . T h e C-parameter is defined b y C = 3(AiA 2 + A 2 A 3 + A 3 A i ) with A t , z = 1, 2, 3 the eigen­values of the spherocity tensor T{j = (52a(PaPL)/P*)/ J2a P«-Heavy Jet Mass and Mass difference are defined through Mjjjs and M^t = (Afjj t — Mlt)/$, where s denotes the

c m . energy squared and and Mn,t (ML^) the larger (smaller) one of the invariant masses seen in the two hemispheres de­fined by the plane orthogonal to the thrust direction. The Differential Two-J et rate dn/dyz, i.e. the distribution of the jet resolution parameter 1/3 where a given event makes the transition between two and three jets , was measured with the EQ clustering algorithm. In this scheme one starts out by considering each final state particle a jet . The resolution pa­rameter yij = 2EiEj(l — cos$ij)/E%is is determined for any pair of je ts i and j and the pair with the smallest value is merged into one jet with energy Eij = Ei -f Ej and momen­t u m Pij = (pi +j>j) - Eij/\pi +Pj\* T h e procedure is iterated until only three je ts are left at which point the smallest is the value of y3 for the event.

To determine the strong coupling constant as the theoreti­cal prediction from an exact second order Q C D calculation [1] was fit directly to the experimental distributions. The domi­nant error in a , arises from the distortions due to transition from the perturbative hard parton level to the experimentally accessible hadron level which, up to now, cannot be described rigorously within the framework of Q C D . Phenomenological models are, however, available. For this analysis we used the Lund Matrix Element (ME) [5] and the Lund P S [6] model as implemented in the program J E T S E T version 7.2 and the HERWIG [7] shower model . In all models one starts with a system of partons generated according to perturbative Q C D . In the shower models the initial quark-antiquark pair evolves into a sys tem of quarks and gluons according to the modi­fied leading-logarithm approximation [7,8]. In this approach, successive branchings of the type q —• qg, g —* gg, g —• qq are repeated until the invariant mass of the resulting par-tons falls below a specified cut-off. T h e final conversion of partons into colour neutral hadrons is s imulated using the string fragmentation scheme in Lund P S and cluster frag­mentat ion in HERWIG. In the M E approach the perturbative state hadronizes directly according to the Lund string frag­mentat ion model . In this way higher than second order and hadronization effects are both taken into account by a single phenomenological model .

Specifically we considered the following models , all of which were tuned to give a g o o d description of hadronic Z° decays as measured experimentally:

( 1 ) Lund 0(a2

s) M E model , J E T S E T version 7.2, based on

1423

Page 3: P arallel Session 34

ERT matrix elements (with an infrared cut-off).

(2) Lund 0(as ) PS model with parton level defined at a mass scale of 16 GeV: First, an event is generated with the full shower development down to the parton mass cut-off at 1.5 GeV followed by the string fragmentation. An intermediate parton level is then denned by looking back into the history of the shower to the point where the parton virtualities fall below 16 GeV. This value was cho­sen in order to have the same average parton multiplicity as given by the matr ix element model .

(3) Lund 0(as ) PS mode l with parton level denned at a mass scale of 7.7 GeV. In this case the average parton multiplicity is four, which can be viewed as the limiting case of a second order matrix element model with the infrared cut-off pushed down to zero.

The procedure of defining an intermediate level ("history cut" ) inside the parton shower allows to investigate the effects of higher than second order terms on any given event shape variable.

To separate the effects of perturbative higher orders and the final hadronization step we studied the effect of the hadroniza-tion alone for two models:

( 4 ) Lund 0(as ) PS model with parton level defined at the end of the shower and the fragmentation done with the Lund string fragmentation model .

( 5 ) HERWIG model . A parton shower similar to (4) . The fragmentation is done with a cluster model .

Since both models employ very similar algorithms for per­turbative higher orders, but use very different fragmentation mechanisms, the differences between the two give an indica­tion of the uncertainty in the hadronization process.

For all models we determined the smearing matrix pij denoting the probability that a global event-shape variable which at the hard partonic level belongs to bin j falls into bin i after fragmentation. We then fit to the data the sec­ond order Q C D prediction folded with each of these smearing matrices. T h e resulting values for as are thus corrected for the differences between hadron and parton level distributions to the extent that the models describe reality. The variation in the results are indicative of the uncertainties in the effects of fragmentation and was used to est imate the systematic er­rors in the theoretical description. It must be stressed that this folding procedure was only used to est imate uncertain­ties. The final results quoted for as s tem from direct fits of second order Q C D predictions to the data.

A second source of theoretical uncertainties arises from the fact that in finite order perturbation theory the renormal-ization scale \i appears explicitly in the result. Since a , is relatively large (as compared e.g. to CLQED) the fit param­eter as(Mz) can change significantly with \i. This reflects the fact that the unknown higher order contributions are still important. Al though such higher order effects are already partly taken into account by our s tudy based on PS models we conservatively include the full scale dependence in our es­t imate of systematic uncertainties. We allow for a variation Mz/4: < < Mz. T h e final values for as are always quoted for ji ~ Mz.

The results are presented in table 1 which summarizes the ranges of corrected values for a 3 ( M | ) together with the dif­ference ae

s

xp — ctc

s

orr between the uncorrected results and the center of the ranges. Tis difference shows how severely the re­sult of as is biased by fragmentation effects. The error quoted

for this bias corresponds to half the range of corrected values of a s . In order to indicate which part of the total variation of the results is due to scale dependence we also included the difference Aae

s

xp between the fit result when using \i — Mz

and yi — Mz/^>

Table 1: Fit intervals, ranges of corrected values for as(M^) and bias due to fragmentation for the global event shape variables under study. Also shown is the influence of scale variations (see text).

From table 1 it becomes clear that the most robust vari­able to measure as is 1/3 for which the corrections have the least influence on the result. It also becomes evident that all measurements yield consistent answers when taking their sen­sitivities to higher order effects into acount. The remarkable stability of 2/3 can be understood as a result of the Eo cluster­ing algorithm together with the J A D E metric for where mass effects are systematical ly filtered out in a consistent way both on parton and on hadron level. Alternative recombina­tion schemes (the E- and p-scheme as defined in reference [1]), const i tut ing alternative event shape variables with dif­ferent theoretical predictions, have been tried but were found to be subject to larger theoretical uncertainties. We therefore report only the results from the differential 2-jet rate based on the most stable algorithm.

Figure 1: Measured 2/3 distribution compared to the second order QCD prediction with scale fixed to Mz for three values of CL$ .

From the 7/3-distribution we obtain as(M^) = 0.127 ± 0.004 ± 0 .003+£°°* ( a , ( A f | ) = 0.115 for ft = where the first two errors are the statistical and systematic error of our da ta while the last error is the theoretical uncertainty. Combining all errors in quadrature we obtain as(M^r) = 0.127±S: 017. Figure 1 shows the measured 2/3-distribution compared with predictions for as = 0 .110, ag — 0.127, and

1424

Page 4: P arallel Session 34

as = 0.135. The good agreement between data and pertur-bative QCD extends well outside the restricted range chosen for the fit.

ENERGY ENERGY CORRELATIONS The most popular non-global event shape variable in the

framework of as measurements is the energy-energy correla­tion (EEC) and its asymmetry (AEEC) . The EEC can be defined by the expression

w u c i c n m u l c number of events, the indices i, j are running over all particles in a given event, Ei is the energy of the i t h

particle, and Xij is the angle between the momenta of particles i and j . The A E E C is derived from this via AE EC (cos x) =

EEC{~ cos x) - EEC(cos x).

In analogy to global event shape variables the corrected ex­perimental distributions were directly fitted by second order QCD predictions, following reference [1], with as as free pa­rameter. Again we studied the theoretical uncertainties due to higher order perturbative corrections and the hadroniza-tion process, using matrix element and parton shower models. We find that both, EEC and AEEC, are seriously affected by higher order QCD contributions, the parton and hadron level distributions differring by 15% — 30%. We therefore conclude that a direct fit of aa from these distributions is strongly bi­ased.

In an attempt to partly overcome these systematic effects we studied a modification of the EEC variable (CEEC vari­able) where the hadrons are first combined in clusters accord­ing to a scaled invariant mass cut, ycut, before the EEC is computed. The clustering follows the E-algorithm as defined in [1]: Under all pairs of particles of an event, the pair a, b with the smallest invariant mass squared yai — (Pa+Pb)2 / E%is

is determined. If yab < ycutt these particles are combined in a single particle (cluster) with the four-momentum = Pa This procedure is repeated until all pairs of particles exceed ycut.

We find that the systematic effects die out very quickly already for moderate values of y cut- The residual bias for Veut > 0.005 is of the order < 6% for all models which is an acceptable systematic uncertainty.

The second order QCD calculation for the CEEC was per­formed following the prescriptions in reference [1]. We used a numerical integration program [9], based on importance sam­pling and event weighting techniques, to generate partonic final states according to the ERT matrix elements. Instead of calculating the EEC for these partons, however, we modi­fied the program such that the same clustering mechanism is applied on the parton level as in the analysis of the real data.

Figure 2 shows the fit results for as as function of ycut for a renormalization scale fi = Mz> The fit is done in the cen­tral region of the CEEC distribution, —0.5 < c o s x < 0. It is clearly seen that for ycut —» 0 the results for a$ become un­stable and strongly biased, in a way which is quantitatively expected by our systematic studies. For ycut > 0.005, how­ever, the result is stable and does not any longer depend on ycut. The same behaviour is seen in the model calculations, also shown in figure 2. The instabilities for ycut —> 0 are present on the parton and hadron level, although they are much more pronounced for the latter.

The final result for as(M^) was derived from ycut > 0.005. The systematic errors in the theoretical prediction are again estimated from the differences between parton and hadron level distributions together with the dependence of the result on the renormalization scale for the range < (J> < Mz>

Figure 2: Fit results for a , ( M f ) from CEEC as function of the cut-off parameter ycut- The results are shown for the real data and for the parton and hadron level distributions as ob­tained from the Lund ME and Lund PS models.

level distributions together with the dependence of the result on the renormalization scale for the range M j g r / 4 < // < Mz. We find a . ( J I £ | ) = 0.117 ± 0.002 ± 0.002+Hîo M^l ) = 0.109 for fj, = Mz/4). The first and second error correspond to the statistical und systematic uncertainties in the measure­ment of the EEC distributions, while the third error estimates the theoretical uncertainties. Adding all errors in quadrature, we find OIG(Mz)

References

[1] Z. Kunszt et al., QCD , in Proceedings of the Workshop on Z Physics at LEP, eds. G. Altarelli, R. Kleiss and C. Verzegnassi, CERN Report 89-08.

[2] R.K. Ellis et al., Nucl. Phys. B178(1981)429.

[3] D. Decamp et al., ALEPH Collaboration, Nucl. Instr. Meth. A294 (1990) 121.

[4] D. Decamp et al., ALEPH Collaboration, Phys. Lett. B234 (1990) 209.

[5] T. Sjôstrand et al., Comput. Phys. Commun. 43 (1987) 367.

[6] M. Bengtsson et al., Phys. Lett. 185B (1987) 435.

[7] G. Marchesini et a l , Cavendish-HEP-88/7 (1988), Nucl. Phys. B310 (1988) 461; I. Knowles, Nucl. Phys. B310 (1988) 571.

[8] Yu.L. Dokshitzer et al., Rev. Mod. Phys. 60 (1988) 373; C P . Fong et al., Cavendish-HEP-90/2.

[9] P. Nason, private communication.

1425

Page 5: P arallel Session 34

a s determination by the DELPHI Collaboration

Presented by R. Zitoun L P N H E , Universités Par is VI et VII , Tour 33 R d C , 4 place Jussieu, 75252 Par is C E D E X 05, France

Abstract W e brief ly r e p o r t o n t w o different m e a s u r e m e n t s of t h e s t r o n g c o u p l i n g c o n s t a n t as f r o m a c o m p a r i ­son of t h e D E L P H I d a t a o n t h e Z° p e a k a t L E P t o s e c o n d o r d e r p r e d i c t i o n s of p e r t u r b â t i v e Q C D . T h e s t u d y of m u l t i j e t e v e n t r a t e s y i e lds a 5 ( M | ) = 0 . 1 1 4 ± 0 . 0 0 3 [ ^ a < ] ± 0 . 0 0 4 [ 5 Y ^ ] d = 0 . 0 1 2 [ ^ e o ] a n d t h e s t u d y of e n e r g y - e n e r g y c o r r e l a t i o n s y i e ld s a s ( M | ) = 0.106 ± 0.003[stat] ± OM3[syst]t°o™l[theo\.

1 Introduction T h i s p a p e r g ives a s h o r t a c c o u n t of t h e r e s u l t s [1,2] o b t a i n e d b y t h e D E L P H I c o l l a b o r a t i o n c o n c e r n i n g a s , t h e Q C D c o u p l i n g c o n s t a n t , a n d / o r A = A J j ~ , t h e Q C D sca le p a r a m e t e r r e l a t e d b y

l n ( / / 2 / A ^ ^ ) ; t h e n u m b e r of flavours Nf is t a k e n t o

b e 5 a t L E P ene rgy .

T w o different o b s e r v a b l e s h a v e b e e n u s e d t o ex­

t r a c t t h e r e s u l t s f r o m t h e d a t a :

• t h e j e t p r o d u c t i o n r a t e s : t h e n - j e t p r o d u t i o n r a t e is de f ined a s Rn(y) = c r n ( y ) / c r t w h e r e an

is t h e c r o s s - s e c t i o n for p r o d u c i n g a n n - j e t e v e n t a n d at is t h e t o t a l h a d r o n i c c ro s s - s ec t i on . T h e j e t p r o d u c t i o n r a t e s d e p e n d o n t h e j e t c l u s t e r ­i s a t i o n a l g o r i t h m a n d o n t h e cutoff p a r a m e t e r y. It is i n fact t h e y-dépendance of Rn w h i c h is u s e d t o e x t r a c t t h e Q C D p a r a m e t e r s .

• t h e a n g u l a r d i s t r i b u t i o n i n t h e e n e r g y - e n e r g y c o r r e l a t i o n ( E E C ) is t h e h i s t o g r a m of t h e a n g l e s X b e t w e e n a n y t w o p a r t i c l e s w i t h i n a n e v e n t , w e i g h t e d b y t h e p r o d u c t of t h e f r a c t i o n of e n ­e rgy of t h e s e p a r t i c l e s , i .e. EiEj/Etot> S u c h a d i s t r i b u t i o n h a s t w o p e a k s a r o u n d x — 0 ov 7T c o r r e s p o n d i n g t o t h e t w o m a i n j e t s , t h e o n e n e a r x — 77 b e i n g d i s t o r t e d b y t h e p r e s e n c e of s e c o n d a r y j e t s . I t is a n i n f r a r e d safe q u a n t i t y wh ich d o n o t u s e a n y r e c o m b i n a t i o n s c h e m e . T h e a s y m m e t r y of t h i s d i s t r i b u t i o n is o u r sec­o n d o b s e r v a b l e .

T h e e x p e r i m e n t a l d a t a h a v e b e e n i n e a c h c a s e c o m ­p a r e d t o Q C D p r e d i c t i o n s . T h e j e t p r o d u c t i o n r a t e a n a l y s i s h a s b e e n d o n e u s i n g t h e s e c o n d o r d e r m a t r i x e l e m e n t s of K r a m e r a n d L a m p e [3] ( K L ' ) . T h e a n g u ­l a r d i s t r i b u t i o n of E E C h a s b e e n c o m p a r e d t o E l l i s , R o s s a n d T e r r a n o [4] s e c o n d o r d e r m a t r i x e l e m e n t s . I n b o t h c a s e s , t h e p a r t o n s h a v e b e e n f r a g m e n t a t e d u s i n g t h e s t r i n g m o d e l a s i m p l e m e n t e d i n t h e J E T -S E T p a c k a g e [5].

T h e d e p e n d e n c e o n f r a g m e n t a t i o n m o d e l s , r e c o m ­b i n a t i o n s c h e m e , e n e r g y sca l e , e t c . h a v e b e e n s t u d ­ied in d e t a i l .

2 Data T h e D E L P H I d e t e c t o r h a s b e e n d e s c r i b e d a t t h i s con fe rence ; d e t a i l s c a n b e f o u n d e l s e w h e r e [6]. O n l y c h a r g e d t r a c k s h a v e b e e n c o n s i d e r e d i n t h i s s t u d y , t h e i r m o m e n t u m a n d e n e r g y b e i n g m e a s u r e d b y t h e t r a c k i n g dev ices ( I n n e r a n d O u t e r D e t e c t o r s a n d T P C ) a n d a s s u m i n g t h e p i o n m a s s .

A g o o d t r a c k h a s b e e n de f ined t o h a v e : a n i m p a c t p a r a m e t e r a t t h e n o m i n a l p r i m a r y v e r t e x r < 5 c m a n d \z\ < 1 0 c m ; a m o m e n t u m > 0 . 1 G e V / c ; a p o l a r a n g l e b e t w e e n 2 5 a n d 155° ; a t r a c k l e n g t h > 5 0 c m .

A g o o d h a d r o n i c even t h a s b e e n de f ined t o h a v e a t l eas t 5 t r a c k s w i t h m o m e n t u m > 0 . 2 G e V / c ; a c h a r g e d e n e r g y i n e a c h h e m i s p h e r e > 3 G e V / c ; a m i s s i n g m o m e n t u m < 3 0 G e V .

D a t a f r o m t h e 1989 r u n o n l y h a v e b e e n u s e d for t h i s s t u d y . T h e y a m o u n t t o 4 9 9 0 e v e n t s . I n a d d i t i o n t o t h e s e e v e n t s , 1727 e v e n t s w e r e r e c o r d e d i n t h e s a m e r u n w i t h t h e m a g n e t o p e r a t e d a t 0 .7 T i n s t e a d of t h e n o m i n a l 1.2 T . T h e s e d a t a h a v e b e e n u s e d for s y s t e m a t i c e r r o r s t u d y . C o n t a m i n a t i o n f r o m b e a m g a s a n d 7 7 i n t e r a c t i o n s h a s b e e n e s t i m a t e d t o less t h a n 0 . 1 % a n d f r o m r p a i r s t o 0 . 2 % .

3 Jet production rates J e t s h a v e b e e n r e c o n s t r u c t e d f r o m c h a r g e d t r a c k s b y u s i n g t h e J A D E c l u s t e r i n g a l g o r i t h m [7]. T h e i r p r o d u t i o n r a t e s h a v e b e e n c o r r e c t e d for d e t e c t o r i m ­p e r f e c t i o n s , k i n e m a t i c a l c u t s , Q E D c o r r e c t i o n s a n d for s m a l l f r a g m e n t a t i o n effects w i t h v a r i o u s M o n t e C a r l o s i m u l a t i o n s . T h e y a r e s h o w n o n F i g . l .

T h e s e d a t a h a v e b e e n fitted t o t h e K L ' e x p r e s s i o n s i n t h e r a n g e 0.05 < yc < 0 .25 i n w h i c h t h e 4- je t r a t e

1426

Page 6: P arallel Session 34

F i g u r e 1: E x p e r i m e n t a l j e t r a t e s as a func t i on of t h e cutoff yc. T h e cu rves show t h e r e s u l t of t h e fit for 0.05 <yc< 0.2.

is negl igible ( in fact t h e different ia l r a t e s Dn h ave been u s e d t o s impl i fy t h e s t a t i s t i c a l t r e a t m e n t ) . Set­t ing t h e n o r m a l i s a t i o n sca le t o Q2 y ie lds A = 180Jl|o M e V o r a s ( M | ) = .114 ± 0 .003 . S y s t e m a t i c e r r o r have b e e n e v a l u a t e d b y v a r y i n g t h e co r r ec t i on fac­to r s ; i t a m o u n t s t o tH M e V o n A a n d ± 0 . 0 0 4 o n as. O t h e r r e c o m b i n a t i o n s c h e m e s a n d Q C D c a l c u l a t i o n s have b e e n u sed . T h e y l e a d t o q u o t e a t h e o r e t i c a l e r ro r o n as of 0 .012.

Final ly , fits w e r e p e r f o r m e d o n a yc r a n g e e x t e n d ­ing d o w n t o 0.02 w h e r e t h e 4-jet r a t e is n o longer neglegible . Sa t i s f ac to ry fits w e r e o b t a i n e d on ly for a scale / M f w i t h / a r o u n d 0 . 0 0 1 . T h i s m i g h t b e a n effect of t h e u n k n o w n t h i r d o r d e r Q C D t e r m s .

4 Energy-energy correlation After h a v i n g c o r r e c t e d t h e d a t a as before , t h e y h a v e been c o m p a r e d t o M o n t e C a r l o d a t a g e n e r a t e d f rom second o r d e r Q C D e x p r e s s i o n s as i m p l e m e n t e d in J E T S E T 7.2 [5]. I n t h i s p r o g r a m ve r s ion , t h e scale factor is set t o / = 0 . 0 0 2 , a va lue w h i c h h a s b e e n shown t o r e p r o d u c e well seve ra l p ieces of d a t a . T h e c o m p a r i s o n w a s d o n e in p a r t i c u l a r o n t h e a s y m m e t r y in E E C (F ig . 2 ) , n a m e l y

AEEC(X) = EEC(180° - x ) - EEC(X) •

T h e r e s u l t i n g va lue of A is K M ^ o M e V ; it cor re ­s p o n d s t o a n ice a g r e e m e n t w i t h t h e d a t a . T h e a b o v e s t a t i s t i ca l e r r o r s h a v e b e e n o b t a i n e d b y s p l i t t i n g t h e d a t a i n t o 9 i n d e p e n d e n t s a m p l e s . Severa l s y s t e m a t i c effects h a v e b e e n s t u d i e d , i n c l u d i n g c h a n g e s in t h e f r a g m e n t a t i o n p a r a m e t e r s o r m o d e l s . T h e y i m p l y a s y s t e m a t i c e r r o r of Î20 M e V o n A. F ina l ly , v a r y i n g t h e scale fac to r u p t o / = 1 m a k e s A v a r y by 30 M e V ; t h i s v a r i a t i o n h a s b e e n t a k e n as a t h e o r e t i c a l

F i g u r e 2: C o r r e c t e d E E C a n d A E E C c o m p a r e d t o t h e r e su l t of t h e fit t o s e c o n d o r d e r m a t r i x e l emen t exp re s s ions .

e r ro r . F r o m t h e a b o v e va lue of A, we de r ive

as{M2

z) = 0.106 ± Q.003[stat] ± 0m3[syst]1^^[theo]

5 Conclusion T h e D E L P H I c o l l a b o r a t i o n h a s p e r f o r m e d t w o inde ­p e n d e n t d e t e r m i n a t i o n s of a 5 ( M | ) . F r o m j e t r a t e s a n d E E C , we o b t a i n r e spec t ive ly :

as(M2

z) = 0.114 ± 0.003[stat] ± 0.00A[syst] ± 0 . 0 1 2 [ ^ e o

a , ( M j ) = 0.106 ±0m3[stat]±0m3[3yst]to^[theo].

T h e r e s u l t s ag ree w i t h t h e d e t e r m i n a t i o n s of a s ( M | ) f rom o t h e r L E P c o l l a b o r a t i o n s p r e s e n t e d a t t h i s con­ference.

References [1] P . A b r e u e t a l . ( D E L P H I Col l . ) P h y s . L e t t .

247B (1990) 167. [2] P . A b r e u e t a l . ( D E L P H I Col l . ) E n e r g y - e n e r g y

co r r e l a t i ons in h a d r o n i c final s t a t e s f r o m Z° de­cays , C E R N - P P E / 9 0 - 1 2 2 , t o a p p e a r in P h y s . L e t t . B .

[3] G. K r a m e r a n d B . L a m p e , F o r t s c h r . P h y s . , 37 (1989) 161 .

[4] R . K . El l i s , D . A . R o s s a n d E . A . T e r r a n o , P h y s . R e v . L e t t . 45 (1980) 1225 ; N u c l . P h y s . B 1 7 8 (1981) 4 2 1 .

[5] T . S j o s t r a n d a n d M . B e n g t s s o n , C o m p . P h y s . C o m m . 4 3 (1987) 367 a n d re fe rences t h e r e i n .

[6] P . A a r n i o e t a l . , T h e D E L P H I d e t e c t o r a t L E P , C E R N / E F 90-5 a n d C E R N - P P E / 9 0 - 1 2 8 , s u b ­m i t t e d t o Nuc l , I n s t r u m . M e t h o d s .

[7] W . B a r t e l e t a l . , ( J A D E coll .) Z . P h y s . C , 33 (1986) 2 3 .

1427

Page 7: P arallel Session 34

D E T E R M I N A T I O N O F T H E S T R O N G C O U P L I N G C O N S T A N T as

T h e L 3 C o l l a b o r a t i o n

T h o m a s H e b b e k e r

P h y s . I n s t . I l l A , R W T H A a c h e n , D-51Û0 A a c h e n , G e r m a n y * )

A B S T R A C T

W e p r e s e n t a s t u d y of j e t mul t ip l i c i t i e s b a s e d o n 37,000 h a d r o n i c Z° b o s o n d e c a y s . F r o m th i s

d a t a we d e t e r m i n e t h e s t r o n g c o u p l i n g c o n s t a n t a8 = 0 . 1 1 5 ± 0 . 0 0 5 ( e x p . ) îoiolo ( t h e o r . ) t o second

o r d e r Q C D a t y/s = 91 .22 G e V .

*) supported by the German Bundesministerium fur Forschung und Technologie

I n t r o d u c t i o n

W e r e p o r t o n a d e t e r m i n a t i o n of t h e s t r o n g cou­

p l ing c o n s t a n t aB a t t h e Z° r e s o n a n c e u s i n g t h e L 3

d e t e c t o r a t L E P [1].

Af ter a br ief d e s c r i p t i o n of t h e L 3 a p p a r a t u s we

d e s c r i b e t h e se l ec t ion of h a d r o n i c e v e n t s a n d t h e

m e a s u r e m e n t of j e t mu l t i p l i c i t i e s . W e t h e n de t e r ­

m i n e as b y c o m p a r i n g o u r e x p e r i m e n t a l r e su l t s t o

t h e p r e d i c t i o n s of p e r t u r b a t i v e Q C D in s econd or ­

de r . F i n a l l y w e c o m p a r e t h e 3-jet r a t e s m e a s u r e d

a t different c e n t e r of m a s s energ ies t o s t u d y t h e

r u n n i n g of t h e s t r o n g c o u p l i n g c o n s t a n t .

T h e L 3 D e t e c t o r

T h e L 3 d e t e c t o r [2] covers 9 9 % of 4TT. T h e de ­

t e c t o r i n c l u d e s a c e n t r a l v e r t e x c h a m b e r , a p rec i se

e l e c t r o m a g n e t i c c a l o r i m e t e r c o m p o s e d of b i s m u t h

g e r m a n i u m ox ide c r y s t a l s , a u r a n i u m a n d b r a s s

h a d r o n c a l o r i m e t e r w i t h p r o p o r t i o n a l wi re c h a m ­

b e r r e a d o u t , a h i g h a c c u r a c y m u o n c h a m b e r sys ­

t e m , a n d a ring of s c in t i l l a t i on c o u n t e r s . T h e s e

d e t e c t o r s a r e i n s t a l l e d in a m a g n e t w i t h a n i n n e r

d i a m e t e r of 12 m .

T h e fine s e g m e n t a t i o n of t h e e l e c t r o m a g n e t i c de­

t e c t o r a n d t h e h a d r o n c a l o r i m e t e r a l lows us t o

m e a s u r e t h e ax is of j e t s w i t h a n a n g u l a r resolu­

t i o n of 2 .5° , a n d t o m e a s u r e t h e t o t a l ene rg y of

h a d r o n i c e v e n t s f r o m Z° d e c a y w i t h a r e s o l u t i o n

of 1 0 % [3].

F i g u r e 1 d i sp lays a r e c o n s t r u c t e d 3-jet even t o b ­

se rved in t h e L 3 d e t e c t o r ( cu t p e r p e n d i c u l a r t o t h e

e + e ~ b e a m l ine ) . S h o w n a r e t h e c h a r g e d t r a c k s

m e a s u r e d in t h e v e r t e x c h a m b e r a n d t h e e n e r g y

d e p o s i t e d in t h e e l e c t r o m a g n e t i c c a l o r i m e t e r a n d

i n t h e h a d r o n d e t e c t o r . T h e m u o n c h a m b e r s a r e

n o t i n c l u d e d i n f igure 1.

F i g u r e 1. 3-jet even t

For t h e p r e s e n t ana lys i s , w e u s e d t h e e n e r g y m e a ­

s u r e d in t h e e l e c t r o m a g n e t i c d e t e c t o r (42.4° < 6 <

137.6°) a n d h a d r o n c a l o r i m e t e r (5° < 0 < 175°) .

9 d e n o t e s t h e p o l a r ang l e .

S e l e c t i o n o f H a d r o n i c E v e n t s

E v e n t s co l lec ted a t a c e n t e r of m a s s e n e r g y of

y/s = 91.22 ± 0 .03 G e V from t h e 1990 ( M a r c h -

J u n e ) L E P r u n n i n g p e r i o d a r e u s e d for t h i s ana l ­

ys is .

1428

Page 8: P arallel Session 34

T h e p r i m a r y t r i g g e r for h a d r o n i c e v e n t s r e q u i r e s a t o t a l e n e r g y of 1 5 - 2 0 G e V in t h e c a l o r i m e t e r s . T h e t r i g g e r eff iciency for s e l e c t e d h a d r o n i c e v e n t s e x c e e d s 9 9 . 9 5 % . T h e s e l e c t i o n of e + e~" —> h a d r o n s e v e n t s is b a s e d o n t h e e n e r g y m e a s u r e d i n t h e elec­t r o m a g n e t i c d e t e c t o r a n d i n t h e h a d r o n c a l o r i m e ­t e r :

w h e r e Evl& is t h e t o t a l e n e r g y o b s e r v e d in t h e de ­t e c t o r , JE7|| is t h e e n e r g y i m b a l a n c e a l o n g t h e b e a m d i r e c t i o n , a n d E± is t h e t r a n s v e r s e e n e r g y i m b a l ­a n c e . N e i g h b o u r i n g c a l o r i m e t e r h i t s w e r e g r o u p e d i n t o c l u s t e r s . T h e c u t o n t h e n u m b e r of c l u s t e r s r e ­j e c t s low m u l t i p l i c i t y e v e n t s ( e + e " , T + T ~ " ) .

I n t o t a l 3 6 , 7 2 8 e v e n t s w e r e s e l e c t e d .

A p p l y i n g t h e s a m e c u t s t o s i m u l a t e d e v e n t s , w e find t h a t 9 7 % of t h e h a d r o n i c d e c a y s f r o m t h e Z° a r e a c c e p t e d . T h e c o n t a m i n a t i o n f r o m t h e fi­n a l s t a t e s e + e ~ , T + T ~ " a n d e + e ~ + h a d r o n s i n t h e h a d r o n i c e v e n t s a m p l e is b e l o w 0 . 2 % a n d c a n b e n e g l e c t e d .

M o n t e C a r l o e v e n t s w e r e g e n e r a t e d b y t h e p a r t o n shower p r o g r a m J E T S E T 7.2 [4] w i t h A L L = 290 M e V a n d s t r i n g f r a g m e n t a t i o n . T h e g e n e r a t e d e v e n t s w e r e p a s s e d t h r o u g h t h e full L 3 d e t e c t o r s i m u l a t i o n [5].

Measurement of Jet Multiplicities

J e t s a r e r e c o n s t r u c t e d o u t of c l u s t e r s i n t h e ca lo­rimeters b y u s i n g t h e ' J A D E ' v e r s i o n [6] of a n in­v a r i a n t m a s s j e t a l g o r i t h m . F i r s t t h e e n e r g y a n d d i r e c t i o n of al l c l u s t e r s a r e d e t e r m i n e d . F o r e a c h p a i r of c l u s t e r s i a n d j t h e s c a l e d i n v a r i a n t m a s s s q u a r e d

is t h e n e v a l u a t e d . E{ a n d Ej a r e t h e c l u s t e r e n ­erg ies a n d 8ij is t h e a n g l e b e t w e e n c l u s t e r s i a n d j . T h e c l u s t e r p a i r for w h i c h y t J i s s m a l l e s t is r e ­p l a c e d b y a p s e u d o c l u s t e r k w i t h f o u r - m o m e n t u m

T h i s p r o c e d u r e is r e p e a t e d u n t i l a l l y t j e x c e e d t h

j e t r e s o l u t i o n p a r a m e t e r y^. T h e r e m a i n i n g ( p s e u d o ) c l u s t e r s a r e ca l l ed j e t s .

T h e r e l a t i v e j e t p r o d u c t i o n r a t e s /,• = < 7 t _ j e t 8 / c T t o t î w h e r e i is t h e n u m b e r of j e t s , a r e t h e n d e t e r m i n e d a s a f u n c t i o n of y ^ .

W e h a v e c o r r e c t e d o u r m e a s u r e m e n t s for t h e de ­t e c t o r effects , r e s o l u t i o n a n d a c c e p t a n c e . W e u s e d t h e J E T S E T 7.2 M o n t e C a r l o p r o g r a m w h i c h de­sc r ibes o u r d a t a wel l . T h e r e s o l u t i o n c o r r e c t i o n s a m o u n t t o o n l y a few p e r c e n t d u e t o t h e g o o d a n g u l a r a n d e n e r g y r e s o l u t i o n of t h e L 3 d e t e c t o r . T h e effects of t h e d e t e c t o r a c c e p t a n c e a r e a lso very s m a l l , s ince t h e p o l a r a n g u l a r r a n g e —0.996 < c o s # < 0 .996 is c o v e r e d . T h e d e t e c t o r effects c h a n g e t h e 3-jet r a t e b y t y p i c a l l y A / 3 / / 3 = —(5 . . . 10 )%. T h e u n c e r t a i n t i e s of t h e d e t e c t o r cor­r e c t i o n w e r e s t u d i e d b y c h a n g i n g t h e e n e r g y re ­s p o n s e i n di f ferent d e t e c t o r c o m p o n e n t s i n t h e M o n ­t e C a r l o s i m u l a t i o n . W e find a s y s t e m a t i c unce r ­t a i n t y i n t h e 3- jet f r a c t i o n of 4 % .

C o m b i n e d w i t h a 3 % s y s t e m a t i c e r r o r o n t h e un ­c o r r e c t e d j e t m u l t i p l i c i t i e s w e e s t i m a t e t h e t o t a l e x p e r i m e n t a l u n c e r t a i n t y in t h e d e t e r m i n a t i o n of f3 t o b e 8f3/f3 = 5 % .

I n a d d i t i o n a s m a l l c o r r e c t i o n for i n i t i a l a n d final s t a t e p h o t o n r a d i a t i o n w a s a p p l i e d w h i c h c h a n g e s t h e 3-jet f r a c t i o n b y t y p i c a l l y + 3 % .

F i g u r e 2 . M e a s u r e d j e t f r a c t i o n s

F i g u r e 2 s h o w s t h e m e a s u r e d j e t f r a c t i o n s a s func­t i o n of t h e j e t r e s o l u t i o n ycut w i t h o u t a n d w i t h c o r r e c t i o n s .

1429

Page 9: P arallel Session 34

Determination of as

F o r a g i v e n p a r t on r e c o m b i n a t i o n s c h e m e Q C D ( c a l c u l a t e d t o s e c o n d o r d e r ) p r e d i c t s t h e r a t e of 2- , 3 - a n d 4- je t e v e n t s a s a f u n c t i o n of t h e p a r a m e t e r Aj^g, t h e c e n t e r of m a s s e n e r g y s q u a r e d s ( w M | ) , t h e sca le fi2 a n d y ^ . T h e d e p e n d e n c e of t h e 3 -a n d 4- je t f r a c t i o n s on as [7] is g iven b y :

w h e r e A4 = 0 . T h e 2- jet r a t e is g i v e n b y / 2 = 1 — h ~~ f*- O b s e r v a b l e s s u c h a s t h e j e t r a t e s a r e i n d e p e n d e n t of t h e r e n o r m a l i z a t i o n sca l e y? — if c a l c u l a t e d t o a l l o r d e r s . If t h e 0 ( a 8 ) e x p a n s i o n is t r u n c a t e d a n i m p o r t a n t sca le d e p e n d e n c e ex i s t s , see b e l o w .

F o r t h e f u n c t i o n s A{ a n d B{ w e u s e t h e p a r a m e -t e r i z a t i o n s for t h e 1EQ* r e c o m b i n a t i o n s c h e m e b y K u n z s t a n d N a s o n [7], w h i c h a r e b a s e d o n t h e s e c o n d o r d e r Q C D c a l c u l a t i o n s of E l l i s , R o s s a n d T e r r a n o [8]. T h e LE0* s c h e m e is equ iva l en t t o t h e ' J A D E ' j e t a l g o r i t h m a s d e s c r i b e d a b o v e for u p t o four m a s s l e s s p a r t o n s . T h e d e p e n d e n c e of as o n A]£JS = a n d / x 2 is c o m p u t e d u s i n g t h e r e l a t i o n g iven in [9] for 5 q u a r k s .

T h e Q C D p r e d i c t i o n s c a n b e c o m p a r e d t o t h e m e a ­s u r e d m u l t i j e t r a t e s a f t e r c o r r e c t i o n s for h a d r o n i -z a t i o n h a v e b e e n a p p l i e d . T o s t u d y t h i s effect w e g e n e r a t e d e v e n t s u s i n g t h e G K S [10] m a t r i x ele­m e n t g e n e r a t o r i m p l e m e n t e d in t h e J E T S E T 7.2 M o n t e C a r l o p r o g r a m t o g e t h e r w i t h f r a g m e n t a ­t i o n p a r a m e t e r s d e t e r m i n e d f r o m a c o m p a r i s o n of p r e d i c t e d a n d m e a s u r e d d i s t r i b u t i o n s for severa l even t s h a p e v a r i a b l e s . W e f o u n d a r e l a t i v e cor­r e c t i o n d u e t o h a d r o n i z a t i o n t o t h e 3-jet r a t e of a b o u t 1 t o 5 % in t h e y c u t r a n g e 0 .05 t o 0 .20.

T h e t h e o r e t i c a l u n c e r t a i n t y w a s e s t i m a t e d b y chang­ing t h e f r a g m e n t a t i o n p a r a m e t e r s . R e p l a c i n g t h o s e o p t i m i z e d for t h e m a t r i x e l e m e n t g e n e r a t o r by t h e J E T S E T d e f a u l t v a l u e s modi f i es t h e 3-jet r a t e b y o n l y 3 % . T o s t u d y t h e t h e o r e t i c a l u n c e r t a i n t i e s f u r t h e r t h e w h o l e a n a l y s i s w a s r e p e a t e d u s i n g t h e 'JE' r e c o m b i n a t i o n s c h e m e [7], for w h i c h f r a g m e n ­t a t i o n effects a r e m u c h l a r g e r t h a n i n t h e ' J A D E ' s c h e m e . T h e a 8 v a l u e f o u n d in t h e s c h e m e ana ly s i s w a s l a r g e r b y a b o u t 0 .008 t h a n in t h e ' J A D E ' s c h e m e . W e h a v e a s s i g n e d ha l f of t h i s difference a s a t h e o r e t i c a l u n c e r t a i n t y o n t h e a 8

v a l u e d e r i v e d from t h e ' J A D E ' s c h e m e a n a l y s i s . F o r t h e t h e o r e t i c a l u n c e r t a i n t y d u e t o fragmenta­t i o n a n d r e c o m b i n a t i o n s c h e m e d e p e n d e n c e in t h e 3-jet fraction w e o b t a i n Sf3/f3 = 5 % .

T o i n t e r p r e t t h e m e a s u r e d j e t r a t e s in t h e f rame­w o r k of Q C D t h e r e n o r m a l i z a t i o n sca le /x 2 n e e d s t o b e fixed. W e se t fi2 — y ^ • s , c o r r e s p o n d i n g t o t h e t y p i c a l m o m e n t u m y/ycut * s t r a n s f e r r e d t o t h e h a r d g l u o n s r a d i a t e d . W e t o o k i n t o a c c o u n t t h e u n c e r t a i n t y in o u r m e a s u r e d v a l u e of A^g i n d u c e d b y a v a r i a t i o n i n fi2/s i n t h e w i d e r a n g e 0 . 0 0 1 - 1 .

W e u s e d t h e j e t r e s o l u t i o n p a r a m e t e r y c u t = 0.08

t o d e r i v e A ^ . T h e 4- je t f r ac t i on is negl ig ib le

( « 0 .1%) w h i l e t h e 3-jet r a t e is s t i l l l a r g e ( 1 8 . 4 % ±

0 .9%) for t h i s v a l u e of y c u t - W e find

for fi2/s = t /cut = 0 .08 . T h e t h e o r e t i c a l e r r o r in­c l u d e s u n c e r t a i n t i e s d u e t o f r a g m e n t a t i o n a n d re ­c o m b i n a t i o n s c h e m e d e p e n d e n c e (±f£ M e V ) a n d d u e t o t h e r e n o r m a l i z a t i o n sca le (tl£S M e V ) . T h i s t r a n s l a t e s i n t o

F i g u r e 3 c o m p a r e s t h e j e t m u l t i p l i c i t i e s c a l c u l a t e d in s e c o n d o r d e r Q C D w i t h fi2/s = 0 .08 a n d A ^ g = 190 M e V t o o u r m e a s u r e ­m e n t s .

F i g u r e 3 . J e t m u l t i p l i c i t i e s

T h e a g r e e m e n t is exce l l en t for y c u t > 0 .05 , w h e r e t h e 4- je t r a t e is b e l o w 1 % . T h e d i s c r e p a n c y for low va lues of y ^ i n d i c a t e s t h e i m p o r t a n c e of h i g h e r o r d e r c o n t r i b u t i o n s w h i c h h a v e n o t y e t b e e n cal­c u l a t e d .

1430

Page 10: P arallel Session 34

Energy Dependence of the 3-Jet Fraction

3-jet f r a c t i o n s for y^t = 0.08 m e a s u r e d in e + e ~ a n n i h i l a t i o n for c e n t e r of m a s s ene rg ies b e t w e e n 14 a n d 91 G e V [6,11,12] a r e s h o w n in figure 4 .

F i g u r e 4 . 3-jet f r a c t i o n s a s f u n c t i o n of y/s

T h e e n e r g y d e p e n d e n c e is r e p r o d u c e d b y Q C D for ou r m e a s u r e d v a l u e of Aj^ = 190 M e V a n d fi2/s = t/cut = 0.08 for y/s > 20 G e V . T h e Q C D p r e d i c t i o n s h o w n in figure 4 is c o r r e c t e d for h a d r o n i z a t i o n effects. A n e n e r g y i n d e p e n d e n t s t r o n g c o u p l i n g c o n s t a n t c a n b e r u l e d o u t f r o m t h e c o m p a r i s o n of all m e a s u r e d 3-jet f r a c t i o n s .

Summary

F r o m t h e m e a s u r e d j e t m u l t i p l i c i t i e s in 37 ,000 h a d -ron ic Z° d e c a y s w e d e t e r m i n e t h e s t r o n g c o u p l i n g c o n s t a n t as = 0 .115 ± 0 .005 ( e x p ) ±85îo ( t h e o r ) t o s econd o r d e r Q C D a t y/s = 91 .22 G e V . T h e e r ro r s a r e d o m i n a t e d b y r e n o r m a l i z a t i o n sca le u n c e r t a i n ­t ies . T h e r u n n i n g of as a s p r e d i c t e d b y Q C D is conf i rmed b y a c o m p a r i s o n of 3-jet mu l t i p l i c i t i e s m e a s u r e d a t different c e n t e r of m a s s ene rg ie s .

R e f e r e n c e s

1. L 3 C o l l a b o r a t i o n , B . A d e v a e t a l . , Phys. Lett B 248 ( 1990) 462 .

2 . L 3 C o l l a b o r a t i o n , B . A d e v a e t a l . , Nucl. In-sir. and Meth. A 289 (1990) 3 5 .

3 . O . A d r i a n i e t a l . " H a d r o n C a l o r i m e t r y in t h e L 3 D e t e c t o r " , t o b e p u b l i s h e d in Nucl. Instr. and Meth.

4. T . S j ô s t r a n d , Comput. Phys. Commun. 39 (1986) 347 ;

T . S j ô s t r a n d a n d M . B e n g t s s o n , Comput

Phys. Commun. 43 ( 1987) 367 .

5 . G E A N T Ver s ion 3 .13 , S e p t e m b e r , 1989. See R. B r u n e t a l . , " G E A N T 3 " , C E R N D D / E E / 8 4 - 1 ( R e v i s e d ) , S e p t . 1987;

6. J A D E C o l l a b o r a t i o n , W . B a r t e l e t a l . , Z. Phys. C 33 ( 1986) 23 ;

J A D E C o l l a b o r a t i o n , S. B e t h k e e t a l . , Phys.

Lett B 213 (1988) 235 .

7. Z . K u n s z t a n d P . N a s o n in U Z P h y s i c s a t

L E P 1" , C E R N R e p o r t C E R N - 8 9 - 0 8 , Vol.I . ,

p . 3 7 3 .

8. R . K . El l i s , D . A . R o s s a n d E . A . T e r r a n o , Nucl Phys. B 178 (1981) 4 2 1

9. R e v i e w of P a r t i c l e P r o p e r t i e s , Phys. Lett B 239 ( 1990) 1.

10. F . G u t b r o d , G. K r a m e r , G. Sch ie rho lz , Z.

Phys. C 21 ( 1984) 235 .

1 1 . O P A L C o l l a b o r a t i o n , M . Z . A k r a w y e t a l . , Phys. Lett B 235 (1990) 364;

D E L P H I C o l l a b o r a t i o n , P . A b r e u e t a l . , Phys.

Lett B 247 ( 1990) 167.

12. T A S S O C o l l a b o r a t i o n , W . B r a u n s c h w e i g et a l . , Phys. Lett B 214 ( 1988) 286; M A R K II C o l l a b o r a t i o n , S. B e t h k e e t a l . , Z. Phys. C 43 ( 1989) 325; A M Y C o l l a b o r a t i o n , I .H. P a r k e t a l . , Phys. Rev. L e t t . 62 ( 1989) 1713; V E N U S C o l l a b o r a t i o n , K . A b e e t a l . , Phys. Lett B 240 ( 1990) 232 .

1431

Page 11: P arallel Session 34

HADROPRODUCTION OF CHARM AT FERMILAB E769 G. A. Alves ,Wj .C. Anjos^^J.A. Appel,( 2>S.B. Braeker,( 5)L.M. Cremaldi,( 3)R.L. Dixon,* 2)

D . Errede,( 7 )H.C. Fenker,( 2)«( a)C. Gay,( 5>D.R. Green,( 2)R. Jedicke,( 5 )D. Kaplan , ( 4 ) ' « P.E. Karchin,( 8)S. Kwan,( 2 ) l . Leedom,( 4)L.H. Lueking,( 2)G.J. Luste , ( 5 )RM. Mantsch,( 2 )

J .R.T. de Mello NetOjWj. Metheny,( 6 )R.H. Milburn,( 6 )j .M. de Miranda.MiL da M o t t a / 1 ) A. Napier,* 0) A.B. de 01iveira,( c>A.C. dos R e i s / ^ S . Reucroft,( 4 )W.R. Ross,( 8 )

A.F.S . Santoro,( x)M. Sheaff,( 7)M.H.G. S o u z a , W w . J . Spa ld ing / 2 )C. Stoughton,* 2) M.E. Streetman,( 2 )D.J. Summers,( 3)Z. Wu<8)

MCentro Brasileiro de Pesquisas Fisicas, ( 2) Fermi National Accelerator Laboratory, ( 3 ) University of Mississippi, ^^Northeastern University, (^University of Toronto,

( 6) Tuft s University, (^University of Wisconsin, ( 8)Yale University (°)Present address: SSC Laboratory, Dallas, Texas 75237

(^Present address: University of Oklahoma, Norman, Oklahoma 73019 ( c)Present address: University of Cincinnati, Cincinnati, Ohio 45221,

on leave of absence from UNESP, Brazil

Presented b y

Deborah Errede

Univers i ty of Wiscons in

A b s t r a c t

Experiment E769 at Fermilab obtained charm hadroproduction data during the 1987-88 Fixed Target running period with a 250 GeV hadron beam incident on thin target foils of Be , Al, Cu,and W. From an analysis of 25% of the recorded 400M trigger sample we have explored the Feynman x, p t

2 and the atomic number dependence of charm quark production using samples of £> + and D° mesons.

INTRODUCTION

E x p e r i m e n t E 7 6 9 h a s c o m p l e t e d i t s first ana lys i s pass on 2 5 % of t h e d a t a w h i c h w e r e t a k e n d u r i n g t h e F e r m i l a b 1987-88 F i x e d T a r g e t r u n n i n g p e r i o d . T h e s e d a t a w e r e co l l ec ted u s i n g a 250 G e V h a d r o n b e a m , w i t h 7r, K , a n d p iden t i f i ca t ion , i n c i d e n t o n a foil t a r g e t a s s e m b l y w i t h four m a t e r i a l s : B e , A l , C u , a n d W , s e g m e n t e d i n t h e b e a m d i r e c t i o n . T h e t o t a l d a t a set c o n t a i n s 400 M t r i g g e r s , w i t h a b o u t 130 M nega t i ve b e a m e v e n t s ; 8 5 % 7r, a n d 1 5 % K a n d 270 M pos i t ive b e a m e v e n t s ; 4 0 % 7r, 3 0 % K , a n d 3 0 % p . T h e p r i n c i p a l focus of t h e e x p e r i m e n t is t o m e a ­sure t h e c h a r a c t e r i s t i c s of c h a r m h a d r o p r o d u c t i o n , i nc lud ing t h e t o t a l c h a r m cross s ec t i on , a n d t h e de ­p e n d e n c e of t h e c ross -sec t ion o n t h e F e y n m a n x , p t

2 , t a r g e t a t o m i c n u m b e r a n d b e a m p a r t i c l e t y p e .

A t a b e a m e n e r g y of 250 G e V , t h e d o m i n a n t

processes p r o d u c i n g c h a r m i n h a d r o n - h a d r o n colli­

sions a re e x p e c t e d t o b e g l u o n - g l u o n fusion a n d , t o

a lesser d e g r e e , q u a r k - a n t i q u a r k a n n i h i l a t i o n . N a -

son, D a w s o n , a n d El l is c a l c u l a t e d t h e c o n t r i b u t i o n s

of t h e s e p rocesses t o 0(aa

3) for t h e to ta lW a n d

d i f fe ren t i a l^ cross s e c t i o n s . L e a d i n g p a r t i c l e effects

w h e r e t h e c h a r m p a r t i c l e c o n t a i n s a va lence q u a r k

f rom t h e b e a m p a r t i c l e a r e n o t a c c o m o d a t e d i n t h i s

m o d e l . T h e p r e d i c t e d cross s ec t i on is i n r e a s o n a b l e

a g r e e m e n t w i t h e x p e r i m e n t a l d a t a P I . M e a s u r e m e n t of t h e t o t a l c h a r m cross s e c t i o n c a n b e u s e d t o t e s t t h e v a l u e of t h e c h a r m q u a r k m a s s a n d t h e s t r u c ­t u r e func t ions u s e d i n t h e c a l c u l a t i o n s . N o t e , how­ever , t h a t i n re fe rence 3 t h e e x p e r i m e n t s u s e d a w ide r a n g e of t a r g e t m a t e r i a l s , f rom h y d r o g e n t o t u n g ­s t e n , a n d t h a t t o c o n v e r t t h e m e a s u r e m e n t s i n t o p N cross sec t ions a n A - d e p e n d e n c e of A1'0 w a s u sed . E a r l y m e a s u r e m e n t s of t h e <Tcc<xAa d e p e n d e n c e in­d i c a t e d t h a t a < 1, a n d t h e r e is r e a s o n t o bel ieve a m a y d e p e n d o n t h e va r i ab l e s x? a n d pt. Lead­ing p a r t i c l e effects h a v e b e e n r e p o r t e d , b u t a r e no t e s t a b l i s h e d .

APPARATUS

T h e d a t a w e r e co l l ec ted u s i n g t h e T a g g e d P h o t o n

S p e c t r o m e t e r w h i c h is d e s c r i b e d e l s ewhe re W. In­

c lud ing u p g r a d e s m a d e for t h i s r u n , t h e s p e c t r o m ­

e t e r cons i s t s of 13 p l a n e s of Si l icon M i c r o s t r i p ver­

t e x D e t e c t o r s ( S M D ) , 35 p i anes of drif t c h a m b e r s ,

t w o t h r e s h o l d C e r e n k o v c o u n t e r s , a n d e l e c t r o m a g ­

n e t i c a n d h a d r o n i c c a l o r i m e t e r s . T h e following en­

h a n c e m e n t s w e r e m a d e t o t h e a p p a r a t u s for t h e s e

d a t a : 1) b e a m p a r t i c l e iden t i f i ca t ion a n d t r a c k i n g

for t h e i n c i d e n t h a d r o n , 2 ) t w o a d d i t i o n a l 25 /xm S M D p l a n e s i m m e d i a t e l y d o w n s t r e a m of t h e t a r g e t ,

1432

Page 12: P arallel Session 34

3) t w o y m e a s u r e m e n t p r o p o r t i o n a l w i r e c h a m b e r s

w i th 2mm spacing before the first analysis m a g n e t ,

4) i m p r o v e d d a t a a c q u i s i t i o n c a p a b l e of logging 400 e v e n t s / s e c o n d w i t h a 40% d e a d t i m e W. T h e si l icon

vertex d e t e c t o r p r o v i d e s t y p i c a l v e r t e x r e so lu t ions

of 20^m t r a n s v e r s e to a n d 300^m a long t h e b e a m

d i rec t ion . T h e d e t e c t o r h a s a n a n g u l a r a c c e p t a n c e

of ±100 m r . A t r i g g e r b a s e d o n m u l t i p l i c i t y a n d t h e

t o t a l t r a n s v e r s e e n e r g y in t h e f o r w a r d c a l o r i m e t e r s

is u sed t o e n h a n c e t h e c h a r m s a m p l e .

T h e b e a m w a s t a g g e d u s i n g t w o dev ices , a differ­

en t i a l C e r e n k o v c o u n t e r , a n d a t r a n s i t i o n r a d i a t i o n

d e t e c t o r ( T R D ) . T h e Different ia l I s o c h r o n o u s Self-

focusing C e r e n k o v c o u n t e r M ( D I S C ) w a s 50 % effi­

cient for t a g g i n g k a o n s a t a p i o n c o n t a m i n a t i o n level

of less t h a n 5% a n d it w a s o p e r a t e d i n t h i s m o d e for

m o s t of t h e r u n . H o w e v e r , w e r e c o r d e d n e a r l y 60M t r iggers for w h i c h t h e D I S C w a s set t o t r i gge r o n

p r o t o n s . A 24 m o d u l e T R D w i t h p o l y p r o p y l e n e ra ­

d ia to r s a n d xenon-f i l led p r o p o r t i o n a l c h a m b e r s w a s

employed t o t a g p i o n s w i t h a 95% efficiency a n d a

c o n t a m i n a t i o n level of < 3% f rom p r o t o n s or kaons

ANALYSIS A N D RESULTS

T h e subse t of t h e d a t a r e p o r t e d h e r e c o n t a i n s a b o u t 110M n e g a t i v e b e a m t r i g g e r s , p r i n c i p a l l y p ion i n d u c e d . F r o m t h i s s a m p l e of t h e d a t a , we have e x t r a c t e d c h a r m s igna ls for t h e m o d e s D+ —>

a n d D ° -> i f - 7 r + . ( T h r o u g h o u t t h i s pa ­pe r , references t o d e c a y s i n c l u d e b o t h t h e p a r t i c l e s a n d t h e i r c h a r g e c o n j u g a t e s . ) T h e c h a r m s ignals a r e e x t r a c t e d b y f o r m i n g p r i m a r y v e r t e x c a n d i d a t e s u s ­ing t h e S M D t r a c k i n f o r m a t i o n . F r o m t h e l is t of ver t ices for e a c h e v e n t , t h e p r i m a r y v e r t e x is t a k e n t o b e t h e one w i t h t h e l a rge s t n u m b e r of a t t a c h e d t r a c k s , a n d a s e c o n d a r y d e c a y v e r t e x c a n d i d a t e is chosen b a s e d o n seve ra l c r i t e r i a . T h e n , t h e signif­icance of t h e p r i m a r y t o s e c o n d a r y v e r t e x s epa ra ­t ion , SDZ = A z / ( c r ^ + < r 2 J 1 / 2 , m u s t b e g r e a t e r t h a n 12. N e x t , for e a c h t r a c k i n t h e s e c o n d a r y can­d i d a t e v e r t e x , t h e t r a n s v e r s e d i s t a n c e t o t h e p r i ­m a r y , ftp, a n d t o t h e s e c o n d a r y , a r e d e t e r m i n e d . A p a r a m e t e r " R A T I O " is t h e n def ined as t h e p r o d ­uc t of t h e r a t i o s TL^bg/bp, w i t h n b e i n g t h e n u m ­ber of t r a c k s i n t h e s e c o n d a r y d e c a y m o d e . T h e value of R A T I O m u s t b e less t h a n 0.006 for t h e 3 b o d y decays , a n d .06 for t h e t w o b o d y d e c a y s . I n a d d i t i o n , t h e i m p a c t p a r a m e t e r of t h e m o m e n t u m vec to r of t h e r e c o n s t r u c t e d D w i t h r e s p e c t t o t h e p r i m a r y v e r t e x m u s t b e less t h a n 80/xm for t h e 3

F i g u r e 1: C h a r m s igna ls for t h e d e c a y m o d e s (a)

D + -+ i f -7r + 7r+ ; 727 ± 44 s igna l e v e n t s a n d (b )

D° -> K~ir+ ; 538 ± 36 s igna l e v e n t s .

b o d y decays a n d 100/zm for t h e t w o b o d y decays . Also , for t h e c h a r g e d D ' s , t h e d e c a y v e r t e x loca t ion m u s t b e i s o l a t e d b y m o r e t h a n 60jzm f rom add i ­t i o n a l t r a c k s i n t h e e v e n t . F ina l l y , t h e s u m of y?t

of t h e D c a n d i d a t e d e c a y t r a c k s r e l a t i v e t o t h e D d i r ec t i on m u s t b e g r e a t e r t h a n .5 G e V 2 / c 2 . T h e values for t h e s e c u t s w e r e chosen b a s e d o n s tud ie s us ing M o n t e C a r l o g e n e r a t e d e v e n t s for s igna l s , a n d b a c k g r o u n d e v e n t s f rom t h e d a t a . W i t h t h e s e cu t s i m p o s e d , s ignal sizes of 7 2 7 ± 4 4 a n d 5 3 8 ± 3 6 even t s a re o b s e r v e d for t h e D+ —* K-K-K a n d D° —> K-K m o d e s r e s p e c t i v e l y ( F i g . 1 ) .

A p r e l i m i n a r y ana lys i s h a s b e e n p e r f o r m e d t o e x t r a c t t h e xp a n d j>\ d i s t r i b u t i o n s , a n d t h e A d e p e n d e n c e . A c c e p t a n c e c o r r e c t e d XF d i s t r i b u t i o n s for t h e D + a n d D° a r e fit t o (1 — xp)n. T h e va lues for n f rom t h e t w o fits a r e n = 3.8 ± 0.4 for t h e D+ ( F i g . 2 a ) , a n d n = 4 .1 ± 0.6 for t h e D° ( F i g . 2 b ) . S h o w n i n F i g . 3 a r e a c c e p t a n c e c o r r e c t e d y?t d i s t r i b u t i o n s , w i t h t h e fit r e p r e s e n t i n g e _ b p * . Fo r t h e D+ a n d D° s a m p l e s , t h e va lues for b a r e 0.98 ± 0.07 a n d 0.95 ± 0.09 respec t ive ly . T h e A d e p e n d e n c e is s h o w n i n F i g . 4a a n d b for t h e D + a n d D° s ignals a n d t h e fits r e p r e s e n t Aa depen ­d e n c e . T h e va lues for a a r e 0.97 ± 0.07 for t h e Z>+ a n d 0.92 ± 0.08 for t h e D°. Al l e r ro r s q u o t e d a re s t a t i s t i c a l on ly ; s y s t e m a t i c e r ro r s a r e b e i n g s t u d i e d . T h e s ignals a r e a c c e p t a n c e c o r r e c t e d b y a de t a i l ed M o n t e C a r l o d e t e c t o r s i m u l a t i o n u s i n g P y t h i a gen-

1433

Page 13: P arallel Session 34

F i g u r e 2 : A c c e p t a n c e c o r r e c t e d xp d i s t r i b u t i o n for t h e ( a ) D+ i f - 7 r + 7 r + a n d ( b ) D° K~Tr+ m o d e s

w i t h t h e fit r e p r e s e n t i n g ( 1 — x p ) n , t h e v a l u e of n i s 7i = 3.8 ± 0.4 a n d n = 4 . 1 ± 0.6 r e s p e c t i v e l y .

F i g u r e 3 : A c c e p t a n c e c o r r e c t e d p\ d i s t r i b u ­t i o n s , w i t h t h e fit r e p r e s e n t i n g e - i > P t for ( a ) £>+ -> JftT-7r+7r+ a n d ( b ) £>° - > i f ' T r * ;

6 - 0.98 ± 0 .07 a n d 6 = 0 .95 ± 0 .09 r e s p e c t i v e l y .

F i g u r e 4 : N u c l e a r A d e p e n d e n c e for t h e ( a ) D+ a n d

( b ) D° s i g n a l s ; t h e fi ts r e p r e s e n t Aa. T h e v a l u e s for

a a r e a = 0 . 9 7 ± 0 . 0 7 for t h e D + a n d a - 0 . 9 2 ± 0 . 0 8

for t h e D ° .

eration and Lund f r a g m e n t a t i o n . H o w e v e r , n o cor­

r e c t i o n for t h e Et t r i g g e r h a s b e e n m a d e y e t .

S U M M A R Y

A p r e l i m i n a r y a n a l y s i s of t h e A - d e p e n d e n c e , F e y n m a n x a n d pt

2 d i s t r i b u t i o n s of D + a n d D° p r o ­d u c t i o n h a s b e e n p e r f o r m e d o n 110 M o u t of a t o t a l of 400 M e v e n t s . P r o j e c t i n g t h e s e s i g n a l s t o t h e full d a t a s a m p l e , a n d i n c l u d i n g o t h e r d e c a y m o d e s , y i e ld s « 6 K fu l ly r e c o n s t r u c t e d c h a r m d e c a y s . T h i s s h o u l d a l l ow a v e r y a c c u r a t e A - d e p e n d e n c e m e a ­s u r e m e n t , a s we l l a s h i g h - s t a t i s t i c s s t u d i e s of l e a d ­i n g p a r t i c l e e f fec t s . E f fo r t s a r e o n g o i n g t o s t u d y s y s t e m a t i c c o r r e c t i o n s a n d e r r o r s . S t u d i e s a r e a l so u n d e r w a y t o o b t a i n i m p r o v e d s i g n a l t o b a c k g r o u n d u s i n g C e r e n k o v i d e n t i f i c a t i o n . O t h e r c h a r m s t a t e s a n d m o d e s wi l l s o o n b e a v a i l a b l e , i n c l u d i n g : D° —v # - 7 r + 7 r - 7 r + , D+ -+ K-K+TT+ a n d A + - > pK~7r+.

W e a l so p l a n t o m e a s u r e t h e t o t a l c r o s s s e c t i o n a n d t h e b e a m flavor d e p e n d e n c e of c h a r m p r o d u c t i o n .

W e g r a t e f u l l y a c k n o w l e d g e t h e a s s i s t a n c e f r o m s u p p o r t staffs a t F e r m i l a b a n d o t h e r c o l l a b o r a t i n g i n s t i t u t i o n s . T h i s r e s e a r c h w a s s u p p o r t e d b y t h e U . S . D e p a r t m e n t of E n e r g y , t h e N a t i o n a l S c i e n c e F o u n d a t i o n , t h e N a t i o n a l S c i e n c e a n d E n g i n e e r i n g

1434

Page 14: P arallel Session 34

R e s e a r c h C o u n c i l of C a n a d a , a n d t h e B r a z i l i a n C o n -selho N a c i o n a l d e D e s e n v o l v i m e n t o Cient i f ico e Tec -nologico .

R E F E R E N C E S

M P . N a s o n , S. D a w s o n , R . K . E l l i s , N u c l e a r P h y s i c s £ 3 0 3 (1988) 607 .

M P . N a s o n , S. D a w s o n , R . K . E l l i s , N u c l e a r P h y s i c s £ 3 2 7 (1989) 49 .

M G. A l t a r e l l i , e t a l . , N u c l e a r P h y s i c s £ 3 0 8 (1988) 724; E . L. B e r g e r , A N L - H E P - C P - 8 9 - 1 0 7 .

M V . K . B h a r a d w a j e t a l . , N u c l . I n s t . M e t h . 155 (1978) 4 1 1 ; V . K . B h a r a d w a j e t a l . , N u c l . I n s t . M e t h . 228 (1985) 2 8 3 ; D . J . S u m m e r s , N u c l . I n s t . M e t h . 228 (1985) 290; P . K a r c h i n e t a l . , I E E E T r a n s . N u c l . Sci . 32 (1985) 612 ; J . A . A p p e l e t a l . , Nuc l . I n s t . M e t h . A 2 4 3 (1986) 3 6 1 ; D . B a r t l e t t e t a l . , Nuc l . I n s t . M e t h . A 2 6 0 (1987) 5 5 .

W S. B r a c k e r , C . G a y , I E E E T r a n s . N u c l . Sci . 34 (1987) 870 .

[ 6 ] M . B e n o t , J . L i t t , R . M e u n i e r , N u c l . I n s t . M e t h . 105 (1972) 4 3 1 .

M D . E r r e d e e t a l . , F E R M I L A B - C o n f - 8 8 / 1 8 0 - E ;

D . E r r e d e e t a l . , I E E E T r a n s . N u c l . Sci . 36 (1989)

106.

1435

Page 15: P arallel Session 34

COMPARISON OF DIRECT y PRODUCTION IN pp AND pp REACTIONS AT Vs = 24.3 GeV

LESLIE CAMILLERI CERN

1211 Geneva 23, Switzerland (for the UA6 Collaboration!)

ABSTRACT

The difference between the pp and pp cross sections, which is an estimate of the annihilation diagram has been measured for the first time. A preliminary estimate of the gluon structure function of the nucléon is found to be x G(x) = A g (1 - x)n, with n = 3.5 ± 0.3 ± 0.5.

The ability of the UA6 collaboration to study the production of direct photons in both pp and pp interactions in the same apparatus is unique2 At leading order two diagrams are important in the production of direct photons: gluon compton scattering and quark antiquark annihilation. In pp collisions the first one dominates whereas in pp collisions both diagrams are important, the qq process being dominant at large p x because quarks have a harder structure function than gluons. Therefore a measurement in pp collisions yields a measurement of the gluon structure function. For UA6 this measurement is in a high range of Bjorken x (0.25 to 0.5) not reachable by the collider experiments. On the other hand a measurement of the difference in cross-sections (pp-pp) selects the annihilation process, is independent of the gluon structure function and is sensitive to the value of A q c d predominandy.

The experiment2^ uses a H 2 cluster jet 4 as an internal target followed by a double arm spectrometer consisting of a 2.3 Tm dipole magnet, multiwire proportional chambers and an e.m. calorimeter. The jet is 0.8 cm long and has a density of 4 x 101 4

nucleons/cm3. The e.m. calorimeter^ is of the lead proportional tube type. The tubes are 10 mm wide giving a fine transverse segmentation. The luminosity is measured to an accuracy of ±4% by monitoring the number of recoil protons from elastic scattering using a set of solid state counters^ placed within the SPS vacuum at 90° in the lab.

A total luminosity of 0.458 pb-1 in pp and 1.75 pb-l in pp collisions was accumulated. The background to the direct photons from TC'S and rfs and the acceptance were calculated using a Monte Carlo program which used parametrizations of y, %0 and r| cross sections based on the WA70 experiment? and banks of real showers obtained by putting the calorimeter in a test beam. An e.m. shower was taken to be a direct photon candidate if it did not reconstruct as a rcO or r| with any other shower in the detector, if no charged track pointed to it within 1.5 cm and if its r.m.s. width was less than 1.35 cm. Note that no isolation cut was needed, thus making our photon sample totally inclusive. The most significant systematic errors in the data are ±7% coming from the number of reconstructed TTO'S, ±6% due to a possible non-linearity in the calorimeter response, ±10% due to a ±1% uncertainty in the p x scale, ±4% from the luminosity. When added in quadrature this adds to a total systematic uncertainty of ±15%.

The invariant cross section for direct photons is shown in Fig. 1 together with predictions by Aurenche et al.8 with Q2 scales obtained via a principle of minimal sensitivity9. The solid lines used Duke Owens I structure functions1** and the dashed lines the ABFOW structure functions 1 1 . The first preliminary measurement of the difference in cross sections between the pp and pp cross sections is shown in Fig. 2.

1436

Page 16: P arallel Session 34

Fig. 1 Invariant cross sections for pp yx and pp—*yx

Fig. 2 First measurement of the cross section difference, (pp —> yx) - (pp — yx)

The form of the gluon structure function was assumed to be x G (x, Q 0

2 = 2 GeV2) = A g(l-x)il. In order to determine rj the following method was used. The muon DIS data of B C D M S 1 2 was used to extract for a range of values of r\9 a set of valence and sea structure functions and the corresponding value of A at each T|. This was done using NLO expressions. For each set of [ % valence, sea, A] the predictions for the UA6 conditions of the NLO calculation of ref. 8 with

optimized scales were computed. The value of x 2

between each set and the data was found and plotted (Fig. 3). The best fit was found for T] = 3.5 ± 0.3 (stat) ± 0.5 (syst).

Fig.3 The %2 between the predictions of ref. 8 and the data as a function of T] , the exponent in the gluon distribution.

1437

Page 17: P arallel Session 34

REFERENCES

1. The UA6 Collaboration, G. Ballochi, L. Camilleri,

G. von Dardel, L. Dick, F. Gaille, C. Grosso-

Pilcher, J.-B. Jeanneret, W. Kubischta, EP

Division, CERN, 1211 Geneva, Switzerland.

A. Bernasconi, A. Ebongué, B. Gabioud, C.

Joseph, J.-F. Loude, E. Malamud, C. Morel, P.

Oberson, J.-L. Pages, J.-P. Perroud, D. Ruegger,

G. Sozzi, L. Studer, M.-T. Tran, M. Werlen, Inst.

de Physique Nucléaire, Université de Lausanne,

Dorigny, 1015 Lausanne, Switzerland.

E.C. Dukes, D. Hubbard, O. Overseth, G.R. Snow,

G. Valenti*, Physics Dept. University of Michigan,

Ann Arbor, Michigan, USA.

R. Breedon, R.L. Cool, P.T. Cox, P. Cushman, P.

Giacomelli, P. Mélèse, R.W. Rusack, A. Vacchi,

Dept. of Physics, The Rockefeller University, 1230

York Ave. 10021 New York, USA.

V. Singh, Physics Dept., Yale University, New

Haven, Connecticut, USA.

2. A. Bernasconi et al., Phys. Lett. 206 (1988) 163.

3. J. Antille et al., Phys Lett. 194 (1987) 568.

C. Morel et al., Measurement of the Inclusive J/y

Production Cross sections in pp and pp Collisions at

Vs = 24.3 GeV, to be published in Physics Letters.

4. Physics with Jet Targets at the SPS pp collider,

L.Dick and W. Kubischta in Hadronic Physics at

Intermediate Energies, T. Bressani, R.A. Ricci,

Editors Elsevier Science Publishers, B.V. 1986.

5. L.Camilleri et ah, Nucl. Inst. Methods A286 (1990)

49.

6. R. Breedon et al, Phys. Lett. B216 (1989) 459.

7. M. Bonesini et al., Z. Phys. C37 (1988) 535, C38

(1988) 371.

8. P. Aurenche et al., Nucl. Phys. B286 (1987) 509

and references therein.

9. P.M. Stevenson, Phys. Rev. D23 (1981) 2916,

P.M. Stevenson and H.D. Politzer, Nucl. Phys.

B277 (1986) 758.

10. D.W. Duke and J.F. Owens Phys. Rev. D 3 0

(1984) 49.

11. P. Aurenche et al., Phys. Rev. D39 (1989) 3275.

12. A.C. Benvenuti et al., Phys. Lett. B223 (1989)

488, Phys. Lett. B237 (1990) 592.

* Also INFN, 1-40126 Bologna, Italy.

1438

Page 18: P arallel Session 34

D I R E C T P H O T O N P R O D U C T I O N IN H A D R O N - H A D R O N C O L L I S I O N S A T 530 G E V

F E R M I L A B E 7 0 6 *

P r e s e n t e d by E . E n g e l s , J r . for t h e E 7 0 6 C o l l a b o r a t i o n

A B S T R A C T

I n v a r i a n t i nc lus ive p r o d u c t i o n cross sec t ions a r e p r e s e n t e d for t h e p r o d u c t i o n of d i r e c t p h o t o n s in t h e col l is ion of 530 G e V / c t t " m e s o n s a n d p r o t o n s w i t h b e r y l l i u m a n d c o p p e r nuc l e i . T h e d a t a , t a k e n d u r i n g t h e 1987-88 fixed t a r g e t r u n of t h e F e r m i l a b T e v a t r o n I I , a r e c o m p a r e d w i t h r e s u l t s f r o m ea r l i e r e x p e r i m e n t s a n d w i t h Q C D c a l c u l a t i o n s .

I N T R O D U C T I O N

E 7 0 6 is a s e c o n d g e n e r a t i o n d i r e c t p h o t o n p r o ­d u c t i o n e x p e r i m e n t in w h i c h 530 G e V / c p o s i t i v e a n d n e g a t i v e b e a m s a r e d i r e c t e d o n t o a n u c l e a r t a r g e t . P h o t o n s p r o d u c e d in r e s u l t i n g col l is ions a r e d e t e c t e d i n a l iqu id a r g o n c a l o r i m e t e r ( L A C ) a n d t h e a c c o m p a n y i n g c h a r g e d p a r t i c l e s a r e de ­t e c t e d in a c h a r g e d p a r t i c l e s p e c t r o m e t e r cons i s t ­ing of a s i l icon m i c r o s t r i p s y s t e m u p s t r e a m a n d a P W C s y s t e m d o w n s t r e a m of a l a r g e d i p o l e m a g ­n e t . A d e s c r i p t i o n of t h e s y s t e m is p r o v i d e d in r e fe rence [1,2].

D A T A A N A L Y S I S

T h i s p a p e r focusses o n t h e r e c o n s t r u c t i o n of e l e c t r o m a g n e t i c i n f o r m a t i o n f r o m t h e L A C . T h e L A C c o n t a i n s a n e l e c t r o m a g n e t i c s e c t i o n w h i c h cons i s t s of four m e c h a n i c a l l y i n d e p e n d e n t q u a d ­r a n t s . E a c h q u a d r a n t c o n t a i n s 65 l aye r s of 2 m m t h i c k l e a d p l a t e s , i n t e r l e a v e d w i t h 1.6 m m t h i c k G 1 0 r a d i a l ( r ) a n d a z i m u t h a l (</>) r e a d o u t b o a r d s . T h e p o s i t i o n r e s o l u t i o n of e l e c t r o n s a n d p h o t o n s in t h e c a l o r i m e t e r is b e t t e r t h a n 1 m m a n d t h e e n e r g y r e s o l u t i o n , as o b t a i n e d b y c o m p a r i n g t h e e n e r g y d e p o s i t e d in e a c h v i ew , is a b o u t 1 4 % / a / Ë .

In o r d e r t o d e t e r m i n e t h e r a n d ^ - c o o r d i n a t e s of a s h o w e r t h e s igna l s f r o m t h e r a n d (j> s t r i p s of t h e c a l o r i m e t e r a r e m a t c h e d a c c o r d i n g t o en­ergy. S h o w e r s of c o m p a r a b l e e n e r g y i n r a n d <j> a r e a s s u m e d to b e c o r r e l a t e d . T h e v e r t e x p o s i t i o n of t h e e v e n t e s t a b l i s h e d b y t h e c h a r g e d s e c o n d a r y t r a c k s d e t e c t e d b y t h e s i l icon m i c r o s t r i p s y s t e m t o g e t h e r w i t h t h e d i r e c t i o n of t h e i n c i d e n t b e a m p a r t i c l e a n d t h e c o o r d i n a t e s of t h e s h o w e r in t h e L A C d e t e r m i n e t h e a n g l e of t h e p h o t o n . Al l p h o ­t o n c o m b i n a t i o n s a r e p a i r e d t o e s t a b l i s h w h e t h e r t h e y o r i g i n a t e d f r o m a 7r° o r rj m e s o n , o r a n y o t h e r i n d i r e c t s o u r c e . T h e i n v a r i a n t 7 7 m a s s p l o t f rom t h e e n t i r e d a t a s a m p l e is s h o w n in F i g u r e 1.

* W o r k s u p p o r t e d in p a r t b y t h e U . S . D e p a r t m e n t of E n e r g y , t h e N a t i o n a l Sc i ence F o u n d a t i o n , a n d t h e U n i v e r s i t i e s G r a n t s C o m m i s s i o n ( I n d i a ) .

FIGURE 1. .- The inTariant mass of di-photon* with p T > 3.0 GeV/c. The dotted line represents the di-photon mass distribu­tion with an energy asymmetry cut of 0.75.

1439

Page 19: P arallel Session 34

B o t h t h e 7T° a n d 77 m a s s p e a k s a r e c lear ly vis­ib le . T h e d a s h e d cu rve r e p r e s e n t s t h e even t s for wh ich t h e ene rgy a s y m m e t r y p a r a m e t e r A (de­fined be low) is less t h a n 0,75.

To u n d e r s t a n d t h e efficiency of t h e L A C for r e c o n s t r u c t i n g 7r°'s, we i nves t i ga t ed t h e e n e r g y a s y m m e t r y of t h e t w o p h o t o n s forming t h e m e s o n . T h e a s y m m e t r y is defined by A = (Ej - E])/(E7 + E 2 ) a n d is a p p r o x i m a t e l y e q u a l t o t h e cosine of t h e ang le b e t w e e n o n e of t h e p h o t o n s a n d t h e 7r° l ine of flight in t h e 2 7 cen ter -of -mass s y s t e m . T h e a s y m m e t r y for t h e 7 7 even t s in t h e reg ion of t h e 7T° m a s s ( 1 1 0 < M 7 7 < 160 M e v / c 2 ) is s h o w n in F i g u r e 2 .

Figure 2. - ir°asymmetry distribution. The points represent the measured asymmetry distribution for a sample of the data. The dashed line is the asymmetry distribution predicted by Monte Carlo. Detection efficiency correc­tions have been applied to both plots.

T h e d a s h e d c u r v e on t h e figure is a M o n t e C a r l o s i m u l a t i o n of t h e d a t a . If t h e L A C were 100% efficient in d e t e c t i n g p h o t o n s f rom w° de­cay, t h e n t h e efficiency would b e i n d e p e n d e n t of A . Since t h e L A C does n o t r e s p o n d t o sufficiently low values of p h o t o n energy , o n e of t h e two p h o ­t o n s f rom a h igh ly a s y m m e t r i c decay of a tt° m a y n o t b e d e t e c t a b l e , t h e r e b y s i m u l a t i n g a s ingle di­rec t p h o t o n . H e n c e a f rac t ion of t h e tt° s ignal will m a s q u e r a d e as a s ingle p h o t o n a n d p r o v i d e t h e p r inc ipa l b a c k g r o u n d for t h e d i rec t p h o t o n s ignal .

D I R E C T P H O T O N D A T A

T h e n o r m a l i z e d d i rec t p h o t o n cross sec t ions a r e s h o w n in F i g u r e 3 for t t " on b e r y l l i u m a n d a re c o m p a r e d w i t h d a t a f rom o t h e r e x p e r i m e n t s . In F i g u r e 3 t h e e r ro r s s h o w n for t h e low p t p o i n t s a re p r i m a r i l y s y s t e m a t i c , whi le t h e e r ro r s for l a rger p t

a r e m a i n l y s t a t i s t i c a l .

Figure 3. Inclusive invariant CTOM section* for direct photon production in it' -Be interac­t ion!. The data are compared with the data from other experiments using *~ beams.

In F i g u r e 4 , t h e d a t a a r e s u p e r p o s e d o n t o Q C D ca l cu la t ions of A u r e n c h e e t al [3,4] wh ich u s e t h e p ion a n d p r o t o n s t r u c t u r e func t ions d e t e r m i n e d by t h e W A 7 0 c o l l a b o r a t i o n [4] a n d the re fo re p ro ­v ide a d i rec t c o m p a r i s o n of t h e t h e o r e t i c a l scal­ing b e t w e e n t h e two e x p e r i m e n t s . T h e t h r e e cal­c u l a t e d curves a r e n o t very different a n d a r e in a g r e e m e n t w i t h t h e E 7 0 6 d a t a a t t h e h i g h e r val­ues of p t .

1440

Page 20: P arallel Session 34

Figure 4. The JT -Be d*U compared with QCD calculations using structure functions deter­mined from the WA70 experiment.

F i g u r e s 5 a n d 6 show t h e p - b e r y l l i u m d a t a a n d c o r r e s p o n d t o figures 3 a n d 4 respec t ive ly .

Figure 5. Inclusive invariant cross sections for direct photon production in p-Be interac­tions. The data are compared with the data from other experiments using proton beams or colliders.

Figure 6. The p-Be data compared with QCD calculations using structure functions deter­mined from the WA70 experiment.

R E F E R E N C E S

1. F . Lobkowicz , e t a l , N I M A 2 3 5 , 332-337 (1985) .

2. E . E n g e l s , J r . , e t a l , N I M A 2 7 9 , 272-276 (1989) .

3 . P . A u r e n c h e , R . Ba ie r , M . F o n t a n n a z , J . F . O w e n s a n d M. W e r l e n , P h y s . R e v . D 39, 3275 (1989) .

4. P . A u r e n c h e , R. Ba ie r , M. F o n t a n n a z , M. N. Kienz le -Focacc i , a n d M . W e r l e n , P h y s . L e t t . 2 3 3 B , 517 (1989) .

DISCUSSION

Q. H o n g P i (Univ. Lund) : Can the difference between your d a t a and theory for P ^ - s p e c t r u m at small P j be a result of non-per t urba t ive (soft) in teract ions , which gives an exper imenta l - type spec t rum in P r ?

A. E . E n g e l s : I t could be .

1441

Page 21: P arallel Session 34

J e t P r o d u c t i o n a t H a d r o n C o l l i d e r s S t e p h e n D . Ellis

Department of Physics, FM-15 University of Washington, Seattle, WA 98195, USA

Zol tan K u n s z t Institute of Theoretical Physics

Eidgenossosche Technische Hochschule CH-9083 Zurich, Switzerland

Davison E . Soper Institute of Theoretical Science

University of Oregon, Eugene, OR 97403, USA

A b s t r a c t

I d i s c u s s s o m e a s p e c t s of j e t p h y s i c s a t h a d r o n co l l i de r s , w i t h p a r t i c u l a r a t t e n t i o n t o t h e c a l c u l a t i o n

of t h e c ro s s s e c t i o n for p r o d u c t i o n of o n e j e t p l u s a n y t h i n g a t l a r g e v a l u e s of t h e t r a n s v e r s e e n e r g y ET

of t h e j e t . E x p e r i m e n t a l r e s u l t s f r o m C D F a r e in g o o d a g r e e m e n t w i t h t h e QCD p r e d i c t i o n o u t t o a

m a x i m u m j e t t r a n s v e r s e m o m e n t u m of a b o u t 400 G e V .

MOTIVATION T h e r e a r e t h r e e m a i n reasons for e x a m i n i n g j e t

p r o d u c t i o n a t large ET-T h e first r eason is t o look for a b r e a k d o w n of t h e

S t a n d a r d M o d e l a t smal l d i s t ances . J e t cross sec­t ions are g o o d for t h i s p u r p o s e . To p r o b e t h e S t an ­d a r d Mode l a t smal l d i s t ances , o n e needs t o look a t even ts involving a la rge t r a n s v e r s e m o m e n t u m . Since o u r abi l i ty t o see even t s w i t h t h e largest t r a n s v e r s e m o m e n t a is genera l ly l imi ted by t h e smal l n u m b e r of such even t s , we shou ld e x a m i n e processes t h a t have t h e larges t poss ib le p r ed i c t ed cross sect ions in t h e s t a n d a r d m o d e l . T h u s we look for processes med i ­a t e d by t h e s t rong in t e r ac t ions , t h a t is, q u a r k a n d g luon s c a t t e r i n g a t la rge pr- T h e s i g n a t u r e of such s c a t t e r i n g is j e t p r o d u c t i o n . T h e s imples t j e t p r o d u c ­t ion cross sec t ion is t h a t for t h e inclusive p r o d u c t i o n of one j e t w i t h a given value of t r ansve r se energy ET a n d p s e u d o r a p i d i t y 77. T h e cross sect ion for this p ro­cess has b e e n ca l cu la t ed a t o rde r (i.e. one loop o rde r ) by us [1] and , w i th a different j e t definit ion, by A versa , C h i a p p e t t a , Greco , Gui l le t [2]. B o t h g roups h a v e m a d e use of t h e o rder m a t r i x e lements of R. K. Ellis a n d Sex ton [3].

A second reason t o look a t j e t s is t o see Q C D work in de ta i l . Here t h e two j e t inclusive cross sec­t ion is especia l ly in te res t ing because it reflects de­ta i ls a b o u t t h e angu la r d i s t r i bu t i on of t h e unde r ly ing p a r t o n s ca t t e r i ng . O n e would use a m i d d l e r ange of t r a n s v e r s e m o m e n t a , say 50 G e V < ET < 200 G e V , w h e r e t h e t h e o r y is re l iable (since ET is la rge enough) a n d t h e r e exist a sufficient n u m b e r of events (since

ET is n o t t o o b ig) . P r ed i c t i ons should soon to b e

avai lable a t o rde r a j .

A t h i r d reason to p r o b e t h e g luon d i s t r i bu t ion .

For th i s p u r p o s e , o n e can use b o t h t h e two je t inclu­

sive a n d t h e one j e t inclusive cross sect ion. In t h e

m i d d l e r a n g e of t h e t h e o r y is re l iable a n d t h e

t h e g luon con t r i bu t i ons a r e d o m i n a n t .

SENSITIVITY TO GLUONS Let us beg in by looking a t how sensi t ive t h e je t

cross sec t ion is t o t h e g luon d i s t r i bu t i on . Cons ider t h e B o r n level cross sect ion for m a k i n g one j e t p lus a n y t i n g . P a r t of t h i s cross sect ion arises from qua rk -q u a r k s c a t t e r i n g , p a r t f rom qua rk -g luon sca t t e r i ng , a n d p a r t f rom g luon-g luon sca t t e r ing . In t h e figure be low, I show as a func t ion of Ej t h e fract ion of t h e cross sect ion t h a t is d u e t o each process . W e see t h a t

F r a c t i o n o f Born C r o s s S e c t i o n

1442

Page 22: P arallel Session 34

for ET ~ 100 G e V , g l u o n - g l u o n col l i s ions m a k e u p

3 5 % of t h e c ross s e c t i o n , w h i l e q u a r k - g l u o n col l i s ions

m a k e u p a n o t h e r 5 0 % . T h u s e a c h 1 0 % c h a n g e in

t h e g l u o n d i s t r i b u t i o n f u n c t i o n will r e s u l t in s l igh t ly

m o r e t h a n a 1 0 % c h a n g e in t h e p r e d i c t e d cross sec­

t i o n . T h i s is in m a r k e d c o n t r a s t t o t h e s i t u a t i o n in

d e e p l y i n e l a s t i c s c a t t e r i n g , w h e r e g l u o n s c o n t r i b u t e

o n l y a t n e x t - t o - l e a d i n g o r d e r . T h u s t h e m e a s u r e m e n t

of j e t p r o d u c t i o n c a n c o n t r i b u t e t o t h e d e t e r m i n a t i o n

of t h e g l u o n d i s t r i b u t i o n .

O n e m a y a l so n o t e a n o t h e r c o n s e q u e n c e of t h e

fac t t h a t g l u o n - g l u o n s c a t t e r i n g p r o v i d e s a m a j o r

s h a r e of t h e c r o s s - s e c t i o n a t fa i r ly low va lues of ET- If

t h e s t r o n g i n t e r a c t i o n g a u g e t h e o r y w e r e A b e l i a n , so

t h a t t h e t h e p r o c e s s gluon + gluon —> gluon + gluon

w e r e n o t p r e s e n t a t o r d e r o ^ , t h e j e t c ross s e c t i o n

w o u l d e v i d e n t l y b e s t r o n g l y m o d i f i e d a t t r a n s v e r s e

ene rg i e s of 50 t o 100 G e V . W e will see b e l o w t h a t ,

t o t h e c o n t r a r y , t h e e x p e r i m e n t a l r e s u l t s a r e in v e r y

g o o d a g r e e m e n t w i t h t h e Q C D t h e o r y in t h i s r eg ion .

T W O J E T CROSS SECTION I n o r d e r t o see Q C D w o r k in d e t a i l , o n e c a n s t u d y

t h e c ross s e c t i o n t o m a k e t w o j e t s p l u s a n y t h i n g ,

H e r e njj = (r/i + f]2)/2 is t h e r a p i d i t y of t h e j e t - j e t

c m . s y s t e m , w h i l e 77* = - In t a n ( 0 * / 2 ) = ( r / 1 - r / 2 ) / 2

is t h e r a p i d i t y of first j e t as v i e w e d in t h e j e t - j e t c m .

s y s t e m .

C o n s i d e r t h e b e h a v i o r of t h e c ross s e c t i o n a s a

f u n c t i o n of 77* for a fixed b i n of Mjj a n d rjjj. V e c t o r

b o s o n e x c h a n g e gives t h e c h a r a c t e r i s t i c b e h a v i o r

A t t h e B o r n level , o n e finds t h e fo l lowing for a Mjj =

200 G e V a n d rjjj = 0.

H e r e t h e " F i x e d " c u r v e is o b t a i n e d b y s e t t i n g t h e

sca le FI t h a t a p p e a r s in AS(A) a n d in t h e p a r t o n dis­

t r i b u t i o n f u n c t i o n s t o \I = MJJJ±, so t h a t A is fixed

as 77* va r i e s . W e see t h a t m o s t of t h e d e p e n d e n c e

of t h e c ross s e c t i o n o n t h e a n g l e 77* is c o n t a i n e d in

t h e f a c t o r cosh(2?7*) t h a t is c h a r a c t e r i s t i c of sp in 1

e x c h a n g e a t l a r g e 77*. T h e c ross s e c t i o n d i v i d e d b y

t h i s f a c t o r is a m o s t flat. In t h e " R u n n i n g " c u r v e , we

t a k e IX = PT , J e t / 2 . N o w w e see a n a d d i t i o n a l d e p e n ­

d e n c e o n 77* t h a t a r i se s f r o m t h e fact t h a t PT -* 0

as 77* b e c o m e s l a r g e w i t h Mjj fixed. T h e fact t h a t

t h e t w o c u r v e s differ s u b s t a n t i a l l y is a s ign t h a t o n e

n e e d s a c a l c u l a t i o n b e y o n d t h e B o r n level , w h i c h will

h e l p t o se t a g o o d cho ice for t h e sca le u. O n e m a y

g u e s s , h o w e v e r , t h a t t h e " r u n n i n g " c u r v e is t h e b e t ­

t e r a p p r o x i m a t i o n t o t h e o n e l o o p r e s u l t .

O N E JET CROSS SECTION I n o r d e r t o l ook for a b r e a k d o w n of t h e S t a n d a r d

M o d e l a t s m a l l d i s t a n c e s , w e c o n s i d e r t h e o n e j e t

i nc lu s ive c ross s e c t i o n ,

w h e r e ET is t h e t r a n s v e r s e e n e r g y ( ~ t r a n s v e r s e m o ­

m e n t u m ) of t h e m e a s u r e d j e t , a n d 77 is i t s r a p i d i t y .

O n e n e e d s a carefu l de f in i t ion of w h a t t h i s c ross

s e c t i o n m e a n s (g iven a n i d e a l d e t e c t o r ) . T h e defi­

n i t i o n t h a t we h a v e u s e d t o c a l c u l a t e t h e j e t c ross

s e c t i o n a t t h e o n e l o o p level is a s fol lows. W e def ine

a j e t c o n e of r a d i u s R in 77-^ s p a c e , c e n t e r e d o n a n

ax i s ca l led t h e " c o n e a x i s " . T h e " j e t " is e v e r y t i n g

i n s i d e t h i s c o n e . T h e t r a n s v e r s e e n e r g y of t h e j e t is

de f ined t o b e t h e s u m of al l t h e t r a n s v e r s e ene rg ies

of c a l o r i m e t e r t o w e r s t h a t lie in t h e c o n e :

T h e r a p i d i t y a n d a z i m u t h a l a n g l e of t h e j e t a r e de­

fined t o b e t h e a v e r a g e s ( w e i g h t e d b y ET) of t h e an­

gles of t h e c a l o r i m e t e r t o w e r s in t h e c o n e :

1443

I n t e r m s of r a p i d i t y , t h i s t r a n s l a t e s t o

Page 23: P arallel Session 34

Final ly , t h e cone axis m u s t ag ree wi th t h e j e t axis (jlJ,<t>j)' (If it is n o t , one j u s t ad jus t s it i tera t ively . )

T h e C D F e x p e r i m e n t a l defini t ion of j e t s is close t o th i s one . T h e U A 2 defini t ion is s u b s t a n t i a l l y dif­ferent , as is t h e defini t ion of A versa et al .

W i t h t h e j e t def ini t ion in m i n d , one can a p p r e ­c i a t e w h y t h e j e t cross sect ion is insens i t ive t o p o o r l y k n o w n la rge d i s t a n c e phys ics a n d is t hus a g o o d p r o b e of s h o r t d i s t a n c e phys ics . F i r s t of all, t h e fact t h a t a h igh ET j e t is seen ind i ca t e s t h a t t h e r e has b e e n a h a r d s c a t t e r i n g . A p o t e n t i a l p r o b l e m arises b e c a u s e , long after t h e h a r d s c a t t e r i n g , p a r t o n s can spl i t . If we bel ieve t h e q u a l i t a t i v e s t r u c t u r e of p e r t u r b a t i o n theo ry , p a r t o n sp l i t t i ng resu l t s in d a u g h t e r p a r t o n s t h a t m o v e in a p p r o x i m a t e l y t h e s a m e d i rec t ion as t h e p a r e n t p a r t o n . T h u s , t h e d a u g h t e r p a r t o n s al­m o s t a lways go in to t h e j e t cone . For th i s r eason , t h e j e t p a r a m e t e r s ET^TJ^CJ) a re n o t m u c h affected. An­o t h e r p o t e n t i a l p r o b l e m is t h a t long after t h e h a r d s c a t t e r i n g , m a n y soft g luons will b e e m i t t e d . Even­tua l ly , t he se soft g luons a re t h o u g h t t o b e r e spons ib l e for b i n d i n g t h e p a r t o n s i n to h a d r o n s . T h e y also re­sul t in soft h a d r o n s b e i n g e m i t t e d in all d i r ec t ions . However , a soft g luon (or soft h a d r o n ) carr ies on ly a sma l l a m o u n t of m o m e n t u m o u t of t h e cone . For t h i s r eason , aga in , t h e j e t p a r a m e t e r s j e t ET,n,<f> a r e n o t m u c h affected.

B e c a u s e j e t cross sec t ions a re e x p e c t e d t o b e in­t r ins ica l ly insens i t ive t o t h e long d i s t a n c e phys ics , we h a v e not a t t e m p t e d t o m o d e l p a r t o n showers a n d h a d r o n i z a t i o n in o u r ca lcu la t ion of t h e j e t cross sec­t i on .

CALCULATION W e [1], as well as Aversa , C h i a p p e t t a , Greco a n d

Gui l le t [2], h a v e ca l cu l a t ed t h e o n e je t inclusive cross sec t ion da/dndET- T h i s cross sec t ion h a s long b e e n k n o w n a t t h e B o r n level. W e use t h e m a t r i x e l emen t s of R. K. Ellis a n d S e x t o n [3] t o ca l cu l a t e t h e first Q C D cor rec t ions .

In th i s br ief r e p o r t , I will sk ip en t i re ly a n y de­sc r ip t ion of how t h e ca lcu la t ion is d o n e , a n d will m o v e d i rec t ly t o s o m e of t h e r e su l t s . Le t us first cons ider t h e d e p e n d e n c e of t h e ca l cu la t ed cross sec­t i on on t h e scale p a r a m e t e r \i t h a t a p p e a r s in as a n d in t h e p a r t o n d i s t r i b u t i o n func t ions . T h i s p a r a m e t e r is p u r e l y a n a r t i fac t of t h e theory . O n e knows f rom t h e s t r u c t u r e of t h e t h e o r y t h a t fi shou ld b e chosen on t h e o rde r of ET> b u t w h e t h e r it shou ld b e 0 .2£V or 2ET is n o t k n o w n . In t h e g r a p h be low, we see t h a t

t h e cross sec t ion ca lcu la t ed a t t h e B o r n level d e p e n d s very s t r o n g l y on \i. T h i s d e p e n d e n c e is e x p e c t e d t o dec rease as one ca lcu la tes m o r e a n d m o r e o rde r s of p e r t u r b a t i o n theory . W e find t h a t t h e cross sec t ion ca l cu l a t ed a t t h e o n e loop level is a l r e a d y q u i t e in­sens i t ive t o ^ , as seen in t h e curve labe l led "Ful l . "

In t h e n e x t figure, I show t h e ca l cu la t ed cross sec t ion as a func t ion of ET a n d c o m p a r e i t t o t h e cross sec t ion m e a s u r e d b y C D F [4]. Specifically, t h e cross sec t ion d i sp layed is da/drjdET averaged over t h e C D F fiducial region 0.1 < \TJ\ < 0.7. T h e cone ra­d ius is R = 0.7, as in t h e C D F e x p e r i m e n t . T h e cen-

Jet Transverse Energy (GeV)

1444

Page 24: P arallel Session 34

t r a l cu rve is t h e p r ed i c t i on us ing /i = Et/2 a n d us­

ing H M R S set B p a r t o n d i s t r i b u t i o n s [5]. T h e o t h e r

two curves i n d i c a t e a n e s t i m a t e d t heo re t i c a l e r ror ,

m o s t l y r e su l t i ng f rom t h e u n c e r t a i n t y in t h e p a r t o n

d i s t r i b u t i o n s . T h e d a t a a r e C D F p r e l i m i n a r y d a t a ,

w i t h s t a t i s t i c a l e r ro r b a r s shown a n d an a d d i t i o n a l

e r ro r ba r , l abe l led " N o r m a l i z a t i o n Unce r t a in ty , " in­

d i ca t i ng t h e Et i n d e p e n d e n t p a r t of t h e s y s t e m a t i c

unce r t a in ty .

W e see t h a t t h e a g r e e m e n t b e t w e e n t h e d a t a a n d

t h e Q C D p red i c t i on is g o o d , i nd i ca t i ng t h a t no de­

v ia t ion f rom po in t l ike b e h a v i o r as given in Q C D is

seen o u t t o a p a r t o n - p a r t o n c m . ene rgy ( ~ 2Et) of

n e a r l y 1 T e V .

References

[1] S. D . Ell is , Z. K u n s z t a n d D . E . Soper , P h y s .

R e v . L e t t . 64 , 2121 (1990) a n d references c i ted

t he r e in .

[2] F . Aversa , M . Greco , P . C h i a p p e t t a , a n d J . P h .

Gui l l e t , P h y s . R e v . L e t t . 65 , 401 (1990) a n d ref­

erences c i ted t he re in .

DISCUSSION

Q. W u - K i T u n g (Illinois Inst. Tech.) : Concerning the

largest source of theoretical error due to uncertain­

ties on the parton distributions, how did you arrive

at the 20% figure? Is it obtained by comparing the

recent NLO parton distributions only or by using

the popular LO distributions as well? (The latter

representing old data has changed considerably in the

intervening years.)

A. D . E . S o p e r : The 20% error estimate results from

looking at modern NLO parton distributions only.

M . D e l l ' O r s o (INFN, Pisa): I would like to com­

ment on the high-Et points from CDF in the inclusive

jet spectrum. The systematic errors for the high-2?t

region is still under study, but it could be large (of

the order of 50% in cross section). It is not shown on

the transparency.

[3] R. K. Ellis a n d J . C. S e x t o n , Nucl . P h y s . B269 ,

445 (1986) .

[4] T . Hess ing , C D F C o l l a b o r a t i o n , in J . T r a n

T h a n h Van , éd . , P r o c . X X I V R e n c o n t r e d e

M o r i o n d , Les Arcs , 1990, (Ed i t i ons Fron t iè res ,

Gif su r Y v e t t e , t o b e p u b l i s h e d ) .

[5] P . N . H a r r i m a n , A. D . M a r t i n , W . J . S t i r l ing ,

a n d R. G. R o b e r t s , P h y s . Rev . D42 , 798 (1990) .

1445

Page 25: P arallel Session 34

MINIJETS AND PERTURBATTVE QCD AT SSC ENERGIES

Errol Gotsman ( a) 1 and David Lissauer ( a- 6) 2

( a) School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences

Tel Aviv University, Tel Aviv

W Brookhaven National Laboratory, Upton, New York

We investigate the dependence of the number of minijets as a function of the impact parameter of the interaction. Assuming a mild x dependence of the transverse structure functions of the colliding protons, as suggested by the parton model, we show that the average number of minijets increases significantly when one requires the presence of a hard collision. This effect can be important when scrutinizing events which include a hard QCD component at SSC/LHC energies.

I. I N T R O D U C T I O N

Jet cross sections at high energies calculated using low­est order perturbative QCD, increase faster than atot for p!pin of a few GeV. The increase is so rapid that by SSC energies it violates partial wave unitarity. The increase of ajet can be associated with the rapid growth of the number of relatively soft gluons inside the proton when going to smaller x (< 10~ 3 ) and, since x = for fixed PT this is equivalent to going to higher energy.

Recently several papers 1 ) 2 , 3 , have shown how to cir­cumvent the unitarity problem that is inherent in the QCD parton model, by using the eikonal formalism. The latest accelerator data can also be summarized in terms of a geometrical picture of the hadron 4 . Wë find that all data show an increasing radius, increasing opacity, and increasing multiplicity with increasing energy. The ris­ing multiplicity reflects the fact that when probed at a higher energy (lower x), the proton appears to contain a larger number of constituents, qq pairs and gluons, whose effective number increases like a power of log s. The in­creasing transverse size of the collisions appears to reflect the same phenomena viz. an increasing number of con­stituents "spreading" over a larger cross section. The increasing opacity is due to the increasing density of par-tons at lower x ( higher s). This geometric picture of the proton is remarkably similar to the one proposed by Chou and Yang 5 , which successfully accounts for exclusive p-p and p — p data at high energies.

II. F O R M A L I S M A N D K I N E M A T I C S

At Tevatron energies, minijets are already the domi­nant source of particles produced, and in order to esti­mate the background at the SSC it is necessary to know the number of minijets expected. We follow the general formalism developed by 1 , 2 to calculate the minijet cross section, however, we d o n o t assume that the transverse density of the proton is independent of x, the fraction of the initial energy of the hadron carried by the con­stituent. Motivated by the parton model 6 we assume that the impact parameter has a mild x dependence, and explore the consequences thereof.

The number of parton-parton collisions in a pp collision at impact parameter b is given in the QCD parton model b y 1,2

where Xi and Xj are the fraction of the momentum of the parent proton carried by parton i and parton j respec­tively, b denotes the impact parameter of the collision. We take Q2

max = min(x2s, W / 2 ) , Q2

min = 2GeV2 . F(x)tib)dxd2b denotes the number of partons in the in­terval dx and transverse area element cPh at a distance b from the center of the proton, and for the two protons is given by:

where f(xi,t) denote the usual parton distribution functions, for which we have used EHLQ set 1 7 . p{x)b) denotes the density distribution function in impact pa­rameter space of partons in an incident nucléon, and is taken to be the Fourier transform of the proton electric form factor.

The parton model 6 suggests that the constituent cas­cades within the hadron can be characterized by a tra­jectory &»T(#0- AS partons with larger transverse dimen­sions (6,'T ~ decay faster than those with smaller biT, the increase of the number of partons ( and hence the decrease of their energy fraction X{ ) is more rapid at large &T- To investigate the consequence of this suggested correlation between the impact parameter b, and the x dependence of the parton distributions, we introduce a mild x dependence in p(x,b), such that p^x.b) — p(0,6), i.e. the impact parameter is now taken as b = JJZ^J- This mimics the behaviour suggested by the parton model. With this choice, then for x = 0.5 and b = 5 (GeF)""1, we have 1— 10 (GtV)~l

} and the amended density dis­tribution is more centralized.

1446

Page 26: P arallel Session 34

FIG. 1. p(6, x) the probability density for finding a parton in the area d2b at impact parameter b for values of x = 0, 0,3 and 0.6.

In Fig. 1 we display the transverse density distribution for three values of x. ( Note / p(b,x)d2b = 1 ) . As x increases the parton transverse distribution is localized at lower values of b. The overlap probability i.e. the surface area of overlap at impact parameter b occupied by the parton distributions in the colliding proton

decreases for all Xi, Xj at large b. The fact that the over­lap probability displays a strong x dependence, is a direct reflection of the fact that the density distributions are x dependent.

FIG. 2. The most probable number of parton-parton col­lisions as a function of impact parameter b, for p™n > 2 GeV.

In Fig. 2 we show the expected number of minijet pairs for p™tn > 2 GeV. Note, that for small values of the impact parameter, the number of minijet pairs is much larger than one. For example, at b = 0 it is of the order of 7 minijet pairs decreasing to 1 at b = 5 ( G e y ) " 1 .

We summarize our main results in Table I. More com­plete details of the calculation can be found in ref. 8 .

TABLE I. Minijet characteristics for various values of p™tn

I V . C O N C L U S I O N S

The consequences of assuming even a mild x depen­dence in the transverse density function, is to substan­tially increase the minijet multiplicity, and thus the to­tal multiplicity of the event. The predicted higher back­ground multiplicity could mask important new physics, and allowance should be made for it when planning new experiments at SSC.

1L. Durand and Hong Pi, Phys. Rev. Lett. 58 (1987) 303,ibid. Phys. Rev. D 40 (1989) 1436.

2 T . K . Gaisser and Todor Stanev, Phys. Letts. B219 (1989) 375.

3 LL Ametller and D. Treleani, Int. J. Mod. Phys. A3 (1988) 521.

4 H . Harari, in Proceedings of the XVI International Sym­posium on Multiparticle Dynamics Jerusalem, Israel 1985, edited by J. Grunhaus.

5 T . T. Chou and Chen Ning Yang, Phys. Letts. B 2 4 4 (1990) 113.

6 L . V. Gribov, E. M. Levin and M. G. Ryskin,Pfcys, Rep. 100 (1983) 1.

7 E . Eichten , I. Hinchliffe, K. Lane, and C. Quigg Rev. Mod. Phys. 56 (1984) 579,t6tU 58 (1986) 1047.

8 E . Gotsman and D. Lissauer, Phys. Letts. B245 (1990) 258.

1 Work supported in part by Israel Academy of Sciences and Humanities

2 Work supported in part by U.S.Department of Energy, contract number DEACO2-76ch00016

1447

Page 27: P arallel Session 34

D I S C U S S I O N

Q. T . S l o a n (Univ. Lancaster): A r e you p l a n n i n g t o i nc lude t h e s e effects i n t o a M o n t e Car lo g e n e r a t o r .

A. E . G o t s m a n : Yes.

Q. H o n g P i (Univ. Lund): You i n t r o d u c e d a %-d e p e n d e n c e b — 6 / ( 1 in t h e p r o t o n dens i ty func­t i on . A t SSC energies mos t of t h e con t r ibu t ions come from g luons a t very smal l x, a n d therefore t h e r e su l t s s h o u l d n ' t change m u c h hy such weak x - d e p e n d e n c e .

A. E . G o t s m a n : T h i s %-dependence we i n t r o d u c e d is a r b i t r a r y . I t can h e some o t h e r different forms. C o m ­p a r i n g w i t h t h e u s u a l mode l s w i h t o u t such x depen ­dence , t h e r e su l t s (for t h e n u m b e r of min i j e t s a t SSC) does change by a fac tor of five.

1448

Page 28: P arallel Session 34

PROBING GLUON AND SEA SPIN IN PROTON

R.Ramachandran The Inst i tute of Mathemat ica l S c i e n c e s

Madras 600 113, India.

and

Prakash Mathews D e p a r t m e n t of Phys ics , Indian Inst i tute of Technology

Kanpur 208 016 , India.

ABSTRACT

P o l a r i s e d Gluon and Sea Q u a r k d i s t r i bu t ions a r e p a r a m e t r i s e d i n c o r p o r a t i n g t h e e f f e c t of ax ia l a n o m e l y on t h e m . Typica l ly p r o c e s s e s t h a t could i s o l a t e t h e va r ious f l avour s ing le t p r o t o n s - g luons and s e a quarks - in t h e p r o t o n a r e s t u d i e d .

It is now well known [1] t h a t when

p robed by muons a t s c a l e s of <Q 2 > ~ 10.7 G e V 2 ,

t h e ne t quark spin in p r o t o n n e a r l y van i shes .

This is said t o b e surpr i s ing , s i nce na ive ly

one t e n d s t o a t t r i b u t e p r o t o n spin t o t h e

v a l e n c e qua rks and e x p e c t s t h a t t h e gluons

and sea qua rks r e m a i n unpo la r i s ed . It is

now g e n e r a l l y u n d e r s t o o d t h a t t h e ax ia l

anoma ly ( Q C D ) [2,3] is r e spons ib l e for th i s

f e a t u r e and it is n e c e s s a r y t o t a k e th i s

in to a c c o u n t in any p a r a m e t r i s a t i o n of

quark d e n s i t i e s in p r o t o n .

Briefly th i s impl ies t h a t w h a t is said

t o be van i sh ing is n o t t h e ne t quark spin ,

bu t a c e r t a i n l inear c o m b i n a t i o n of t h e

f lavour s ing le t quark p o l a r i s a t i o n dens i ty

and t h e gluon dens i t y :

AZ» = A E - _ ^ s _ ( Q 2 ) AG ( Q 2 ) - 0

a t < Q 2 > = 10.7 G e V 2 . F u r t h e r Q 2 evo lu t ion

of t h e f i r s t m o m e n t s of t h e f lavour s ing le t

c o m p o n e n t s is such t h a t a s y m p t o t i c a l l y

a s ( Q 2 ) AG ( Q 2 ) is Q 2 i n d e p e n d a n t . At t h e one

l o o p l e v e l t h e r e n o r m a l i s a t i o n e q u a t i o n

y ie lds

a s ^ ^ (AZ + TibAG) = c , a c o n s t a n t

w h e r e t - In Q 2 / A ^ C D , b = 3 3 g f for SU ( 3 ^

This is t o be s u p p l e m e n t e d by t h e he l i c i ty

sum ru le

1/2 AZ + AG + L J t ) = 1/2

and AG + L z = 0 = = > L ^ ( t ) = LZq~ c t -

AG is t o be so p a r a m e t r i s e d t o sa t i s fy

t h e ab o v e c o n s t r a i n t s . As Ç 2 i n c r e a s e s ,

AG i n c r e a s e s l o g a r i t h m i c a l l y and i t should

be i n t e r e s t i n g t o find d i r e c t e v i d e n c e for

t h i s f e a t u r e .

D i r e c t pho ton or v i r t ua l pho ton p r o c e s s e s

wi th l a rg e pj m a y p rov ide d i s t i n c t i v e signal

for t h e p r e s e n c e of gluon spin in p r o t o n .

We s tudy t h e p r o c e s s e s p + p^ -> y ^ + X ,

+ P+1 + Y + X , and p f + p H + (yV) + X ,

l a r g e Pj ( u + u ) pa i r and look for t h e r e l e v a n t

a s y m m e t r i e s . The a s y m m e t r i e s a r e c o m p u t e d ,

knowing quark and gluon d i s t r i b u t i o n s ( a s

p a r a m e t r i s e d by Gluck and Reya) and t h e

v a r i o u s spin d i s t r i b u t i o n s and c o n v o l u t e

t h e m wi th t h e r e l e v a n t hard s c a t t e r i n g

p r o c e s s e s ( ' c o m p t o n 1 p r o c e s s : q ( q ) + G + y + q,

'Ann ih i l a t i on ' p r o c e s s q + q + y + G). For t h e

spin d i s t r i b u t i o n s we have used C a r i i t z - K a u r

p a r a m e t r i s a t i o n for t h e v a l e n c e quarks

and t a i l o r e d t h e f l avour s ing le t quark spin

and g luons in such a way t h a t c o n s t r a i n e d

1449

71'

Page 29: P arallel Session 34

imp l i ed by t h e Q C D e v o l u t i o n e q u a t i o n s

a r e s a t i s f i e d . Main f e a t u r e is t h a t t h e

gluon spin is s i gn i f i can t p a r t i c u l a r l y when

p r o b e d by l a r g e Q 2 p r o b e , h o w e v e r bulk of t h e

spin r e s ides a t sma l l x (B jo rken va r i ab l e )

r e g i o n :

We o b t a i n t h e p o l a r i s a t i o n d e p e n d e n t a s y ­

m m e t r y in t h e va r ious p r o c e s s e s as a f u n c t i o n

of p ^ and 6 for t h e p h o t o n , rea l or v i r t u a l .

RESUL J S

For t h e p r o c e s s p + p^ + Y^^ + X t h e

c o m p t o n p r o c e s s d o m i n a t e s a n d h e n c e

is useful a s a good p r o b e for t h e p r e s e n c e

of gluon spin . H o w e v e r w h e n t h e c o n t r i ­

bu t i ons f rom va r ious p a r t o n s a r e looked

a t m o r e c lose ly , we find t h a t fo r Q c m 9 0 ° ,

bulk of t h e a s y m m e t r y c o m e s f rom t h e

v a l e n c e u - q u a r k spin in t h e p r o t o n .

For t h e p r o c e s s p^ + p ^ y + X, t h e a s y ­

m m e t r i e s a r e s m a l l e r , b u t is aga in d o m i n a t e d

by t h e ' c o m p t o n ' p r o c e s s and o n c e aga in

w e h a v e a c l e a n p robe for gluon spin .

In t h e l a r g e pj, D r e l l - Y a n p r o c e s s

+ + X, a n n i h i l a t i o n ' d i a g r a m

c o n t r i b u t e s m o r e t h a n t h e ' c o m p t o n ' p r o c e s s .

H o w e v e r t h e a s y m m e t r i e s a r e sma l l and

i t is not e a sy t o s e p e r a t e gluon spin and

s e a quark sp in .

t w o LOO? CORRECTION

I t is i n s t r u c t i v e t o see if t h e o r d e r

( a 2 ) c o r r e c t i o n s t o t h e e v o l u t i o n e q u a t i o n [^]

a f f e c t t h e conc lus ion d r a w n on t h e bas is

of o r d e r ( a 2 ) t e r m s . In p a r t i c u l a r d o e s s r

t h e p r o n o u n c e d gluon spin e v o l u t i o n g e t

a l t e r e d w h e n o r d e r ( a 2 ) t e r m a r e a d d e d ? I t s

is found t h a t

( AZ - f ^ s AG ) * D e x p [-2f / ( ^ s ) d t ]

2ïï 2ÏÏ

s u g g e s t i n g t h a t t h e c o r r e c t i o n s r e m a i n

c o n t r o l l e d and t h e AG r e c e i v e s only non -

l ead ing c o r r e c t i o n s f rom h igher loops .

T h e r e a d e r m a y consu l t t h e pub l i shed

r e f e r e n c e [5] for d e t a i l s .

REFERENCES

1. J . A s h m a n e t a l . , Phy6 L e t t . B 2 0 6 ( 1988)

364 , C E R N - E P / 8 9 - 7 3 ( 1989)

2 . A . V . E f r e m o v and O . V . T e r y a e v Vubna

Ptepûnt E 2 - 8 8 - 2 8 ? (1988)

3 . G . A l t a r e l i i and G . G . R o s s , Phyb L e t t B212

(1988) 391

fc. G . A l t a r e l i i and B . L a m p e C E R N - T H - 5 6 ^ 3 / 9 0

( 1990)

5 . P r a k a s h M a t h e w s and R . R a m a c h a n d r a n

s u b m i t t e d t o INMP ( 1 9 9 0 ) .

1450

Page 30: P arallel Session 34

QCD Corrections to Weak Boson Decay Rates

J . H . K Û H N

Institut fur Theoretische Kernphysik

Universitdt Karlsruhe

Postfach 6980

D-7500 Karlsruhe 1, F R O

A B S T R A C T

Corrections to the Z decay rate are calculated in perturbative Q C D with emphasis on those terms which are absent in the case of a virtual photon . Results for massless quarks are presented and corrections of order m\lM\ are derived. T h e interplay between Q C D corrections and the non-vanishing mass of the b quark has an important effect on the decay rate of the Z boson. Large logarithms of M | / m £ are absorbed through the use of the running 6-quark mass . T h e next to leading corrections are evaluated in first order for the axial part of the Z decay rate, the next to leading corrections for the vector part are calculated up to and including the third order in a t . Simple prescriptions applicable in particular at the Z peak are presented.

1. Introduction

B a s i c p r o p e r t i e s of t h e Z t h a t c a n b e d e t e r m i n e d

w i t h h i g h p rec i s ion i n e^e~ e x p e r i m e n t s a r e t h e t o t a l

d e c a y r a t e of t h e Z a n d t h e b r a n c h i n g r a t i o s i n t o

l e p t o n i c a n d h a d r o n i c final s t a t e s . T h e s e m a y se rve

as t e s t i n g g r o u n d for t h e va l i d i t y of t h e S t a n d a r d

M o d e l a n d m a y a l low t o p i n d o w n p a r a m e t e r s l ike

t h e m a s s e s of t h e t o p q u a r k a n d of t h e Higgs b o s o n .

I n fac t , t h e r e c e n t r o u n d of L E P e x p e r i m e n t s h a s

a l r e a d y led t o a p r ec i s e d e t e r m i n a t i o n of t h e p a r t i a l

d e c a y r a t e of t h e Z b o s o n i n t o h a d r o n s [1] of 1764 ±

16 M e V . C o m b i n e d w i t h t h e p r e s e n t k n o w l e d g e of

GF , MZ a n d a t h i s r e su l t favours a r e l a t i ve ly l a r g e

t o p q u a r k m a s s , a l be i t w i t h s t i l l l a r g e u n c e r t a i n t i e s .

F u t u r e m e a s u r e m e n t s b a s e d o n h i g h s t a t i s t i c s m a y

well l e a d t o a n e r r o r of a few p e r m i l l . T h e e x t r a c t i o n

of e l ec t roweak p a r a m e t e r s a t t h i s level of p rec i s ion

is u n a v o i d a b l y affected b y Q C D c o r r e c t i o n s — a n d

in fac t t h e m a i n l i m i t a t i o n m a y well a r i se f r o m t h e

u n c e r t a i n t y i n t h e s t r o n g c o u p l i n g c o n s t a n t a s . T h e

p r o c e d u r e l eas t s ens i t i ve t o ye t u n c a l c u l a t e d h i g h e r

o r d e r c o r r e c t i o n s uses t h e p r e s e n t k n o w l e d g e [2] o n

m o d u l o m a s s c o r r e c t i o n s

f rom lower e n e r g y e^e~ e x p e r i m e n t s a n d evolves t h e

Q C D c o r r e c t i o n f ac to r t o s = M ^ . H o w e v e r , var i ­

ous c o m p l i c a t i o n s a r i se a t t h e a f o r e m e n t i o n e d level

of p r ec i s ion w h i c h h a v e t o b e t a k e n i n t o cons ide r a ­

t i o n be fo re t h i s s i m p l e r e c i p e c a n b e a p p l i e d . T h e y

o r i g i n a t e f r o m t w o different sou rce s .

i) Q C D c o r r e c t i o n s t o t h e Z d e c a y r a t e differ f rom

t h o s e t o RQED e v e n f ° r mas s l e s s q u a r k s i n t h e

f inal s t a t e as a c o n s e q u e n c e of t h e different

c h a r g e a n d ch i ra l s t r u c t u r e of t h e r e s p e c t i v e

c u r r e n t s .

i i) M a s s t e r m s , i n p a r t i c u l a r f r o m b-quarks, in­

t r o d u c e a d d i t i o n a l n o n - t r i v i a l Q C D c o r r e c t i o n s

w h i c h a r e different for TV a n d TA.

2. Non-universal QCD corrections for

massless final states

Q C D c o r r e c t i o n s a r e different for v a r i o u s c u r r e n t

i n d u c e d r a t e s even in t h e l im i t of m a s s l e s s q u a r k s .

T h i s follows f rom t h e a p p e a r a n c e of f lavour s ingle t

a n d non - s ing l e t c o n t r i b u t i o n s . T h e y o r i g i n a t e f rom

a m p l i t u d e s w i t h a n d w i t h o u t p u r e l y g l u o n i c i n t e r ­

m e d i a t e s t a t e s a n d c o n t r i b u t e w i t h different r e l a t i ve

we igh t .

a ) Vector currents

For t h e v e c t o r c u r r e n t t h i s difference s t a r t s i n

o r d e r a% a n d o r i g i n a t e s f rom i n t e r m e d i a t e s t a t e s w i t h

t h r e e ( r ea l o r v i r t u a l ) g l u o n s . T h e coefficients of t h e

1451

Page 31: P arallel Session 34

(as/ir)3 t e r m s f rom t h e s e d i a g r a m s a r e of o r d e r o n e

[3,4] for t h e e l e c t r o m a g n e t i c a n d t h e n e u t r a l cur­

r e n t r e spec t ive ly such t h a t t h i s t e r m c a n safely b e

i g n o r e d .

b ) Axial currents

F l a v o u r non- s ing le t co r r ec t ions t o t h e ax ia l cur ­

r e n t i n d u c e d r a t e in t h e mass l e s s l imi t a r e i d e n t i c a l

t o t h o s e for t h e v e c t o r c u r r e n t . W h e r e a s i n d u c e d

flavour s ingle t c o n t r i b u t i o n s a r i se for v e c t o r c u r r e n t s

on ly in 0(a\), t h e y a r e p r e s e n t for t h e ax ia l c u r r e n t

a l r e a d y in s econd o r d e r , as is ev iden t f rom F i g . 1.

Fig. 1: Feynman diagrams pertinent to the 0(OL\) correc­tions given in eq. (2). Permutations are omitted.

T h e t r i a n g l e a n o m a l y o r i g i n a t i n g f rom t h e t a n d

b q u a r k l oops i n d i v i d u a l l y is c o m p e n s a t e d in t h e s u m

(at = — a&!). M a s s d e p e n d e n t t e r m s , however , su r ­

vive th i s cance l l a t i on . I n t h e l imi t of m^/s —» oo

t h e resu l t inc reases l o g a r i t h m i c a l l y — a s igna l of t h e

b r e a k d o w n of a n o m a l y cance l l a t i on if t o p is r e m o v e d

f rom t h e theo ry .

T h e re levan t c o n t r i b u t i o n s o r i g i n a t e f rom two- ,

t h r e e - a n d fou r -pa r t i c l e i n t e r m e d i a t e s t a t e s as s h o w n

in F ig . 1. I n Refs . 4 , 5 t h e following a d d i t i o n a l cor­

r ec t i on for t h e ax ia l p a r t of t h e decay r a t e i n t o bb

h a s b e e n der ived :

T h e func t ion / inc reases l o g a r i t h m i c a l l y for l a r g e mt.

T h e m a g n i t u d e of t h e a d d i t i o n a l t e r m s is well c o m p a ­

r a b l e t o t h e 0(a%) p a r t of t h e n o n s i n g l e t co r r ec t i ons

a n d var ies b e t w e e n -0.18 a n d - 0 . 8 1 % for mt b e t w e e n

Mz/2 a n d 250 G e V a n d asj^ = 0.04.

I t s h o u l d b e m e n t i o n e d t h a t a lso final s t a t e s w i t h

l ight q u a r k s (u , d, c, s) a r e i n d i v i d u a l l y affected b y

t h e s e c o n s i d e r a t i o n s — however , t h e i n d i v i d u a l chan­

ges c o m p e n s a t e in t h e t o t a l r a t e .

3. Mass terms and QCD correction

T h e l ead ing m a s s a n d Q C D co r r ec t i ons h a v e b e e n

d i scussed f r equen t ly in t h e l i t e r a t u r e [6]. T h e i m p a c t

of h ighe r o r d e r co r rec t ions w h i c h a r e p a r t l y e n h a n c e d

b y l a r g e l o g a r i t h m s h a s b e e n s t u d i e d i n [7] a n d will

b e t h e s u b j e c t of t h e s u b s e q u e n t d i scuss ion . S ince b-

q u a r k m a s s t e r m s l ead t o sma l l co r r ec t i ons of o r d e r

(2mj>/Mz)2 « 1 0 ~ 2 for t h e Z d e c a y r a t e , it is le­

g i t i m a t e t o cons ide r q u a d r a t i c m a s s t e r m s o n l y a n d

t o i g n o r e t h e m a s s e s of u,d,s a n d c q u a r k s . T h e

B o r n t e r m s for t h e p a r t i a l r a t e i n t o 6-quarks r e a d

T h e m a s s m i n t h i s f o r m u l a is u n d e r s t o o d as "on-

shell m a s s " , d e n n e d t h r o u g h t h e l o c a t i o n of t h e po le

of t h e q u a r k p r o p a g a t o r i n c o m p l e t e a n a l o g y w i t h t h e

t r e a t m e n t of t h e e l ec t ron m a s s i n Q E D . However , if

one t r i e s t o con t ro l fully ra2/s-terms o n e m i g h t w o r r y

a b o u t t h e l o g a r i t h m i c a l l y e n h a n c e d coefficient i n Cf

which r e d u c e s t h e m?/s p a r t of t h e B o r n t e r m b y t h e

fac to r 1 — 2 ( a 5 / ? r ) l o g $ / r a 2 « 0 .5 . H ighe r o r d e r cor­

r ec t ions will l e a d t o a d d i t i o n a l t e r m s p r o p o r t i o n a l

(as/7rlns/m?)n wh ich m i g h t d r a s t i ca l l y c h a n g e t h e

r e su l t . T h e s e l e ad ing l o g a r i t h m i c t e r m s , a n d s o m e of

t h e s u b l e a d i n g ones , a r e s u m m e d t h r o u g h r e n o r m a l ­

i z a t i o n g r o u p t e c h n i q u e s .

1452

Page 32: P arallel Session 34

T h i s a i m is ach ieved m o s t conven ien t ly i n t h e

MS s c h e m e . So r t i ng t h e co r rec t ions a c c o r d i n g t o

t he i r o rde r s in m 2 / s a n d as/7r o n e wr i t e s (s = M%)

a n d s imi la r ly for TA. m(s) a n d as(s) d e n o t e m a s s

a n d coup l ing c o n s t a n t in t h e MS s c h e m e a t t h e nor ­

m a l i z a t i o n p o i n t s. N o l a rge l o g a r i t h m of s/m? a p ­

p e a r s in th i s f o r m u l a t i o n [8]. T h e r u n n i n g coup l ing

c o n s t a n t a n d t h e r u n n i n g m a s s 771(3) c a n b e cal­

c u l a t e d in t e r m s of t h e a n o m a l o u s m a s s d i m e n s i o n

a n d of t h e /3-function in t h e u s u a l w a y [7].

T h e coefficients A q ^ a n d Aj-^j c a n b e r e a d off di­

rec t ly f rom eqs . ( 4 , 6 ) , conve r t i ng f rom t h e on-shel l

t o t h e MS r e n o r m a l i s a t i o n ( in o r d e r as/7c) t h r o u g h

t h e s u b s t i t u t i o n

T h e ra2 js t e r m van i shes for t h e v e c t o r p a r t in B o r n

a p p r o x i m a t i o n a n d t h e l ead ing coefficients r e m a i n

the re fore u n c h a n g e d :

T h e 0(a3) coefficient for t h e ax ia l p a r t i s , however ,

modif ied

T h e following e x a m p l e m a y serve t o i l l u s t r a t e t h e nu­

mer i ca l inf luence of t h e m a s s co r r ec t ions t o t h e ax ia l

p a r t of t h e Z r a t e .

500 M e V , c o r r e s p o n d i n g t o as(M.\) = 0.134 a n d

as(m2) = 0 .30) . O n l y n e x t t o l e a d i n g t e r m s a r e

t a k e n i n t o a c c o u n t .

B o r n a p p r o x i m a t i o n , on-shel l m a s s m — 4.79 G e V :

0(as) co r rec t ion , on-she l l n o r m a l i z a t i o n

0(as) co r rec t ion acco rd ing t o eq. (7) w i t h m(s) =

2.63 G e V

T h e difference b e t w e e n t h e B o r n resu l t a n d t h e

r e n o r m a l i z a t i o n g r o u p i m p r o v e d resu l t a m o u n t s t o

a b o u t 1 0 ~ 2 of T A , i .e. a b o u t 2.5 M e V . T h i s is n o t

en t i re ly negl igible c o m p a r e d t o t h e p l a n n e d expe r i ­

m e n t a l prec is ion . T h e difference b e t w e e n t h e on-shel l

a n d r e n o r m a l i z a t i o n g r o u p i m p r o v e d r e su l t s r e m a i n s

lucki ly smal l .

For t h e vec to r p a r t t h e TO2 d e p e n d e n t t e r m s

s t a r t in o r d e r a* a n d t h e c o r r e s p o n d i n g coefficient

is t he re fo re no t e n h a n c e d b y a l a r g e l o g a r i t h m . T h e

cor rec t ion is of r e l a t i ve m a g n i t u d e + 1 2 a 5 / i m 2 / s =

1.4 X 10~"3 i n t h e on-shel l s c h e m e a n d c a n the re fo re

safely b e ignored . T h e i m p a c t of h ighe r o r d e r s h a s

neve r the le s s b e e n s t u d i e d i n Ref. 9 w i t h t h e follow­

ing twofold m o t i v a t i o n : F i r s t , t h e s e m a s s co r rec t ions

a m o u n t t o a b o u t 2% for a(e^~e~ —• bb) a t lower ener­

gies of a b o u t 30 G e V a n d a r e t h u s of p o t e n t i a l prac­

tical r e l evance for prec is ion s t ud i e s a t P E P or P E -

T R A (or , as far as c h a r m is c o n c e r n e d , a t D O R I S

or C E S R ) . Second, i t h a s b e e n d e m o n s t r a t e d t h a t

t h e t h r e e loop ca lcu la t ion of Refs . 1 0 , 1 1 for t h e t w o

p o i n t func t ion (Tj^x^^O)) of t h e e l e c t r o m a g n e t i c

c u r r e n t carr ies e n o u g h i n f o r m a t i o n t o e v a l u a t e m a s s

cor rec t ions u p t o a n d i nc lud ing t h e third order i n aSl

employ ing r e n o r m a l i z a t i o n g r o u p a r g u m e n t s . Th i s

p rov ides o n e of t h e r a r e e x a m p l e s w h e r e t h e resu l t

d e p e n d s o n /?2, t h e t h i r d coefficient of t h e b e t a func­

t i on a n d wh ich al lows t o s t u d y t h e m a g n i t u d e of t h e

t h i r d o r d e r co r rec t ion .

O n e o b t a i n s t h e following co r r ec t ion f ac to r

which h a s t o b e app l i ed t o t h e mass less p a r t o n r e su l t

T h e n u m e r i c a l r e su l t s for t h e m a s s co r r ec t i on t e r m s

in R v a r e l i s ted in t h e T a b l e for y/s = mz wh ich

is r e levan t for t h e Z decay r a t e a n d for y/s — 30

1453

Page 33: P arallel Session 34

Tab. 1: Relative magnitude of mass corrections as calculated in first and third order of Q C D

a n d 20 G e V wh ich is r e levan t for e + e - a n n i h i l a t i o n

a t lower energ ies . T h e lowest o r d e r p r e d i c t i o n s w i t h

m = on-she l l m a s s = 4.8 G e V a n d w i t h m = m(s)

a r e c o m p a r e d w i t h t h e full a n s w e r u p t o t h i r d o r d e r .

T h e b u l k of co r rec t ions is a b s o r b e d b y choos ing m ( s ) ,

t h e s u b l e a d i n g t e r m s , however , c a n n o t b e neg l ec t ed .

T h e Z d e c a y r a t e i n t o bb i n c l u d i n g Q C D cor rec ­

t i o n s u p t o t h e o rde r s p r e s e n t l y ava i lab le t h u s r e a d s

T h e func t ions I a n d RV a r e g iven in eqs . ( 3 , 1 4 ) .

T h e s t r o n g coup l ing c o n s t a n t h a s t o b e e v a l u a t e d

in t h i r d o r d e r if o n e w a n t s t o r e l a t e t h e r e su l t t o

^MS' ^ n e r u n n m g m a s s m(s) = 2.61 G e V is o b ­

t a i n e d f rom m ( m ) = 4 .25 G e V t h r o u g h t h e r eno r -

m a l i z a t i o n g r o u p e q u a t i o n s e m p l o y i n g t h e a n o m a l o u s

m a s s d i m e n s i o n u p t o second o r d e r . I n p r a c t i c e t h e

m a s s co r rec t ions t o t h e v e c t o r i n d u c e d r a t e c a n safely

b e n e g l e c t e d even for b o t t o m q u a r k s , i n c o n t r a s t t o

t h o s e for t h e ax ia l r a t e . T h e t e r m o r i g i n a t i n g f rom

t h e func t ion I is i m p o r t a n t a n d in p r inc ip l e p r e s e n t

a lso for final s t a t e s w i t h l ight q u a r k s . However , con­

t r i b u t i o n s f rom q u a r k s w i t h i n o n e w e a k i sosp in d o u ­

b le t cance l .

Acknowledgement: I wou ld l ike t o t h a n k K. C h e t y r k i n

a n d B . K n i e h l for c o l l a b o r a t i o n o n t h e top ics dis­

cussed in t h i s p a p e r .

R E F E R E N C E S

[1] F . D y d a k , C o m p i l a t i o n p r e s e n t e d a t t h e 2 5 t h In­

t e r n a t i o n a l Confe rence o n High E n e r g y P h y s i c s ,

S i n g a p o r e , 2 - 8 A u g u s t 1990.

[2] K . G . C h e t y r k i n , A .L . K a t a e v a n d F . V . T k a c h o v ,

Phys. Lett. 85 B (1979) 277;

M . D i n e a n d J . S a p i r s t e i n , Phys. Rev. Lett. 43

(1979) 668;

W . C e l m a s t e r a n d R . J . G o n s a l v e s , Phys. Rev.

Lett 44 (1980) 560.

[3] S.G. Gor i shny , A .L . K a t a e v a n d S.A. L a v i n , Phys.

Lett 212 B (1988) 2 3 8 .

[4] B . A . K n i e h l a n d J . H . K û h n , JVucl Phys. B 329

(1990) 547 .

[5] B . A . K n i e h l a n d J . H . K u h n , Phys. Lett. 224B B (1989) 229.

[6] See e.g. Ref. 4 a n d A. D j o u a d i , J . H . K û h n a n d

P . M . Z e r w a s , Z. Phys. C 46 (1990) 412 .

[7] K . G . C h e t y r k i n a n d J . H . K û h n , M P I - P A E / P T h

2 1 / 9 0 .

[8] V . P . Sp i r i donov a n d K . G . C h e t y r k i n , Sov. J .

JVuci. Phys. 47 (1988) 522 .

[9] K . G . C h e t y r k i n , in P r o c e e d i n g s of t h e I n t . Conf.

" R e n o r m a l i z a t i o n G r o u p 8 6 " , D u b n a 1986.

[10] S.G. Gor i shny , A .L . K a t a e v a n d S.A. L a r i n , Nuovo

Cim. 92 (1986) 117.

[11] L .R . S u r g u l a d z e , P r e p r i n t I N R T T - 0 6 4 4 (1989)

1454

Page 34: P arallel Session 34

QCD Formulation of Charm Production in Deep Inelastic Scattering *t

M . A . G . A i v a z i s a , F r e d r i c k I . O i n e s s b a n d W u - K i T u n g a ' c

°Department of Physics, Illinois Institute of Technology * Chicago, Illinois 60616, U.S.A. bInstitute of Theoretical Science, University of Oregon, Eugene, Oregon 97403

cFermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510

A B S T R A C T

Gluon in i t ia ted con t r ibu t ions t o DIS processes, such as c h a r m p roduc t ion , can be comparable in m a g n i t u d e to the " leading-order" sea-quark processes . A p rope r next- to- leading order calculat ion in Q C D confirms this a n d yields distinct dependencies of these two cont r ibu t ions on the k inemat ic variables a n d on the cha rm quark m a s s . These results imply t h a t previous analyses of c h a r m p roduc t ion d a t a to ex t rac t the s t range a n d c h a r m content of t h e nucléon, as well as t he precise d e t e r m i n a t i o n of S t a n d a r d Model pa rame te r s based on these analyses , need to be reassessed.

1. I n t r o d u c t i o n

I n t h e f r a m e w o r k of t h e s i m p l e p a r t o n m o d e l , a d i rec t d e t e r m i n a t i o n of t h e s t r a n g e q u a r k d i s t r i b u t i o n of t h e nuc l éon c a n b e p r o v i d e d b y t h e semi - inc lus ive process of c h a r m p r o d u c t i o n i n c h a r g e d - c u r r e n t d e e p ine las t i c n e u t r i n o s c a t t e r i n g ; a n d of t h e c h a r m q u a r k d i s t r i b u t i o n b y t h e s e m i - i n c l u s i v e p r o c e s s of c h a r m p r o d u c t i o n i n n e u t r a l c u r r e n t m u o n a n d n e u t r i n o sca t ­t e r i n g , cf. F i g . l a . T h e s e p r o c e s s e s n i ce ly c o m p l e ­m e n t g loba l a n a l y s e s of t o t a l i n c l u s i v e d e e p i n e l a s t i c s c a t t e r i n g w h i c h h a v e b e e n t h e m a i n s o u r c e of infor­m a t i o n o n p a r t o n d i s t r i b u t i o n s i n g e n e r a l , b u t w h i c h a re insens i t ive t o t h e s ea q u a r k d i s t r i b u t i o n s s ince t h e y only m a k e a s m a l l c o n t r i b u t i o n t o t h e t o t a l s t r u c t u r e func t ions .

M o s t w o r k o n t h e s t r a n g e q u a r k d i s t r i b u t i o n is b a s e d on t h i s s i m p l e i d e a . ^1 R e s u l t s o b t a i n e d i n t h i s way p l a y a n i m p o r t a n t ro le i n a w i d e r a n g e of p h e ­nomeno log ica l a n a l y s e s , i n c l u d i n g t h e p r e c i s e d e t e r m i ­n a t i o n of t h e W e i n b e r g a n g l e a n d t h e t o p q u a r k m a s s u m i t ^ . I t h a s b e e n e m p h a s i z e d t h a t t h e u n c e r t a i n t y of t h e s t r a n g e q u a r k d i s t r i b u t i o n c u r r e n t l y r e p r e s e n t s t h e l a rges t s o u r c e of e r r o r i n t h i s i m p o r t a n t a r e a of bas ic S t a n d a r d M o d e l p h e n o m e n o l o g y ^ . H o w e v e r , a rea l i s t ic a s s e s s m e n t of t h e r e l i ab i l i t y of t h e e x i s t i n g s t r a n g e q u a r k a n a l y s e s d o e s n o t , so far , e x i s t .

E x i s t i n g d a t a o n c h a r m p r o d u c t i o n i n n e u t r a l cur -

* P r e s e n t e d b y W u - K i T u n g ' S u p p o r t e d i n p a r t b y N S F G r a n t N o . P H Y 8 9 - 0 5 1 6 1 * P e r m a n e n t a d d r e s s

F i g u r e 1: M e c h a n i s m s for c h a r m p r o d u c t i o n in D I S :

( a ) L O q u a r k - v e c t o r - b o s o n s c a t t e r i n g , a n d ( b ) N L O

g l u o n - v e c t o r - b o s o n s c a t t e r i n g .

r e n t ( m u o n ) s c a t t e r i n g ^ ' , w a s o r ig ina l ly i n t e r p r e t e d i n t h e s i m p l e p a r t o n m o d e l as s c a t t e r i n g off c h a r m q u a r k s i n t h e t a r g e t , s imi l a r t o t h e c h a r g e d c u r r e n t case a b o v e . T h e y w e r e a l t e r n a t i v e l y r e i n t e r p r e t e d ^ as t h e r e s u l t of t h e " g l u o n fusion m e c h a n i s m " ® — cf. F i g . l b . S t u d i e s of c h a r m a n d b o t t o m p r o d u c ­t i o n i n H E R A a lso u s e d t h e l a t e r m e c h a n i s m M . T h i s a p p r o a c h does n o t c o u n t t h e " h e a v y q u a r k " as an ac­t i v e p a r t o n i n s i d e t h e n u c l é o n ; i t c l ea r ly c a n n o t be t h e c o r r e c t m e c h a n i s m a t h i g h ene rg ie s - w h e n t h e c-a n d b - q u a r k m a s s e s a r e n e g l e c t e d , t h e l e a d i n g o rde r m e c h a n i s m m u s t d o m i n a t e .

I n t h e Q C D f r a m e w o r k , t h e t w o i n t e r a c t i o n mech­a n i s m s d i s cus sed a b o v e , F i g . l a a n d F i g . l b , a r e not d i s t i n c t a n d exc lus ive . R a t h e r , t h e y c o r r e s p o n d to t h e first t w o t e r m s i n t h e p e r t u r b a t i v e ser ies for c h a r m p r o d u c t i o n in d e e p i n e l a s t i c s c a t t e r i n g . A q u a n t i t a t i v e

1455

Page 35: P arallel Session 34

t r e a t m e n t of t h e s e processes m u s t i n c o r p o r a t e b o t h in

a consis tent w a y ® . I t is easy t o see t h a t , a l t h o u g h

correct ions d u e t o t h e gluon-fusion d i a g r a m ( F i g . l b )

is nomina l ly of "h igher o r d e r " t h a n t h e s imple q u a r k

sca t te r ing m e c h a n i s m (F ig . l a ) t h e s e t w o c o n t r i b u ­

t ions can , in fac t , b e of t h e s a m e o rde r of m a g n i t u d e !

T h e one e x t r a power of a8 in t h e h a r d cross-sec t ion for

t he gluon-fusion c o n t r i b u t i o n is eas i ly c o m p e n s a t e d b y

t h e gluon d i s t r i bu t i on wh ich is o n e o rde r of m a g n i t u d e

larger t h a n t h e s ea -qua rk d i s t r i b u t i o n .

Th i s is i n fact a gene ra l p h e n o m e n o n a s soc i a t ed

wi th all processes conven t iona l ly t h o u g h t t o b e sea-

qua rk - in i t i a t ed , as t h e a b o v e a r g u m e n t is n o t specific

to any process . W e c a n verify t h i s q u a n t i t a t i v e l y b y

examin ing t h e zero q u a r k m a s s case for w h i c h t h e lead­

ing order ( L O ) resu l t s a r e fami l ia r a n d t h e n e x t - t o -

leading o rde r ( N L O ) fo rmu la s a r e r ead i ly ava i lab le i n

t h e l i t e r a t u r e . For t h i s p u r p o s e , we c o m p u t e d t h e

c h a r m p r o d u c t i o n ( ze ro -mass ) F2 s t r u c t u r e func t ion

due t o t h e s t r a n g e q u a r k p a r t o n i n L O a n d N L O a n d

the gluon p a r t o n in N L O , us ing k n o w n h a r d s c a t t e r i n g

formulas ® a n d severa l se t s of r e p r e s e n t a t i v e p a r t o n

d i s t r ibu t ions . I n F i g . 2 we show t h e m a g n i t u d e s of

these t h r ee c o n t r i b u t i o n s a t Q2 = 10 GEV over t h e

range 0.05 < x < 0.5 o b t a i n e d w i t h t h e E H L Q p a r -

ton d i s t r i bu t ions . W e see t h a t n u m e r i c a l l y t h e g luon

con t r ibu t ion is i n d e e d s u b s t a n t i a l as c o m p a r e d t o t h e

L O qua rk t e r m ; w h e r e a s t h e N L O q u a r k c o n t r i b u t i o n

r emains sma l l (of o r d e r CTT or less) as c o m p a r e d t o

b o t h . T h e prec i se r a t i o s a r e sens i t ive t o t h e choice of

d i s t r ibu t ion func t ions .

I t is obvious t h e n t h a t a p r o p e r ana lys i s of c h a r m

p roduc t ion i n d e e p ine l a s t i c s c a t t e r i n g m u s t b e ca r r i ed

out t o N L O in Q C D w h i c h i n c l u d e s both m e c h a n i s m s

depic ted in F i g . 1. I t is t h e p u r p o s e of t h i s r e p o r t

to present r e su l t s of such a n ana ly s i s , i n c l u d i n g t h e

effects of t h e c h a r m q u a r k m a s s .

2. T h e Q C D F o r m a l i s m

T h e bas ic Q C D ( fac to r i za t ion ) fo rmula for t h e in ­

clusive v e c t o r - b o s o n — h a d r o n s c a t t e r i n g t enso r s t r u c ­

t u r e func t ion is :

w t ( « . p) = E fsi(, / » ) ® « r ( « . * . m) (21) a

where H is t h e t a r g e t h a d r o n l abe l ; A is t h e p a r t o n la­

bel; (ç , p , K) a r e t h e m o m e n t a of t h e e lec t roweak v e c t o r

boson, t h e h a d r o n , a n d t h e p a r t o n re spec t ive ly ; fi is

t he r eno rma l i za t i on scale; a n d £ = is t h e frac­

t ional fight-cone p lus " + " c o m p o n e n t ca r r ied b y t h e

pa r ton w i t h r e spec t t o t h a t of t h e h a d r o n . T h e s y m -

F i g u r e 2: L O s-quark (solid) a n d N L O s-quark

( d a s h e d ) a n d g luon (do t -dashed ) c o n t r i b u t i o n s to

c h a r m p r o d u c t i o n s t r u c t u r e funct ion xF^ a t Q2 =

lOGeV2 us ing E H L Q - 1 d i s t r ibu t ions

bo l ® d e n o t e s a convo lu t ion of t h e p a r t o n d i s t r ibu t ion

func t ion / § • a n d t h e h a r d vec tor -boson- p a r t o n scat­

t e r ing t e n s o r ^ over t h e var iab le £. For zero mass

q u a r k s a n d t o l ead ing o rde r , t h e convolu t ion var iab le

£ r educes t o t h e B jo rken x.

Since t h e c h a r m q u a r k mass is n o t negl igible in

t h e reg ion of p h a s e space where m o s t cu r r en t d a t a

o n c h a r m p r o d u c t i o n in deep ine las t i c s ca t t e r i ng is

t o b e i n t e r p r e t e d , t h e famil iar ze ro-mass Q C D par-

t o n m o d e l fo rmal i sm m u s t b e p rope r ly e x t e n d e d . T h e

well- k n o w n "s low-resca l ing" p resc r ip t ion ^ ^ of re­

p lac ing t h e B jo rken x w i t h £ emerges n a t u r a l l y in

t h e a b o v e fac to r iza t ion fo rmula . Of e q u a l i m p o r t a n c e ,

b u t m o s t l y over looked in t h e exis t ing l i t e r a t u r e , is t h e

modi f ica t ion of t h e h a r d sca t t e r ing t e n s o r ^^{q,k,u)

d u e t o t h e c h a r m q u a r k m a s s which changes t h e he-

l ic i ty d e p e n d e n c e of t h e s t r u c t u r e func t ions for t he

overal l p rocess , even in L O . (For i n s t a n c e , t h e Cal lan-

Gross r e l a t i on n o longer holds . ) T h i s needs t o be

t r e a t e d correct ly .

T h e L O q u a r k s ca t t e r i ng c o n t r i b u t i o n t o t h e par-

ton i c s t r u c t u r e funct ions w due t o F i g . l a is s t ra igh t ­

fo rward t o c o m p u t e . B y us ing t h e QCD-evo lved

q u a r k d i s t r i b u t i o n s , th i s t e r m a l r eady inco rpora t e s

t h a t p a r t of F ig . l b w i t h t h e internal , q u a r k fine in

t h e col l inear on-shel l configurat ion. T h u s , t h e calcu­

l a t i on of t h e p r o p e r N L O gluon c o n t r i b u t i o n , F ig . l b ,

r equ i res a su i t ab l e s u b t r a c t i o n of t h i s ( long-dis tance)

p iece , wh ich is cha rac t e r i zed by an a s soc ia t ed mass-

s ingu la r i ty w h e n t h e q u a r k - p a r t o n m a s s approaches

1456

Page 36: P arallel Session 34

zero. We choose to perform the calculation using a non-zero quark-parton mass and identify the subtrac­tion term as the singular piece (see next paragraph) in the zero-mass limit ^ The calculation, con­sisting of squaring two diagrams of the type shown in Fig. lb, with general vector-boson coupling and both quark masses non-zero, is quite involved. Several inde­pendent methods were used to cross-check the results.

In our subtraction procedure, the analytic expres­sion for the subtraction term is:

where we have suppressed all inessential indices and variables. Here u;* is the LO quark partonic he-licity structure function, and / f l

9 denotes the per-turbative quark-distribution inside the gluon (calcu­lated in the MS scheme) which is given simply by the well-known gluon splitting function multiplied by a,log(/z/ra) where fi is the subtraction scale and m is the quark-parton mass. The origin of the subtrac­tion term discussed above suggests that the subtrac­tion scale fi has a natural physical interpretation as the scale marking the boundary of the collinear and non-collinear regions in the PT integration over the fi­nal states. We choose this scale to be a fixed fraction c of the maximum PT for given kinematic variables (x,<2)^l. The same scale appears in the parton dis­tribution function of the LO term. When the factor c is varied, the variation of the subtraction term and the LO term compensate each other; the difference is of one order higher in at. Hence the sum is relatively insensitive to the choice of this parameter.

3. Results In general, the complete calculation fully confirms

the qualitative estimate that the (usually ignored) gluon contribution to charm production is of the same order of magnitude as the conventional quark contri­bution in deep inelastic scattering. To be specific, we shall focus on the charged-current interactions process v + N —> fi + X. The most important quark-parton in this case is the strange quark. (The d-quark also con­tributes in principle. However, since its contribution to the total cross-section is not significant, it can be left out for our current purposes). In order to quantify the gluon contribution and to delineate the distinctive features of the quark and gluon terms, we need to use some input parton distributions. The detailed re­sults clearly depend on the particular input. We will present some typical results.

Figure 3: da/dy for charm production in neutrino scattering. Dashed line corresponds to the LO (s-quark) contribution; Solid line to combined LO and NLO (gluon) terms. The neutrino energy is E = 80 GeV. The cross-section is in pb.

We find the NLO correction to the dominant ("correct") helicity structure function for charm pro­duction (i.e. the left-handed one in neutrino scatter­ing, and right- handed one in anti-neutrino scattering) to be negative—the same as for the zero quark mass case—and to be of the same order of magnitude as the LO term. In contrast, the corrections to the "wrong" helicity and the longitudinal structure functions are positive and, as one would expect, considerably larger than the corresponding LO terms (which vanish in the limit of zero charm quark mass).

In Fig. 3 we show the cross-section da/dy for in­coming neutrino energy E = 80 GeV, using a recent parton disrtibution testa i . The NLO correction due to the gluon fusion diagram with subtraction is neg­ative, reflecting the behavior of the dominant helicity structure function, and is shown here in absolute mag­nitude. We see the importance of this correction— a 40% to 100% effect depending on the kinematical variables, especially y . The variation of the correction with y reflects the non-negligible contribution from the "wrong" helicity and longitudinal structure functions from the NLO term.

At very high energies, the sea quark distributions become more comparable to the other distributions, the LO and NLO terms are expected to resume their expected relative size—differing by a factor cts. This is verified by our calculation at the HERA energy.

It is well-known that the quark scattering con­tribution to the cross-section at current fixed-target

1457

Page 37: P arallel Session 34

e x p e r i m e n t a l r a n g e is sens i t ive t o t h e a s s u m e d m a s s of t h e c h a r m q u a r k . T h e s a m e is t r u e of t h e g luon con t r i bu t ion w h i c h w e j u s t s h o w e d t o b e i m p o r t a n t . T h e resul t s p r e s e n t e d a b o v e a r e o b t a i n e d w i t h mc = 1.5 G e V . T h e c h a r m m a s s d e p e n d e n c e of t h e N L O t e r m is r a t h e r different f rom t h e L O t e r m . T h i s will be reflected i n t h e c o m b i n e d c ross - sec t ion b e c a u s e t h e correc t ion t e r m is i m p o r t a n t . T h i s effect wil l b e in­ves t iga ted i n de t a i l .

4. Imp l i ca t i ons a n d Discuss ions T h i s s t u d y d e m o n s t r a t e s t h a t t h e t w o bas ic m e c h ­

an i sms for p r o d u c i n g c h a r m i n D I S — t h e s c a t t e r i n g of t h e vec to r b o s o n off t h e q u a r k a n d t h e g luon con­s t i t u e n t s of t h e n u c l é o n — a r e b o t h i m p o r t a n t i n t h e Q C D p a r t o n f r a m e w o r k . T h e s e t w o f u n d a m e n t a l p ro ­cesses also l e a d t o different he l i c i t y c o m p o s i t i o n s a n d k inema t i ca l d e p e n d e n c i e s of t h e s t r u c t u r e func t ions for t h e overal l p roce s s . O u r r e s u l t s a r e c lear ly i l lus­t r a t i v e only. T h e p r o p e r w a y t o m a k e u s e of t h e s e re ­sul ts is t o r e - ana lyze t h e r e l evan t e x p e r i m e n t a l r e s u l t s (d i -muon final s t a t e s i n D I S ) u s i n g t h e c o m p l e t e Q C D formal ism desc r ibed h e r e . S u c h a n ana lys i s m a y l ead t o different r e su l t s on t h e s t r a n g e a n d c h a r m q u a r k d i s t r ibu t ions of t h e p r o t o n a n d , p e r h a p s , t h e v a l u e of t h e c h a r m q u a r k m a s s , c o m p a r e d t o t h o s e o b t a i n e d previous ly w i t h t h e neg lec t of t h e N L O g l u o n con t r i ­b u t i o n . To t h e e x t e n t t h a t t h e p rec i se d e t e r m i n a t i o n of t h e W e i n b e r g ang le f rom D I S s c a t t e r i n g , t h e r e l a t e d e s t i m a t e of t o p - q u a r k m a s s , a n d m a n y o t h e r q u a n t i ­t a t i v e S t a n d a r d M o d e l s t u d i e s of W - a n d Z-phys ics a t t h e colliders al l d e p e n d o n t h e s e q u a n t i t i e s , t h i s r e -analysis shou ld h a v e s ignif icant c o n s e q u e n c e s in m a n y a reas .

Since t h e N L O g l u o n t e r m c a n b e n u m e r i c a l l y sig­nificant c o m p a r e d t o t h e L O s e a - q u a r k t e r m s , i t is nec ­essary t o define t h e sea- q u a r k d i s t r i b u t i o n s always t o nex t - to - l ead ing-o rde r i n Q C D . T h i s a lso r equ i r e s a t ­t en t i on t o t h e choice of r e n o r m a l i z a t i o n s c h e m e b o t h in t h e def ini t ion a n d i n t h e u s e of t h e s e d i s t r i b u ­t ions , so t h a t m e a n i n g f u l a n d c o n s i s t e n t r e su l t s c a n be o b t a i n e d . Al l t h e s e i ssues n e e d f u r t h e r q u a n t i t a ­t ive s tudy .

A u t h o r s of t h i s s t u d y t h a n k s R . B r o c k , J . Co l l ins , and D . Soper for useful d i scuss ions .

R E F E R E N C E S

1. U . A m a l d i , et al. Phys. Rev. D 3 6 , 1385 (1987) ; G.L. Fogli a n d D . H a i d t , Z. Phys. C 4 0 , 379 (1988); J . El l i s , a n d G .L . Fogl i , Phys. Lett B 2 3 2 ,

139 (1989) ; See also, J . Fe l tesse , Proceedings of the 1989 International Symposium on Lepton and Photon Interactions at High Energies, S tanford , A u g u s t 1989, E d . M . R i o r d a n , p . 13 , W o r l d Sci­entific (1990) .

2 . H . A b r a m o w i c z , et a/., Phys. Rev. Lett, 5 7 , 298 (1986) ; Z. Phys. C 2 8 , 51 (1985) ; K . L a n g , et al.,Z. Phys. C 3 3 , 483 (1987); S.R. M i s h r a , et a l . , p r e p r i n t N E V I S - R - 1 4 1 0 ( 1 4 t h R e n c o n t r e s de M o r i o n d ) M a r . 1989; D . B o g e r t , et al, Phys. Rev. Lett, 5 5 , 1969 (1985) ; J . V . Al laby , et ai, Z. Phys. C 3 6 , 611 (1987) .

3 . R . B r o c k , T a l k de l ivered a t t h e New Directions in Neutrino Physics at .Ferrai/a& w o r k s h o p , B a t a v i a , I l l inois , S e p t e m b e r 1988.

4 . J . J . A u b e r t , e * al, Nucl Phys. B 2 1 3 , 31 (1983)

5. M . A r n e o d o et al, Z. Phys. C, 3 5 , 1 (1987) .

6. J . Levei l le , T . Wei le r , Phys. Nucl Phys-h, B 1 4 7 , 147 (1979) .

7. G . A . Schu le r , Nucl Phys., B 2 9 9 , 21 (1988) .

8. Fo r m u o n s c a t t e r i n g , see A . D . M a r t i n et al, Phys. Lett B 2 2 8 , 149 (1989) . T h i s p a p e r , however , does n o t i n c o r p o r a t e c h a r m q u a r k m a s s effects.

9. See , for i n s t a n c e , W . F u r m a n s k i a n d R. P e t r o n z i o , Z. Phys. C, 1 1 , 293 (1982) .

10. M . A . G . Aivaz i s , F . O l n e s s , a n d W . K . T u n g , ( to b e p u b l i s h e d )

1 1 . R . M . B a r n e t t , Phys. Rev. D 1 4 , 70 (1976) .

12. F . L Olness a n d W u - K i T u n g , Nucl. Phys. B 3 0 8 , 813 (1988) .

13 . For a n a l t e r n a t e a p p r o a c h t o t h e n o n - z e r o q u a r k m a s s p r o b l e m , cf., R . M . B a r n e t t , H . E . H a b e r , a n d D . E . Sope r , Nucl. Phys. B 3 0 6 , 697 (1988) .

14. For r e l a t e d t h e o r e t i c a l c o n s i d e r a t i o n s , see M . A . G . Aivazis a n d J . C . Col l ins , I I T p r e p r i n t ( t o b e p u b ­l i s h e d ) .

15. Specifically, w e u s e d Se t -SN of J . G . Morf in a n d W u - K i T u n g , p r e p r i n t F e r m i l a b - P U B 9 0 / 2 4 , I I T 9 0 / 1 1 ( t o b e p u b l i s h e d i n Z. Phys. C) .

1458

Page 38: P arallel Session 34

LIST OF CONTRIBUTED PAPERS

( G r o u p e d b y p a r a l l e l s e s s ions , o r d e r e d b y p a p e r n u m b e r )

P A R A L L E L S E S S I O N 1 — e + e ~ P H Y S I C S A T Z° P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

2 A " N o - L o s e " M e a s u r e m e n t of t h e H a d r o n i c a n d of t h e L e p t o n i c Z W i d t h s

G I R A R D I G e o r g e s W . Ho l l i k , C . V e r z e g n a s s i

2 8 Z D e c a y C o n f r o n t s N o n - S t a n d a r d S c e n a r i o s R A Y C H A U D H U R I A m i t a v a e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

112 A D e t e r m i n a t i o n of o ^ s ^ r o n g w i t h T r a n s v e r s a l l y P o l a r i z e d B e a m s a t L E P l

R E N A R D F e r n a n d M i c h e l A . D j o u a d i , C . V e r z e g n a s s i

146 I s T h e r e a B e t t e r W a y of E x p o n e n t i a t i n g Q E D C o r r e c t i o n s ? W A R D B e n n i e F r a n k l i n L e o n S. J a d a c h , M . S k r z y p e k

157 M a s s of t h e T o p Q u a r k U s i n g H i g h P r e c i s i o n L E P D a t a G A N G U L I S o m N a t h A . G u r t u

1 6 3 A P o s s i b l e N e w P h y s i c s i n Z° D e c a y s S E N J U H i r o f u m i

198 F o u r - G e n e r a t i o n E l e c t r o w e a k M o d e l s a n d C o n s t r a i n t s f r o m t h e L E P D a t a ( R e v i s e d V e r s i o n )

T S A I S h e n g - Y i Y u i c h i T a z a k i

199 C o n s t r a i n t s o n t h e F o u r t h - G e n e r a t i o n N e u t r i n o s f r o m t h e L E P D a t a

T S A I S h e n g - Y i J u n K o g o , Y u i c h i T a z a k i

214 B o u n d s o n E x t e n d e d G a u g e M o d e l s f r o m L E P D a t a F E R U G L I O F e r r u c c i o e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

225 Z D e c a y i n t o a V e c t o r M e s o n a n d a L e p t o n P a i r B E R G S T R O M L a r s R . W . R o b i n e t t

252 H e a v y F l a v o r P r o d u c t i o n i n Z D e c a y s C A N D L I N D . J . ( T h e A L E P H C o l l a b o r a t i o n )

256 E v i d e n c e for F i n a l S t a t e P h o t o n s i n M u l t i h a d r o n i c D e c a y s of t h e Z°

W A G N E R A l b r e c h t ( T h e O P A L C o l l a b o r a t i o n )

2 5 8 C P - V i o l a t i n g C o r r e l a t i o n s i n E l e c t r o n - P o s i t r o n A n n i h i l a t i o n i n t o r L e p t o n s

B E R N R E U T H E R W e r n e r 0 . N a c h t m a n n

3 3 0 C a n t h e W M a s s b e M e a s u r e d i n Z D e c a y s ? R I Z Z O T h o m a s G e r a r d

3 3 6 A p p l i c a t i o n s of t Q u a r k a n d r L e p t o n P o l a r i m e t r y N E L S O N C h a r l e s A r n o l d

362 H e a v y H i g g s I n t e r a c t i o n s a n d P r e c i s i o n M e a s u r e m e n t s a t t h e Z°

R E N A R D M i c h a e l M a r t i n G . G o u n a r i s

4 8 3 U n i t a r y A p p r o x i m a t i o n for R a d i a t i v e H i g h E n e r g y S c a t t e r i n g P r o c e s s e s : A p p l i c a t i o n s t o B h a b h a S c a t t e r i n g

O H L T h o r s t e n e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

4 8 7 A D i r e c t S e a r c h for N e w C h a r g e d H e a v y L e p t o n s a t L E P W A G N E R A l b r e c h t ( T h e O P A L C o l l a b o r a t i o n )

4 8 8 S e a r c h for E x c i t e d L e p t o n s a t L E P W A G N E R A l b r e c h t ( T h e O P A L C o l l a b o r a t i o n )

4 8 9 E v i d e n c e for F i n a l S t a t e P h o t o n s i n M u l t i h a d r o n i c D e c a y s of t h e Z°

W A G N E R A l b r e c h t ( T h e O P A L C o l l a b o r a t i o n )

1459

Page 39: P arallel Session 34

P a p e r N o .

T i t l e F i r s t A u t h o r or Con tac t A u t h o r (Col labora t ion)

490 A Search for Acop lana r Pa i r s of Lep tons or J e t s i n Z° Decays : M a s s L imi t s on S u p e r s y m m e t r i c Par t ic les

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

491 A M e a s u r e m e n t of Global Even t Shape Dis t r ibu t ions in t h e H a d r o n i c Decays of t h e Z°

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

492 A Search for Technipions a n d C h a r g e d Higgs Bosons a t L E P W A G N E R Albrecht ( T h e O P A L Col labora t ion)

493 A S t u d y of Je t P r o d u c t i o n R a t e s a n d a Tes t of Q C D on t h e Z° Resonance

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

494 Limi t s on N e u t r a l Heavy L e p t o n P r o d u c t i o n f rom Z° Decay

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

557 A Search for t h e Top a n d b' Q u a r k s i n Had ron i c Z° Decays W A G N E R Albrecht ( T h e O P A L Col labora t ion)

558 A S tudy of t he R e a c t i o n e+ e~ —» 7 7 a t L E P W A G N E R Albrecht ( T h e O P A L Col labora t ion)

561 M e a s u r e m e n t of t h e P a r t i a l W i d t h of t he Z° Boson in to C h a r m Q u a r k Pa i r s

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

565 A S tudy of I n t e rmi t t ency i n H a d r o n i c Z° Decays A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

566 Search for t h e £ a n d bf Q u a r k s i n Hadron ic Decays A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

567 A C o m p a r i s o n of J e t P r o d u c t i o n R a t e s on the Z° Resonance t o P e r t u r b a t i v e Q C D of t h e Z° Boson

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

568 Search for Scalar Qua rks in Z° Decays A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

569 Search for Heavy C h a r g e d Scalars i n Z° Decays A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

570 Search for Light N e u t r a l Higgs Par t ic les P r o d u c e d i n Z° Decays

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

571 Search for Sleptons a n d Gauginos i n Z° Decays A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

572 Search for P a i r P r o d u c t i o n of N e u t r a l Higgs Bosons i n Z° Decays

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

573 E x p e r i m e n t a l Ev idence for t h e Tr ip le-Gluon Ver tex A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

591 A M e a s u r e m e n t of t h e P a r t i a l W i d t h of t h e Z° Boson in to b Q u a r k Pa i r s

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

592 Precise M e a s u r e m e n t of t he Z° Resonance P a r a m e t e r s T h r o u g h i t s Hadron ic a n d Lep ton ic Decay Modes

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

593 Energy -Ene rgy Corre la t ions in Hadron ic F i n a l S t a t e s f rom t h e Z°-Resonance

A M A L D I Ugo ( T h e D E L P H I Col labora t ion)

674 A C o m b i n e d Analysis of t he Hadron ic a n d Lep ton ic Decays of t he Z°

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

683 A S tudy of Angu la r Corre la t ions in 4-Jet F i n a l S ta tes of Hadron ic Z° Decays

W A G N E R Albrecht ( T h e O P A L Col labora t ion)

684 A S t u d y of Coherence of Soft Gluons i n H a d r o n Je t s W A G N E R Albrecht ( T h e O P A L Col labora t ion)

1460

Page 40: P arallel Session 34

P A R A L L E L S E S S I O N 2 — S T R I N G T H E O R Y A N D T H E O R Y O F E X T E N D E D O B J E C T S

1461

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

3 6 O n t h e F u j i k a w a T y p e F o r m u l a t i o n of G a u g e d B R S T S y m m e t r y for t h e F r e e B o s o n i c S t r i n g

S I N G H L a m b o d a r P r a s a d D e b a s h i s G a n g o p a d h y a y

6 9 S u p e r s y m m e t r y a n d C o n s e r v a t i o n L a w s i n t h e K d V S y s t e m B A G C H I B i j a n K u m a r A . L a h i r i , P . K . R o y

1 2 0 O n t h e B a c k g r o u n d I n d e p e n d e n c e of S t r i n g F i e l d T h e o r y S E N A s h o k e

122 M a t t e r - P a r i t y C o n s t r a i n t s o n P a r t i c l e S p e c t r u m i n T h r e e - G e n e r a t i o n C a l a b i - Y a u M a n i f o l d s

N A T H P r a n R . A r n o w i t t

1 2 3 S y m m e t r y B r e a k i n g i n T h r e e - G e n e r a t i o n C a l a b i - Y a u M a n i f o l d s

N A T H P r a n R . A r n o w i t t

1 2 4 P r o t o n D e c a y i n T h r e e - G e n e r a t i o n M a t t e r - P a r i t y - I n v a r i a n t S u p e r s t r i n g M o d e l s

N A T H P r a n R . A r n o w i t t

1 2 6 M a t t e r P a r i t y I n t e r m e d i a t e S c a l e B r e a k i n g a n d s i n 2 6\v i n C a l a b i - Y a u S u p e r s t r i n g M o d e l s

N A T H P r a n R . A r n o w i t t

1 6 9 D e r i v a t i o n of t h e B r i n k - O l i v e C o r r e c t i o n F a c t o r U s i n g t h e D u a l R a m o n d S u p e r g h o s t V e r t e x

N I L S S O N B e n g t E r i k W i U y e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

1 9 4 Q u o t i e n t s of I r r e d u c i b l e N = 2 S u p e r c o n f o r m a i C o s e t T h e o r i e s b y D i s c r e t e S y m m e t r i e s

B A I L I N D a v i d A . L o v e

195 G e n e r a t i o n s i n I r r e d u c i b l e N — 2 S u p e r c o n f o r m a i C o s e t T h e o r i e s

B A I L I N D a v i d D . C . D u n b a r , A . L o v e

262 S t a t u s of P - a d i c S t r i n g s F R A M P T O N P a u l H .

2 6 8 S t r i n g F i e l d T h e o r y a n d P h y s i c a l I n t e r p r e t a t i o n of D = 1 S t r i n g s

D A S S u m i t R a n j a n A n t a l J e v i c k i

275 T h e O r i g i n of t h e T h r e e G e n e r a t i o n s i n C o m p a c t i f i c a t i o n s of t h e Eg X Eg H e t e r o t i c S t r i n g

H A Y A S H I M i t s u o J . A . M u r a y a m a , S. T a k e s h i t a

3 0 4 S y m m e t r y B r e a k i n g i n O p e n - S t r i n g T h e o r i e s S A G N O T T I A u g u s t o M . B i a n c h i

3 1 4 H i g h e r - D i m e n s i o n a l S p a c e - T i m e a n d U n i t a r y B o u n d o n t h e S c a t t e r i n g A m p l i t u d e

C H A I C H I A N M a s u d J a n F i s c h e r

3 1 8 G e n e r a l D = 1 L o c a l S u p e r c o o r d i n a t e T r a n s f o r m a t i o n s a n d t h e i r S u p e r c u r r e n t A l g e b r a s

C H A I C H I A N M a s u d D . A . L e i t e s , J . L u k i e r s k i

3 1 9 N e w N = 6 I n f i n i t e D i m e n s i o n a l S u p e r a l g e b r a w i t h C e n t r a l E x t e n s i o n

C H A I C H I A N M a s u d D . A . L e i t e s , J . L u k i e r s k i

3 2 0 E u c l i d e a n S u p e r s y m m e t r y w i t h Di f f e ren t S e l f - D u a l a n d A n t i - D u a l S e c t o r s

C H A I C H I A N M a s u d J . A . d e A z c â r r a g o , J . L u k i e r s k i

3 8 8 Off -She l l B R S T Q u a n t i z a t i o n of A n t i s y m m e t r i c T e n s o r G a u g e T h e o r y a n d t h e B o s o n i c S t r i n g F i e l d T h e o r y

P O P O V I C D r a g a n S . M . B l a g o j e v i c , B . S a z d o v i c

4 5 4 S t r i n g E q u a t i o n s f r o m U n i t a r y M a t r i x M o d e l s T A N C h u n g - I K r e s i m i r D e m e t e r f i

4 5 5 S t a t i s t i c a l M e c h a n i c s of S t r i n g s a t H i g h E n e r g i e s i n C o m p a c t a n d N o n - C o m p a c t S p a c e s

T A N C h u n g - I N i v e d i t a D e o , S a n j a y J a i n

Page 41: P arallel Session 34

1462

P a p e r N o .

Ti t l e First Author or Contact Author ( C ol laboration)

527 Fermi o n Masses from Dimens ional Reduct ion Z O U P A N O S George D . Kapetanakis

528 A Unified Theory in Higher Dimens ions Z O U P A N O S George D . Kapetanakis

556 Higher Order Gravitat ional Deflect ion and Soft Bremsstrahlung i n Planckian Energy Superstring Collisions

C I A F A L O N I Marcel lo D . A m a t i , G. Veneziano

578 Discrete Symmetr ies a n d Coset Space Dimens ional R e d u c t i o n

Z O U P A N O S George D . Kapetanakis

624 T h e Theory of Vortices a n d Monopoles o n a Sphere O V R U T Burt A l a n S t e v e n T h o m a s

625 T h e D = 4, N = 1 Supergravity Mult iplet of the Heterotic String

O V R U T Burt A l a n S. Ka lyana R a m a

P A R A L L E L S E S S I O N 3 — N O N - P E R T U R B A T I V E M E T H O D S A N D F I N I T E T E M P E R A T U R E F I E L D THEORY

P a p e r N o .

Ti t l e First Author or Contact Author ( C ol laboration)

3 7 F in i te Temperature Scalar F ie ld Theory in the Early Universe

MALLIK Samirnath H. Leutwyler

38 Dens i ty F luc tua t ion i n the D e Sitter Universe M A L L I K Sani irnath N . Banerjee

70 Re la t ing Graphs at F in i te Temperature i n the Imaginary T i m e a n d Real T i m e Formalisms

K O B E S PUndy

75 Gauge ( In- )Dependence of the Gluon Propagator Poles a n d Q C D P l a s m a Parameters

K U N S T A T T E R Gabor R. Kobes , A. R e b h a n

164 Hot Gluon Mat ter in a Constant Ao Background E N Q V I S T Kari P. K. Kajant ie

165 Screening of a Test Quark in a Fini te B o x at Large T in Lat t ice S U ( 3 ) Gauge Theory

E N Q V I S T Kari P. (This paper h a s 4 authors.)

200 Leading T 3 - B e h a v i o r a n d Vertex-Configuration Dependence of Rea l -T ime Thermal Q C D Coupl ing

N A K K A G A W A Hisao A . Niégawa, H. Yokota

305 Q C D at High Temperatures w i t h a Chern-Simons Term: A n Effective Act ion Approach

B A M B A H B i n d u A n u b h a C. M u k k u

309 Sphaleron Transit ion of Reduced 0 ( 3 ) Nonlinear Sigma M o d e l

O T S U K I Shoichiro Koicji Funakubo . Fumihiko Toyoda

317 Uni tary Gauge and P h a s e Transit ion at F in i te Temperature C H A I C H I A N M a s u d E.J . Ferrer. V. de la Incera

321 Gauge Theories at F in i te Temperature and the Background F ie ld M e t h o d

C H A I C H I A N M a s u d et al. (This paper has 4 authors.)

698 R e s u m m a t i o n and Gauge Invariance of the Gluon D a m p i n g R a t e i n Hot Q C D

B R A A T E N Eric A. Robert D . Pisarski

699 Calculat ion of the Gluon D a m p i n g Rate in Hot Q C D B R A A T E N Eric A. Robert D . Pisarski

Page 42: P arallel Session 34

P A R A L L E L S E S S I O N 4 — H I G H E N E R G Y pp P H Y S I C S

1463

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

64 A n t i p r o t o n - P r o t o n E l a s t i c S c a t t e r i n g a t 1.8 T e V F A Z A L - E - A L E E M M o h a m m a d S a l e e m , G . B , Y o d h

143 P r o d u c t i o n of T O F - I d e n t i f i e d P i o n s , K a o n s , a n d A n t i p r o t o n s i n A n t i p r o t o n - P r o t o n Coll is ions a t y/s = 1.8 T e V

K E N N Y V . P a u l e t a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

144 F o r w a r d - B a c k w a r d Mul t i p l i c i t y C o r r e l a t i o n s i n p-p Coll is ions a t y/s = 1.8 T e V

K E N N Y V . P a u l e t a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

145 B o s e - E i n s t e i n C o r r e l a t i o n for P i o n P r o d u c t i o n i n 1.8 T e V p-p Col l is ions

K E N N Y V . P a u l et a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

247 T h e F i r s t Tes t of t h e E l e c t r o w e a k T h e o r y I n d e p e n d e n t of t h e N e u t r i n o

H I O K I Z e n r o

248 E l e c t r o w e a k Q u a n t u m Effects i n t h e M\v-Mz R e l a t i o n H I O K I Zenko

250 M e a s u r e m e n t of t h e T r a n s v e r s e M o m e n t u m D i s t r i b u t i o n s of W a n d Z B o s o n s a t t h e C E R N pp Col l ider

A N S O R G E R . E . ( T h e U A 2 C o l l a b o r a t i o n )

254 S e a r c h for N e w H e a v y Q u a r k s i n P r o t o n - A n t i p r o t o n Coll is ions a t y/s = 0 .63 T e V

A L B A J A R C . ( T h e U A 1 C o l l a b o r a t i o n )

402 P r o b i n g t h e W W 7 V e r t e x a t t h e T e v a t r o n Col l ider B E R G E R E d m o n d L . U . B a u r

4 3 1 P a r t o n D i s t r i b u t i o n s f r o m a G l o b a l Q C D Analys i s of D e e p Ine l a s t i c S c a t t e r i n g a n d L e p t o n - P a i r P r o d u c t i o n

T U N G W u - K i J o r g e G , Mor f in

437 M e a s u r e m e n t of t h e J/tp Inc lus ive Cross Sect ions i n p-p a n d p-p Col l is ions a t y/s = 24 .3 G e V f r o m t h e U A 6 E x p e r i m e n t

P E R R O U D J e a n P i e r r e e t a l . ( T h i s p a p e r h a s 25 a u t h o r s . )

461 R i s i n g Cros s Sec t ions a n d P o l a r i z a t i o n Effects a t T e V E n e r g y R a n g e

T R O S H I N S .M. N . E . T y u r i n

465 H e i s e n b e r g R i s e of T o t a l Cross Sec t ions E Z H E L A V l a d i m i r V l a d i m i r o v i c h O . P . Y u s h c h e n k o

607 G e n e r a l C h a r a c t e r i s t i c s of t h e Exc lus ive C h a n n e l s i n p p - I n t e r a c t i o n s a t 32 G e V / c

P R O S K U R Y A K O V A . S . B o g l y u b s k y M . Y u .

622 H o w F a s t d o Cross Sec t ions R i se? J E N K O V S Z K Y Lasz lo E . S . M a r t y n o v , B . V . S t r u m i n s k y

679 O b s e r v a t i o n of D o u b l e P o m e r o n E x c h a n g e R e a c t i o n a t t h e S P S - C o l l i d e r

S C H L E I N P e t e r E . ( T H E U A 8 C o l l a b o r a t i o n )

P A R A L L E L S E S S I O N 5 — N O N - A C C E L E R A T O R P A R T I C L E P H Y S I C S

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

139 U l t r a - H i g h E n e r g y P h o t o - N u c l e a r Cross Sec t ions G A N D H I R a j C . e t a l . ( T h i s p a p e r h a s 5 a u t h o r s . )

149 O n a N e w I d e a i n T w o - N e u t r i n o D o u b l e B e t a - D e c a y E x p e r i m e n t

B A R A B A S H A l e x a n d e r S t e p a n o v i c h

Page 43: P arallel Session 34

1 4 6 4

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

240 Sea rch for S u p e r s y m m e t r i c P r o t o n D e c a y D Y E S t e p h e n T h o m p s o n e t a l . ( T h i s p a p e r h a s 27 a u t h o r s . )

241 Sea rch for P r o t o n Decay i n t o e + -f 7r° i n t h e I M B - 3 D e t e c t o r D Y E S t e p h e n T h o m p s o n e t a l . ( T h i s p a p e r h a s 29 a u t h o r s . )

303 T h e T h e r m a l E x c i t a t i o n of Ster i le N e u t r i n o s i n t h e E a r l y Un ive r se

T H O M S O N M a r k J o h n B r u c e H . J . M c K e l l a r

360 A t m o s p h e r i c N e u t r i n o F l u x e s H I D A K A K e i s h o e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

367 I m p o r t a n t E x p e r i m e n t s t o Tes t for L o n g e r - R a n g e d New G r a v i t a t i o n a l Forces

N 3 E T O M i c h a e l M a r t i n T . G o l d m a n

379 In i t i a l D a t a f rom t h e S O U D A N 2 E x p e r i m e n t A Y R E S D a v i d S. W . Al l i son

410 A Search for 7 -Ray Po in t -Sou rce s w i t h E n e r g y G r e a t e r t h a n 40 G e V a l o n g t h e G a l a c t i c P l a n e by A i r b o r n e E x p e r i m e n t

E N O M O T O Ryo j i e t a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

435 T h e So la r N e u t r i n o P r o b l e m : P a r t i c l e P h y s i c s So lu t ions M I N A K A T A H i s a k a z u

438 T i m e V a r i a t i o n of t h e Solar N e u t r i n o F l u x a n d t h e R e s o n a n t Sp in -F lavor R o t a t i o n M e c h a n i s m

N U N O K A W A Hi rosh i H . M i n a k a t a

446 T h e S t a t u s of Ga l l ex C R I B I E R Miche l F r a n ç o i s (For t h e Ga l l ex C o l l a b o r a t i o n )

447 A Search for Neu t r ino l e s s D o u b l e B e t a D e c a y of 4 8 C a Q I N G ( C H I N G ) C h e n g r u i ( T h i s p a p e r h a s 10 a u t h o r s . )

451 Sea rch ing for t h e C o s m i o n b y S c a t t e r i n g i n Si D e t e c t o r s C A L D W E L L D a v i d Orvi l le e t a l . ( T h i s p a p e r h a s 18 a u t h o r s . )

452 T h e Sea rch for D a r k M a t t e r C A L D W E L L D a v i d Orvi l le B . M a g n u s s o n

453 Light N e u t r i n o s a s Cosmolog ica l D a r k M a t t e r a n d t h e N e x t S u p e r n o v a

N U N O K A W A Hi rosh i H . M i n a k a t a

456 N e u t r i n o A s t r o n o m y a n d As t rophys i c s w i t h t h e D U M A N D S t a g e I I O c t a g o n D e t e c t o r S y s t e m

W I L K E S R i c h a r d Jeffrey P . K . F . G r i e d e r

485 U n d e r g r o u n d M u o n s f rom t h e D i r e c t i o n of C y g n u s X - 3 M A R S H A K M a r v i n L . et a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

499 F u t u r e of H i g h E n e r g y N e u t r i n o A s t r o n o m y L E A R N E D J o h n G r e g o r y

500 I m p r o v e d l imi t o n t h e M a s s of i / c f rom t h e B e t a D e c a y of M o l e c u l a r T r i t i u m

B O W L E S T h o m a s J o s e p h e t a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

560 N e w R e s u l t s i n I T E P / Y E P T D o u b l e B e t a - D e c a y E x p e r i m e n t w i t h E n r i c h e d G e r m a n i u m D e t e c t o r s

S T A R O S T I N A l e x a n d r e Sergeer ich e t a l . ( T h i s p a p e r h a s 8 a u t h o r s . )

606 A New E x p e r i m e n t a l L imi t on N e u t r o n - A n t i n e u t r o n Osc i l l a t ions

B A L D O - C E O L I N Mi l l a e t a l . ( T h i s p a p e r h a s 31 a u t h o r s . )

623 D i r e c t P r o b e s of N e u t r i n o P r o p e r t i e s Us ing Solar N e u t r i n o Lines

P A K V A S A S a n d i p S. P a k v a s a , J . P a n t a l e o n e

696 A S t a t i s t i c a l Ana lys i s of t h e Ch lo r ine Solar N e u t r i n o E x p e r i m e n t

N U N O K A W A Hi rosh i H i s a k a z u M i n a k a t a

Page 44: P arallel Session 34

1465

P A R A L L E L S E S S I O N 6 — C O N F O R M A L F I E L D T H E O R Y

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l abo ra t i on )

1 R e s i d u a l Q u a n t u m S y m m e t r i e s of t h e R e s t r i c t e d S ine -Gordon Theo r i e s

L E C L A I R A n d r é R o g e r D . B e r n a r d

7 Q u a n t u m D i m e n s i o n s a n d M o d u l a r F o r m s in C h i r a l Confo rma i T h e o r y

K O H I n - G y u S t é p h a n e O u v r y , Ivan . T . T o d o r o v

49 Free F i e l d R e a l i z a t i o n of Coset Conformai F i e ld T h e o r i e s O H T A N o b u y o s h i M a s a n o r i K u w a h a r a , H i sao Suzuki

50 N = 2 S u p e r c o n f o r m a i Mode l s a n d the i r Free F i e l d Rea l i za t i on O H T A N o b u y o s h i Hisao S u z u k i

51 C o n f o r m a i F i e l d Theor i e s Real ized b y Free F ie lds O H T A N o b u y o s h i M a s a n o r i K u w a h a r a , H i s a o Suzuki

52 Cose t C o n f o r m a i Mode l s of t h e W-Algebra a n d the i r Fe ign-Fuchs C o n s t r u c t i o n

S U Z U K I H i s a o M a s a n o r i K u w a h a r a

85 All O r d e r R e s u l t s in S t r ing T h e o r y A L V A R E Z E n r i q u e

111 C o n f o r m a i F ie ld T h e o r y Tr ia l i ty a n d t h e M o n s t e r G r o u p D O L A N Louise A .

172 Solvable T w o - D i m e n s i o n a l S u p e r s y m m e t r i c M o d e l s a n d t h e S u p e r s y m m e t r i c Vi raso ro Algebra

T A N A K A K a t s u m i

177 Q u a n t u m D i m e n s i o n s a n d M o d u l a r F o r m s i n C h i r a l C o n f o r m a i T h e o r y

O U V R Y S t é p h a n e C l a u d e K o h I n - G y u , I v a n T . T o d o r o v

211 F e r m i o n i z a t i o n of Boson ic Zero M o d e H I R A Y A M A M i n o r u Yosh ih i ro Hor ikawa

220 Screen ing C u r r e n t s i n Free F ie ld R e p r e s e n t a t i o n s of K a c - M o o d y A l g e b r a s

L A M C.S . e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

276 A n y o n s a n d G a u s s i a n Conformai F ie ld Theor i e s R A O S u m a t h i Di leep P . J a t k a r

313 N = 1 S u p e r - W Z W a n d N = 1 , 2 , 3 , 4 S u p e r - K d V M o d e l s a s D = 2 C u r r e n t Superf ield Theor ies

C H A I C H I A N M a s u d J . Lukieski

316 g-Deformed J a c o b i Iden t i ty , g-Oscil lators a n d g-Deformed In f in i t e -Dimens iona l A lgebras

C H A I C H I A N M a s u d P . Ku l i sh , J . Luk ie r sk i

323 Q u a n t u m Lie S u p e r a l g e b r a s a n d g-Oscil lators C H A I C H I A N M a s u d P . K u l i s h

324 O n t h e P o l a r D e c o m p o s i t i o n of Q u a n t u m SU (2) A l g e b r a C H A I C H I A N M a s u d D . E l l inas

325 Q u a n t u m A l g e b r a a s D y n a m i c a l S y m m e t r y of Defo rmed J a y n e s - C u m m i n g s M o d e l

C H A I C H I A N M a s u d D . E l l inas , P . K u l i s h

501 F u n c t i o n a l Different ial Rea l i za t ion of t h e SU (2) K a c - M o o d y A l g e b r a

B A A Q U I E Be la l E h s a n

502 P a t h I n t e g r a l D e r i v a t i o n of t h e U ( l ) K a c - M o o d y C h a r a c t e r s a n d of t h e W e y l - K a c D e n o m i n a t o r

B A A Q U I E Be la l E h s a n

503 F u n c t i o n a l Different ial Rea l i za t ion of the K a c - M o o d y A l g e b r a a n d G r o u p C o h o m o l o g y

B A A Q U I E Be la l E h s a n

504 F e y n m a n P a t h I n t e g r a l for t h e S u m of t he K a c - M o o d y C h a r a c t e r s

B A A Q U I E Be la l E h s a n

Page 45: P arallel Session 34

1466

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

505 F ixed Points in Multi-Field Landau-Ginzburg Models W E S T Peter Christopher P.S. Howe

667 Feynman P a t h Integral for the S u m of the Global Kac-Moody Characters

B A A Q U I E Belal E h s a n

PARALLEL SESSION 8 — H A D R O N S P E C T R O S C O P Y , P H O T O N - P H O T O N COLLISIONS

Paper N o .

Tit le First Author or Contact Author ( C ollab oration)

40 Minimal Strange Quark Content in Nucléons S C A D R O N Michael Dav id

82 T h e Pseudoscalar B B P Couplings in Quark Model K H A N N A Mohinder Pau l G. K. Sidana

84 S u m Rules for the Pseudoscalar B B P Couplings V E R M A R a m e s h Chand M.P. Khanna

140 Triplicity of Hadrons, Quarks and Subquarks T E R A Z A W A Hidezumi

141 / 2 Dominance of the Energy-Momentum Tensor T E R A Z A W A Hidezumi

142 More S u m Rules for Quark and Lepton Masses T E R A Z A W A Hidezumi

150 Ampli tude Analysis of 77 —• ktc from Threshold to 1.4 GeV M O R G A N David M.R. Pennington

155 Experimental Evidence for Hybrid Resonances i n Diffraction of 1 ~ + , 1 + + a n d 2 ~ + States

Z A I M I D O R O G A Oleg Antony

159 First Observation of the React ion 77 —• ^2 —• 7r07r°7r° M E T Z G E R Wesley J. (The Crystal Bal l Collaboration)

193 Gluon Asymmetries in the Leptoproduction of J/i/> G O D B O L E Rohini Madhusudan Sridhar K., Sourendu Gupta

228 T h e Analysis of the p-7r Mass Difference by Using S alp et er Equat ion

H I R A N O Masanobu et al. (This paper has 5 authors.)

231 Mass Spectrum of p-Wave Mesons G U P T A Virendra R. Kôgerler

232 A n Analysis of the Mass Formulae for s- and p-Wave Mesons G U P T A Virendra R. Kôgerler

233 Comment on the Spin- Split t ing of the L > 1 Quarkonium Levels for a Class of Static Potentials

G U P T A Virendra V . V . Dixit , R. Kôgerler

235 Product ion of Hybrid Mesons in the Nuclear Coulomb Field F E R B E L Thomas

288 The Fine and Hyperfine Structure of p-State Quarkonia a n d the Behavior of q-q Potential

H I R A N O Masanobu

292 Effective Semirelativistic Model of Atom-like Mesons qq M O R I I Toshiyuki M. Kawaguchi, J. Morishita

337 Structures in the Nucleon-Nucleon System Y O K O S A W A Akihiko

Page 46: P arallel Session 34

1467

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

406 P r e l i m i n a r y P a r t i a l - W a v e A n a l y s i s of t h e K^K^ir^ S y s t e m P r o d u c e d i n 8 G e V / c K-p I n t e r a c t i o n s

W I L L U T Z K I H a n s J u e r g e n e t a l . ( T h i s p a p e r h a s 27 a u t h o r s . )

408 N e w R e s u l t s o n H y p e r c h a r g e E x c h a n g e R e a c t i o n s from L A S S A S T O N D a v i d e t a l . ( T h i s p a p e r h a s 36 a u t h o r s . )

436 I n - F l i g h t A n n i h i l a t i o n pp —• <t><t> a n d pp —» KK w i t h J E T S E T a t L E A R

H A M A N N N i k o l a u s H e i n r i c h ( T h e J E T S E T C o l l a b o r a t i o n )

450 P r o p e r t i e s of Inc lus ive J e t P r o d u c t i o n i n H a d r o n i c 77 I n t e r a c t i o n s

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

473 Q C D as a n Effective S t r o n g G r a v i t y a n d H a d r o n Class i f ica t ion S I J A C K I Djo rd je Y . N e ' E n a m

481 A M e a s u r e m e n t of t h e P h o t o n S t r u c t u r e F u n c t i o n F ^ ( X , Q 2 ) i n t h e Q2 R a n g e 3 - 6 0 4 G e V 2 / c 2

K I E S L I N G C h r i s t i a n M a r c e l ( T h e C E L L O C o l l a b o r a t i o n )

531 A M e a s u r e m e n t of t h e 7 r ° , 7 7 , a n d 7/ E l e c t r o m a g n e t i c F o r m F a c t o r s

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

532 A S t u d y of t h e R e a c t i o n 77 —• 7r+7r"" F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

533 O b s e r v a t i o n of a R e s o n a n t S t r u c t u r e i n t h e R e a c t i o n 77 —• 777r"t*7T~

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

534 G l o b a l P r o p e r t i e s of P i o n P r o d u c t i o n i n t h e R e a c t i o n 77 —• 37r+37r"~

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

535 D+± P r o d u c t i o n i n e + e ~ A n n i h i l a t i o n a t 35 G e V F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

536 p° P r o d u c t i o n i n t h e R e a c t i o n 77 —• 3 7 r + 3 7 r " ~ a n d S e a r c h for 77 - > 7 r °7 r° (1700)

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

537 C r o s s S e c t i o n M e a s u r e m e n t a n d S p i n - P a r i t y Ana lys i s of t h e R e a c t i o n 77 —• u/p

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

538 cv 2 (1320) a n d 7r 2 (1670) F o r m a t i o n i n t h e R e a c t i o n 77 —• 7r+7T7r°

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

540 G l u o n i a Sca la r M e s o n s a n d t h e L igh t Higgs B o s o n s i n Q C D N A R I S O N S t e p h a n

576 T h e O b s e r v a t i o n of a S t a b l e D i b a r y o n B A L D I N A . M . B .A . S h a h b a z i a n

598 G/fo (1590) , / ' / / 2 (1525) a n d 0 / / 2 ( 1 7 2 O ) Decays T h r o u g h m

a n d KK C h a n n e l s P R O K O S H K I N Y u r i D m i t r i e v i c h

6 3 3 M o r e A b o u t t h e P r e c i s e D e t e r m i n a t i o n of a n d I sosp in B r e a k i n g

P E S T I E A U J . G . L o p e z C a s t r o

649 G / / o ( 1 5 9 0 ) , / 7 / 2 ( 1 5 2 5 ) a n d Q / / 2 ( 1 7 2 0 ) D e c a y s T h r o u g h r)V

a n d KK C h a n n e l s P R O K O S H K I N Y u . D .

702 P h o t o p r o d u c t i o n of D M e s o n s B U C H H O L Z D . ( T h e E 6 8 7 C o l l a b o r a t i o n )

Page 47: P arallel Session 34

1 4 6 8

P A R A L L E L S E S S I O N 9 — e + e " P H Y S I C S B E L O W Z°

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

22 T h e Gene ra l i s ed M o m e n t Ana lys i s a n d S p i n Ana lys i s for B o s o n R e s o n a n c e s

Y U H o n g

138 Q E D C o r r e c t e d E x t r a Z B o s o n Effects a t e + e " Col l iders L E I K E A . T . R i e m a n n , M . S a c h w i t z

253 S e a r c h for E x c i t e d L e p t o n s a t L E P W A G N E R A l b r e c h t ( T h e O p a l C o l l a b o r a t i o n )

363 S t r a n g e a n d C h a r m e d B a r y o n P r o d u c t i o n a n d S t r a n g e B a r y o n C o r r e l a t i o n s i n e + e ~ A n n i h i l a t i o n s a t 29 G e V

B U C H A N A N C h a r l e s D . ( T h e P E P 4 / 9 ( T P C / 2 7 ) C o l l a b o r a t i o n )

364 A Simple Powerfu l M o d e l W h i c h Desc r ibes M e s o n a n d B a r y o n F o r m a t i o n i n e + e ~ A n n i h i l a t i o n s

B U C H A N A N C h a r l e s D . S . -B. C h u n

373 L i m i t s o n t h e E l e c t r o n C o m p o s i t e n e s s f rom t h e B h a b h a S c a t t e r i n g a t P E P a n d P E T R A

D . ' A G O S T I N I Giu l io W . d e B o e r . M . Iacovacci

387 S t u d y of K* P r o d u c t i o n i n r Decay K U B O T A Yuich i ( T h e C L E O C o l l a b o r a t i o n )

442 A M e a s u r e m e n t of 6 Q u a r k F o r w a r d - B a c k w a r d C h a r g e A s y m m e t r y U s i n g Inc lus ive M u o n s i n e+ e~ Coll is ions a t y/s~ = 54.0 t o 61.46 G e V

K A W A B A T A S e t s u y a ( T h e T O P A Z C o l l a b o r a t i o n )

443 A Sea rch for Inc lus ive P r o d u c t i o n of H e a v y S t a b l e P a r t i c l e s b y t h e T o p a z D e t e c t o r a t T r i s t a n

K A W A B A T A S e t s u y a ( T h e T O P A Z C o l l a b o r a t i o n )

444 C h a r g e A s y m m e t r y of H a d r o n i c E v e n t s i n e + e ~ A n n i h i l a t i o n a t y/s = 57.7 G e V

K A W A B A T A S e t s u y a ( T h e T O P A Z C o l l a b o r a t i o n )

445 M e a s u r e m e n t s of Cross Sec t ions a n d C h a r g e A s y m m e t r i e s for e + e ~ —> i n t h e E n e r g y R a n g e of y/s = 52.0 — 61.4 G e V

K A W A B A T A S e t s u y a ( T h e T O P A Z C o l l a b o r a t i o n )

460 A n a l y t i c A p p r o a c h t o t h e C o m p l e t e set of Q E D C o r r e c t i o n s t o F e r m i o n P a i r

B A R D 3 N D . e t a l . ( T h i s p a p e r h a s 8 a u t h o r s . )

464 E v i d e n c e of a R e s o n a n c e i n t h e 7r+7r~*7r07r° C h a n n e l of S ing le -Tag T w o - P h o t o n Fus ion

C A L D W E L L D a v i d O . ( T h e T P C / 2 A l p h a C o l l a b o r a t i o n )

479 L i m i t s on E l e c t r o n C o m p o s i t e n e s s f rom B h a b h a S c a t t e r i n g K I E S L I N G C h r i s t i a n M a r c e l ( T h e C E L L O C o l l a b o r a t i o n )

480 L i m i t s o n C o m p o s i t e n e s s of Q u a r k s a n d L e p t o n s f rom e+e~~ A n n i h i l a t i o n

K I E S L I N G C h r i s t i a n M a r c e l ( T h e C E L L O C o l l a b o r a t i o n )

595 M e a s u r e m e n t of t h e e+ e~ —* bb Cross S e c t i o n a n d F o r w a r d - B a c k w a r d A s y m m e t r y a t a Cen te r -o f -Masses E n e r g y of 57.2 G e V

L I M J i t N i n g ( T h e A M Y C o l l a b o r a t i o n )

647 R e i n v e s t i g a t i o n of C o m p o s i t e n e s s L i m i t s f r o m e + e ~ A n n i h i l a t i o n

K R O H A H u b e r t K a r l

648 H e a v y Q u a r k C h a r g e A s y m m e t r i e s Below t h e Z° R e s o n a n c e K R O H A H u b e r t K a r l W U Y u e - L i a n g

692 E l e c t r o n i c B r a n c h i n g R a t i o of t h e r L e p t o n K U B O T A Y u c h i ( T h e C L E O C o l l a b o r a t i o n )

Page 48: P arallel Session 34

1469

P A R A L L E L S E S S I O N 10 — S T R U C T U R E F U N C T I O N S A N D D E E P I N E L A S T I C S C A T T E R I N G

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( Co l l abo ra t i on )

3 3 M e t h o d of D e t e r m i n i n g t h e G l u o n S t r u c t u r e F u n c t i o n f r o m t h e Cross Sect ion for t h e Ine las t ic P h o t o p r o d u c t i o n of

H E Z h e n - M i n g R u i - W a n g H u a n g

34 N u c l e a r Effect o n Sma l l M a s s P a i r P r o d u c t i o n s i n H igh E n e r g y Hadron-Nuc le i Collisions

Z h e n - M i n e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

35 S t r u c t u r e a n d F r a g m e n t a t i o n of qq H a d r o n s N G A N G K H A M N i m a i S. A . N . M i t r a , A. , P a g n a m e n t a

173 Or ig in of P r o t o n Spin : R o t a t i n g Cons t i t uen t s? M E N G T a - C h u n g et a l . (Th i s p a p e r h a s 4 a u t h o r s . )

186 A Prec i s ion M e a s u r e m e n t of t h e Gross-Llewel lyn-Smith S u m R u l e i n I/-N Sca t t e r i ng a t t h e F e r m i l a b T ev a t ro n

S M I T H Wesley H a r o l d e t a l .

(Th i s p a p e r h a s 29 a u t h o r s . )

187 Inverse M u o n Decay, + e —• yT -f i / e a t t he Fe rmi lab

T e v a t r o n

S M I T H Wesley H a r o l d e t a l . (Th i s p a p e r h a s 25 a u t h o r s . )

189 A High S ta t i s t i cs M e a s u r e m e n t of t h e D e u t e r o n S t r u c t u r e F u n c t i o n s F2 (x , Q2) a n d R f rom D e e p Inelas t ic M u o n S c a t t e r i n g a t H i g h Q2

V O S S Ri id iger ( T h e B C D M S Co l l abo ra t i on )

190 A C o m p a r i s o n of t h e S t r u c t u r e Func t ions F2 of t h e P r o t o n a n d t h e N e u t r o n from D e e p Ine las t ic M u o n Sca t t e r ing a t H i g h Q2

V O S S Ri id iger ( T h e B C D M S Co l l abo ra t ion )

192 T h e r m o d y n a m i c a l M o d e l for P r o t o n Spin G A N E S A M U R T H Y K u p p u s a m y M . R a j a s e k a r a n , V . D e v a n a t h a n

210 G l u o n s a n d t h e P r o t o n Sp in T H O M A S A n t h o n y W i l l i a m S.D. B a s s , N . N . Nikolaev

212 Q C D Evo lu t i on of t h e Sp in S t r u c t u r e Func t ions of t h e

N e u t r o n a n d P r o t o n

T H O M A S A n t h o n y W i l l i a m A . W . Schre iber

266 F u r t h e r Deve lopmen t of t h e Three -Quark -gg Meson-C loud ( " T h o m s o n - R u t h e r f o r d " ) Nuc léon M o d e l

W A N G C h i a P i n g Alice L .L . L i n

267 T w o - J e t S t r u c t u r e F u n c t i o n f rom pp Collisions a t Q2 « 2000 G e V 2

W A N G C h i a P i n g

361 S o m e Topics i n ep S c a t t e r i n g a t H E R A : I. P a r t o n D i s t r i bu t i ons i n t h e Nuc léon

L E V Y A h a r o n e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

374 P h o t o n - G l u o n Fus ion a t H E R A : M e a s u r e m e n t of t h e F rac t i ona l M o m e n t u m of t h e G l u o n in Low Q2 E v e n t s

D ' A G O S T I N I Giul io D . M o n a l d i

404 S t r u c t u r e F u n c t i o n s a n d P a r t o n Dens i t ies B E R G E R E d m o n d L .

407 A Prec ise M e a s u r e m e n t of t he D e u t e r o n S t r u c t u r e F u n c t i o n F*(x, Q2) a n d t h e R a t i o F£/F£ f rom a Globa l Analys is of t h e S L A C D e e p Ine las t ic Sca t t e r ing Cross Sect ions

R O C K S t e p h e n E . e t a l .

(Th i s p a p e r h a s 5 a u t h o r s . )

424 New R e l a t i o n B e t w e e n t h e P r o t o n Q u a r k Spins a n d TF

Coup l ing

S O F F E R J a c q u e s F ranc i s A . V . Ef remov, N . Tornqv i s t

425 Sp in S t r u c t u r e of t h e Nuc léon a n d t h e Axia l A n o m a l y S O F F E R J a c q u e s F ranc i s A . V . Ef remov , O . V . Te ryaev

432 A L a t t i c e S imula t ion of t h e A n o m a l o u s G l u o n C o n t r i b u t i o n t o t h e P r o t o n Sp in

M A N D U L A Jeffrey E .

Page 49: P arallel Session 34

1470

Paper N o .

Tit le First Author or Contact Author (Collaboration)

472 Next-to-Leading-Order Q C D Analysis of Structure Functions w i th the Help of Jacobi Polynomials

SAVIN Igor Alekseevich et al. (This paper has 8 authors.)

482 Comparison of Direct 7 Product ion in pp and pp React ions at y/s = 24.3 GeV at 4 < pT < 6 G e V / c (.3 < xT < .5)

CAMELLERI Leslie Walter (The CLMR Collaboration)

498 Small-re Shadowing in Dimuon Product ion by Protons o n Nuclei

LASSILA K e n n e t h Eino U . R Sukhatme

508 More About the Proton Quark Spins and the 7 / , 77 Couplings S O F F E R Jacques Francis A . V . Efremov, Ni ls T . Tornqvist

522 Measurement of the X e n o n / D e u t e r i u m Inelastic Scattering Cross Section Ratio Using 490 G e V / c Muons

HALLIWELL Clive (The E665 Collaboration)

552 Q C D Formulation of Charm Product ion in D e e p Inelastic Scattering and the Sea-Quark-Gluon Dichotomy

T U N G Wu-Ki M.A.G. Aivazis, Fredick I. Olness

602 Energy Flow and Transverse M o m e n t u m of Hadron Jets Produced in Deep Inelastic Muon Scattering

L U B A T T I Henry Joseph (The Fermilab E665 Collaboration)

630 Preliminary Results on Neutron-to-Pro ton Cross Sect ion Rat io at Low X^j from Deep Inelastic M u o n Scattering at 490 G e V / c

HALLIWELL C. (The Fermilab E665 Collaboration)

644 Drell-Yan Lepton Pair Photoproduct ion M A T I N Y A N Sergei Gaikovich R.G.Badalyan, V . O . Grabsuy

646 Quark Spin Content of the Proton in the Skyrme Model LI B ing A n M u - L i n Yan, K . F . Liu

657 Comparison of Forward Hadrons Produced i n M u o n Interactions on Nuclear Targets and Deuter ium

R E N T O N Peter Br ian (The E U R O P E A N M U O N CoUaboi

678 N e w Results on F2 Structure Functions from the N M C N A S S A L S K I Jan (The New M u o n Collaboration)

PARALLEL SESSION 11 — N E U T R I N O P H Y S I C S

Paper N o .

Ti t le First Author or Contact Author ( C ollaboration)

121 Predictions from Three Generation Calabi-Yau String Theory N A T H Pran R. Arnowitt

125 Lepton Masses and Neutrino Oscillations in Three Generation Calabi-Yau String Theory

N A T H Pran R. Arnowitt

370 Recent Progress in Measuring the Neutron Lifetime B Y R N E James Nmi .

413 Observation of 8 B Solar Neutrinos in the Kamiokande-II Detector

K A J I T A Takaaki et al. (This paper has 34 authors.)

414 Experimental Study of the Atmospheric Neutrino F l u x K A J I T A Takaaki et al. (This paper has 27 authors.)

448 Neutrino Decays in Dense Medium KIM Chung W .

449 Radiat ive Decay and Magnetic Moment of Neutrinos in Matter KIM Chung W . C. Giunti , W . P . L a m

Page 50: P arallel Session 34

1471

Paper N o .

Ti t l e First Author or Contact Author ( C ol laboration)

477 E s t i m a t i o n of «-+ vT Osci l lat ion Parameters i n the E-564 Hybrid Experiment

V Y L O V T s . et al . (This paper h a s 8 authors . )

546 T h e Letter of Intent for a Long Basel ine Oscil lation Exper iment Us ing the High Intensity Neutrino B e a m for the Fermilab M a i n Injector a n d the 1MB Water Cerekov Detector

L O S E C C O John M . et al. (Th i s paper h a s 23 authors . )

547 Measurement of the M u o n Neutr ino Content of Underground Neutr inos

L O S E C C O J o h n M . et al. (This paper h a s 27 authors . )

P A R A L L E L SESSION 12 — Q U A N T U M G R A V I T Y

Paper N o .

Ti t l e First Author or Contact A u t h o r ( Col laboration)

115 Topological Gravity and Supergravity in Various Dimens ions C H A M S E D D I N E Ali Hani

116 Topological Gauge Theory of Gravity in F ive and All O d d Dimens ions

C H A M S E D D I N E Ah* Hani

257 Topological Mat ter Coupled to Gravity in 2 + 1 Dimens ions K U N S T A T T E R Gabor J. Gegenberg, H.P. Leivo

463 Renormalizabi l i ty of 3-Dimensional Gravity Coupled to Mat ter K U G O Taichiro

524 Entropy Generat ion in Q u a n t u m Gravity E N G L E R T Francois A . Casher

672 Gravitat ional A n y o n C H O Y . M . D . H . Park, C.G. H a n

P A R A L L E L S E S S I O N S 14 A N D 26 — L A T T I C E G A U G E T H E O R Y A N D C O M P U T E R S I M U L A T I O N S

Paper N o .

Ti t l e First Author or Contact A u t h o r (Col laborat ion)

14 Weak Matr ix Elements of Kaons S O N I Amarjit S. Claude Bernard

15 Latt ice Quark Propagator in F i x e d Gauges S O N I Amarjit S. et al. (This paper has 4 authors . )

16 Semi-Leptonic N e w s S O N I Amarji t S. Claude Bernard, A i d a X. El -Khadra

66 Gauge Theories on the Random-Block Latt ice CHIU Ting-Wai

67 Schwinger Mode l on the Random-Block Lattice CHIU Ting-Wai

68 Fermi o n Propagators on a Four-Dimensional Random-Block Latt ice

CHIU Ting-Wai

129 Evidence for F lux Tubes from Cooled Q C D Configurations D I G I A C O M O Adriano

Michèle Maggiore, Stefan Olejnik

130 Topological Charge, Renormal izat ion and Cooling o n the Lat t ice

D I G I A C O M O Adriano et al . (This paper h a s 4 authors . )

131 Cool ing and the String Tension in Latt ice Gauge Theories D I G I A C O M O Adriano et al . (This paper h a s 5 authors . )

Page 51: P arallel Session 34

1472

P a p e r

N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r

(Co l l abo ra t i on )

132 Conf inement a n d Chromoelec t r i c F l u x Tubes i n L a t t i c e Q C D D I G I A C O M O A d r i a n o

Michèle Magg io re , S te fan Olejnik

148 H a d r o n S t r u c t u r e a n d I n t e r a c t i o n from L a t t i c e Q u a n t u m C h r o m o d y n a m i c s Ca lcu la t ion

L IU K e h Fei

156 B i s t a t e t - E x p a n s i o n of t h e SU (2 ) L a t t i c e G a u g e T h e o r y H O R N D a v i d E . G . Klepfish

229 D u a l i t y T r a n s f o r m a t i o n for N o n - A b e l i a n L a t t i c e G a u g e Theor i e s

A N I S H E T T Y R a m e s h H . S . S h a r a t c h a n d r a

238 A b e l i a n a n d N o n a b e l i a n G a u g e T h e o r y o n a F i n i t e - E l e m e n t

L a t t i c e

M I L T O N K i m b a l l A .

285 A U ( 1 ) L ® U ( 1 ) H S y m m e t r i c Yukawa-Mode l i n t h e

S y m m e t r i c P h a s e

M O N T V A Y I s t v a n e t al . (Th i s p a p e r h a s 6 a u t h o r s . )

412 Differentiabil i ty a n d Con t inu i ty of F ie lds o n t h e L a t t i c e F O O N G See K i t J . L . De lyra , T . E . GaUivan

418 F l a v o u r Degrees of F r e e d o m a n d the T rans i t i on T e m p e r a t u r e i n Q C D

P E T E R S S O N Beng t e t a l .

( T h e M T C Co l l abo ra t ion )

419 T h e A c c e p t a n c e P robab i l i t y in t he H y b r i d M o n t e Car lo M e t h o d

P E T E R S S O N Beng t e t a l . (Th i s p a p e r h a s 4 a u t h o r s . )

433 A Possible Reso lu t ion of t h e La t t i ce Gr ibov Ambigu i ty M A N D U L A Jeffrey E . Michae l C. Ogilvie

549 Q C D P A X — A Para l l e l Vector P rocessor Ar ray for L a t t i c e

Q C D

O Y A N A G I Yoshio

( T h e Q C D P A X CoUabora t ion)

604 L a t t i c e H a d r o n Masses a t Smal l Q u a r k M a s s W A L S H T h o m a s F ranc i s et al .

(Th i s p a p e r h a s 6 a u t h o r s . )

P A R A L L E L S E S S I O N 15 — D Y N A M I C A L M A S S G E N E R A T I O N

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C ollab o ra t ion )

20 P e r m u t a t i o n S y m m e t r y a n d t h e Or ig in of Fe rmion Mass

Hiera rchy M O H A P A T R A R a b i n d r a K . S . B a b u

29 Fie ld T h e o r y Calcu la t ions of t h e P i o n M a s s t o O n e - L o o p O r d e r S C A D R O N Michae l D a v i d T . H a k i o g h l

71 V a c c u m Q u a n t i z a t i o n a n d t h e Gene ra t i ons of L e p t o n T A N G J u Fei

114 G e n e r a t i o n a l M a s s G e n e r a t i o n a n d S y m m e t r y B r e a k i n g M E S H K O V Sydney P e t e r K a u s

147 Nuc léon as a Topological Soli t ion I S L A M M u h a m m a d M u n i r

185 Posi t ive-Defini te A p p r o a c h t o Q u a r k Masses Mix ing a n d C P Noninvar iance

J I N C h a n g - H a o

201 Empi r i ca l ly Cons i s t en t 'Ca lcu lab le ' Q u a r k Mass Mat r i ces Arose from the 'F lavor D e m o c r a t i c ' Bas i s

M A T U M O T O Ken- I t i

209 S p o n t a n e o u s P a r i t y Vio la t ion in a S u p e r s y m m e t r i c Non l inea r <r-Model i n 2 + 1 D imens ions

M A H A N T H A P P A K . T . V . G . K o u r e s

Page 52: P arallel Session 34

1473

P a p e r

N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r

( C o l l a b o r a t i o n )

213 O n t h e Scal ing P r o p e r t i e s of Q u e n c h e d Q E D L O V E S h e r w i n T . W . A . B a r d e e n , V . A . M i r a n s k y

273 D y n a m i c a l B r e a k i n g of E lec t roweak S y m m e t r y b y Color -Sex te t Q u a r k C o n d e n s a t e s

M U T A Taizo e t a l . ( T h i s p a p e r h a s 6 a u t h o r s . )

544 C o m p o s i t e n e s s a n d t h e R e d u c t i o n of Coupl ings P É R E Z - M E R C A D E R J u a n A . M . B a s t e r o - G i l

P A R A L L E L S E S S I O N 16 — E X T E N D E D S T A N D A R D M O D E L

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C ol lab o r a t i o n )

78 T h e Phys i ca l Imp l i ca t ions of a New U ( l ) G a u g e B o s o n

C o u p l e d to L e p t o n a n d B a r y o n C u r r e n t s

H S U J o n g P i n g X i a n g x i a n g C h e n , M . D . X i n

296 Tree-Level Sca l a r -Fe rmion In t e r ac t i ons Cons i s ten t w i t h t h e S y m m e t r i e s of t h e S t a n d a r d M o d e l

H E X i a o - G a n g A . J . Dav ies

298 T h e o r e t i c a l a n d E x p e r i m e n t a l U p d a t e o n a Mode l F e a t u r i n g

a Second Z - B o s o n

V O L K A S R a y m o n d R o b e r t

X . - G . He , G . C . Josh i

299 New Z1 P h e n o m e n o l o g y V O L K A S R a y m o n d R o b e r t et a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

300 A n o m a l o u s M o m e n t s of t h e W - B o s o n from Compos i t enes s i n t h e A b b o t t - F a r h i M o d e l

V O L K A S R a y m o n d R o b e r t A . J . Dav ie s , G . C Josh i

301 N a t u r a l Gene ra l i za t i on of t h e S t a n d a r d M o d e l I n c o r p o r a t i n g

C h a r g e ± | Techni fe rmions

V O L K A S R a y m o n d R o b e r t

R , Foo t , H . Lew

302 T h e S t r u c t u r e of E x o t i c G e n e r a t i o n s V O L K A S R a y m o n d R o b e r t et a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

322 New Limi t s o n t h e Low E n e r g y P red ic t i ons for t h e P r e o n

G r a n d Unif ica t ion

C H A I C H I A N M a s u d

Y u . N . K o l k m a k o v , N . F . Ne l ipa

327 S U ( 5 ) C Color M o d e l S igna tu re s a t H a d r o n Coll iders R I Z Z O T h o m a s G e r a r d R . F o o t , O s c a r F . H e r n a n d e z

328 S o m e P h e n o m e n o l o g i c a l A s p e c t s of t h e S U ( 2 ) q X S U ( 2 ) f

x U ( l ) y M o d e l : I I

R I Z Z O T h o m a s G e r a r d

332 M e a s u r e m e n t s of t h e P r o p e r t i e s of t h e Z Boson , t he S t a n d a r d M o d e l a n d B e y o n d

R I Z Z O T h o m a s G e r a r d

394 Possibi l i ty of Discover ing t h e Nex t C h a r g e — 1 /3 Q u a r k T h r o u g h i t s F l a v o r - C h a n g i n g N e u t r a l - C u r r e n t Decays

H O U George We i -Shu R o b i n G . S t u a r t

434 N o n S t a n d a r d W - P a i r P r o d u c t i o n i n ep Coll iders S U N D A R E S A N M o s u r K . R . S inha , B . P . N i g a m

441 Lef t -Right S y m m e t r i c E lec t roweak Mode l s w i t h Tr ip le t Higgs

D E S H P A N D E Ni l eno ra G . e t a l . (Th i s p a p e r h a s 4 a u t h o r s . )

486 F e r m i o n Masses f rom S u p e r s y m m e t r i c D y n a m i c s i n P r o p e r

T i m e

J A R V I S P e t e r D a v i d M . J . W h i t e

516 R e l a x a t i o n of T o p M a s s L imi t s i n t h e T w o Higgs D o u b l e t M o d e l

K Ù H N J o h a n n He in r i ch A . D e n n e r , R . J . G u t h

Page 53: P arallel Session 34

1474

Paper No.

Title First Author or Contact Author (Collaboration)

554 Is There Enough Room for Z* in LEP Data? EPELE Luis Nicolas H. Fanchiotti, C.A. Garcia Canal

643 Renormalization Group Investigation of Heavy Quarks and Higgs Bosons

MATINYAN Sergei Gaikovich H.M.Asatzyan, A.N. Ioannissyan

PARALLEL SESSION 17 — HEAVY QUARKS (b and c QUARKS)

Paper No.

Title First Author or Contact Author (Collaboration)

12 Symmetry and Supersymmetry in Hadrons Containing Both Heavy and Light Quarks

LICHTENBERG Don B.

17 B Physics Theory SONI Amarjit S.

18 Lattice Study of D -+ Kir SONI Amarjit S. Claude Bernard, James Simone

110 Search for b —• sX+X ~~ in Exclusive Decays of B Mesons SCHRODER Henning (The ARGUS Collaboration)

154 Observation of Charmed Baryons S c in Neutron-Proton Interactions at Serpukhov Accelerator

KEKELIMIR Vladimir (The Bis-2 Collaboration)

158 Observation of the Exclusive Decay B -*> ei/D* and Search for B —> eu7T°

METZGER Wesley J. (The Crystal Ball Collaboration)

176 CP-Violations and Effects of 4th Generation in B Meson Nonleptonic Decays

HAYASHI Toshio et al. (This paper has 4 authors.)

226 Z and Vector Meson Production in Hadronic Collisions at Large Transverse Momentum

BERG STROM Lars R.W. Robinett

246 B Meson Mixing and Low-Energetic Dynamic Flavour CHKAREULI J.L.

315 Presymptotic Behaviour of the Hadronic Form Factor and the Anamalous J/t/> and Decays

CHAICHIAN Masud N.A. Tôrnqvist

381 D+D° Signals and Lifetimes in E687 Photoproduction Experiment at Fermilab

MORONI Luigi L. Moroni (For E687 Collaboration)

382 Exclusive and Inclusive Semileptonic Decays of B Mesons to D Mesons

KUBOTA Yuichi (The CLEO Collaboration)

383 Measurement of 77 Widths of Charmonium States KUBOTA Yuichi (The CLEO Collaboration)

384 Observation of £-Meson Semileptonic Decays to Non-Charmed Final States

KUBOTA Yuichi (The CLEO Collaboration)

385 Observation of V(45) Decays into Non-BJB Final States Containing t/> Mesons

KUBOTA Yuichi (The CLEO Collaboration)

386 Exclusive and Inclusive Decays of B Mesons into D$ Mesons KUBOTA Yuichi (The CLEO Collaboration)

420 Search for Semileptonic B Decays into Baryons SCHRODER Henning (The ARGUS Collaboration)

421 Measurement of E Production in e+e~ Annihilation at 10.5 GeV Center of Mass Energy

SCHRODER Henning (The ARGUS Collaboration)

Page 54: P arallel Session 34

1475

Paper No.

Title First Author or Contact Author (Collaboration)

422 Exclusive Hadronic Decays of B Mesons SCHRODER Henning (The ARGUS Collaboration)

539 The Beauty of Beautiful Mesons NARISON Stephan

563 Measurement of the J/V' Elastic Photoproduction from 100 GeV to 400 GeV in the Experiment E687 at Fermilab

R A T T I Sergio P. et al. (This paper has 60 authors.)

564 Hadroproduction of Charm at Fermilab E769 SPALDING Will iam Jeffrey (The Tagged P h o t o n Spectrometer Collaboration)

589 Some Lifetimes and Branching Ratios for Charmed Hadrons Produced in the Fermilab Wide-Band Photon Beam

SHEPHARD Will iam D . (The Fermilab E687 Collaboration)

661 Investigation of Prompt Neutrino Production in the Iron Beam-Dump with the IHEP-JINR i/-Detector

RYSECK Han-Eckhard (IHEP Berlin-Zeuthen-ZFKI Budapest-JINR Dubna-IHEP Serpuchov Collaboration)

668 B Semileptonic Decays at the T ( 4 5 ) and the T ( 5 5 ) t LEE-FRANZINI Juliet (The CUSB Collaboration)

669 Hadronic Widths of the x{> States LEE-FRANZINI Juliet (The CUSB Collaboration)

670 El Transitions to and from the x j , a n d \b States LEE-FRANZINI Juliet (The CUSB Collaboration)

675 Hyperflne Splitting of B-Mesons and Bs Production at the V(55)

LEE-FRANZINI Juliet (The CUSB Collaboration)

677 Description of the Fermilab E-687 Spectrometer GOURLAY Stephen Alan (The E-687 Collaboration)

689 Inclusive Production at the Charmed Baryon A c from e+ e~ Annihilations at y/s = 10.55 GeV

K U B O T A Yuichi (The CLEO CoUaboration)

690 Determination of B(Df —> <£7r+) via Observation of K U B O T A Yuichi (The CLEO Collaboration)

691 Study of the Decays D° -> KK, TTTT K U B O T A Yuichi (The CLEO Collaboration)

PARALLEL SESSION 18 — JETS A N D FRAGMENTATION

Paper No.

Title First Author or Contact Author ( C ollaboration)

53 Towards a Systematic Jet Classification JONES Lorella Margaret

92 Inclusive ir° and 77 Meson Production in Electron Positron Interactions at y/s = 10 GeV

SCHRODER Henning (The ARGUS Collaboration)

96 Inclusive Production of Charged Pions, Charged and Neutral Kaons and Antiprotons in e+ e"~ Annihilation at 10 GeV and in Direct Upsilon Decays

SCHRODER Henning (The ARGUS Collaboration)

97 Observation of A ( 1 2 3 2 ) + + Production in e + e ~ Aroiihilations Around 10 GeV

SCHRODER Henning (The ARGUS Collaboration)

103 Study of Antideuteron Production in e + e~ Annihilation at 10 GeV Centre-of-Mass Energy

SCHRODER Henning (The ARGUS Collaboration)

Page 55: P arallel Session 34

1476

P a p e r N o .

T i t l e First Author or Contact Author ( C ol laboration)

107 Evidence for a Higher Twis t Effect i n Electron Pos i t ron Annih i la t ion into Hadrons at 10 G e V Centre of Mass Energy

S C H R O D E R Henning ( T h e A R G U S Col laborat ion)

133 Quark Jets , Gluon Je t s and the Three -Gluon Vertex F O D O R Zoltan

260 String Fragmentat ion Mode l a n d Inclusive P r o d u c t i o n of tf±(892)

F A Z A L - E - A L E E M Fazal A l e e m M o h a m m a d S a l eem

270 Propert ies of Gluon Jets: A Rev iew S U G A N O K a t s u h i t o

334 Validity of the F e y n m a n Scaling Law o n the Pseudorapid i ty Dis tr ibut ion in the Most Forward Fragmentat ion Reg ion

Y A M A M O T O Yoshiaki M . Sakata, H. M u n a k a t a

423 S t u d y of pp and À À P r o d u c t i o n i n e+ e~ Annihi lat ion at 10 G e V Center of Mass Energy

S C H R O D E R Henning ( T h e A R G U S Col laborat ion)

506 Measurement of 7r° and r) M e s o n Product ion in e"*" e~ Annihi la t ion at y/s Near 10 G e V

V O L L A N D U d o ( T h e Crystal B a l l Col laborat ion)

507 Fractal Structures a n d Intermittency i n Q C D G U S T A F S O N G ô s t a A . Ni l sson, C. Sjogren

603 Exper imenta l Support for the Geometrical Picture of Mult ipart ic le Emiss ion in e+ e — Collisions

C H O U T . T . C.N. Yang

631 Energy Flow and Transverse M o m e n t u m of Hadron Jets P r o d u c e d in D e e p Inelastic M u o n Scattering

L U B A T T I H.J. ( T h e Fermilab E665 Col laboration

680 Comparison of Quark a n d Gluon Jets Us ing Three-Jet Event s from e + e ~ Annihi lat ion at Tristan

O L S E N Stephen L. ( T h e A M Y Col laborat ion)

P A R A L L E L S E S S I O N 19 — G E N E R A L F I E L D T H E O R Y

P a p e r N o .

T i t l e First A u t h o r or Contact A u t h o r ( C ol laborat ion)

6 T h e Mass of i 7 -Dibaryon in a n S U (3) Skyrme M o d e l L E E H y u n K y u Jo o n H a K i m

19 Sphalerons and the Energy Barrier of the Weinberg-Salam Theory

K L I N K H A M E R Frans Richard

3 0 Critical E x p o n e n t s in Matrix Mode l s K A Z A K O V Dmitr i Igor

42 Primit ive Bosons in Chiral Gauge Theories K O R E T U N E S u s u m u

45 Syrmions of Different T y p e s LI T ie Zhong

55 Hadron Spectroscopy, Supersymmetry, a n d Relat iv is t ic Harmonic Oscillators

B E C K E R S Jules Jean, Charles N . D e b e r g h

58 Instabil i ty of Chiral Sol i ton Stabi l ized by Quant izat ion of Breath ing M o d e

K O B A Y A S H I Akizo H. Otsu , S. Sawada

59 Pari ty-Vio lat ing Skyrmions w i t h p M e s o n o n 5 3 and R3 K O B A Y A S H I Akizo et al. (Th i s paper has 4 authors . )

65 Supersymmetry of a One-Dimens ional Hydrogen A t o m S I S S A K I A N Alexei N . et al. (Th i s paper has 4 authors . )

72 Suppress ion of Local Degrees of Freedom of Gauge Fie lds b y Chiral Anomal ies

W U Yong-Shi W e i - D o n g Zhao

74 Emergence of Spinor from F l u x a n d Latt ice Hopping Z E E Anthony

Page 56: P arallel Session 34

1477

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l abora t ion )

81 Unified Mode l s f rom G a u g e d Supe rg roups J A R V I S P . D .

88 Unif ied-Gauge F o r m a l i s m a t T w o Loops for a Class of P h y s i c a l Gauges

L E I B B R A N D T George

89 Iden t i t i e s for N o n c o v a r i a n t - G a u g e In tegra l s in t h e 77* - F o r m a l i s m

L E I B B R A N D T George

118 G a u g e S t r u c t u r e a n d G e o m e t r y i n Q u a n t u m Ad iaba t i c S y s t e m C H A N G K o w - L u n g J . I . Sh ieh

134 I n N o n - A b e l i a n G a u g e F ie ld T w o O r d e r T rans fo rma t ion of F ie ld Var iab le is E q u a l t o Zero to Res t r i c t t h e P a r a m e t e r of G r o u p

Q I U R o n g

136 E u c l i d e a n Yang-Mills T h e o r y in C o n s t a n t B a c k g r o u n d F ie lds a n d U n s t a b l e Modes

K A I S E R H . J . K . S c h a r n h o r s t , E . Wieczorek

137 R a d i a t i v e Cor rec t ions t o N o n - A b e l i a n Gauge T h e o r y i n Homogeneous Self-Dual B a c k g r o u n d

K A I S E R H . J . C . Ebe r l e in , E . Wieczo rek

161 N o t e on Regu la r i za t ion D e p e n d e n c e of L o o p Correc t ions t o t h e N o n - A b e l i a n Che rn -S imons T e r m

K A O Yeong C h u a n M . F . Y a n g

181 C o m m e n t s of T w o Higgs Mul t i p l e t s M o d e l G A O C h o n g s h o u G a o Y u a n n i n g

197 G a u g e F ix ing by M e a n s of L a g r a n g e Mul t ip l ie r a n d a n A n o m a l y Free Q u a n t i z a t i o n of Chi ra l Boson

O H B A Ichiro N . T a n a b e

203 B C S - T y p e R e l a t i o n for t h e Compos i t e Higgs B o s o n in G a u g e d N a m b u - J o n a - L a s i n i o M o d e l

Y A M A W A K I K . S. S h u t o , M . T a n a b a s h i

204 D y n a m i c a l S y m m e t r y Break ing D u e to S t rong Coupl ing Yukawa I n t e r a c t i o n

Y A M A W A K I K. Kei-Ichi K o n d o , M . T a n a b a s h i

205 F u n w i t h Large A n o m a l o u s D imens ion i n D y n a m i c a l S y m m e t r y Break ing

Y A M A W A K I K .

221 D y n a m i c a l S y m m e t r y B r e a k i n g f rom Toroida l C o m p a c t ificat i on

H O C h o o n - L i n J a m e s E . He t r i ck

222 S y m m e t r y B r e a k i n g b y Wi l son Lines a n d F i n i t e T e m p e r a t u r e Effects

H O C h o o n - L i n Y u t a k a H o s o t a n i

223 C o n s t a n t G a u g e F ie lds a n d S y m m e t r y Break ing on Torus H O C h o o n - L i n

227 Schrôd inger E q u a t i o n for t h e Nonre la t iv i s t ic Pa r t i c l e C o n s t r a i n e d on a Hypersur face in a C u r v e d Space

M I Y A Z A K I T . Takah i ro H o m m a , T a d a s h i I n a m o t o

230 Conf inement of G luons i n C h r o m o electric Vacua A N I S H E T T Y R a m e s h R a h u l B a s u . R . P a r t h a s a r a t h y

264 Vanish ing Cosmologica l C o n s t a n t a n d In imi té Local S u p e r s y m m e t r y in 2 D imens ion

K W O N Y o u n g h u n

271 P h a s e S t r u c t u r e of S t r o n g Coupl ing U n q u e n c h e d Q E D (I) Ana ly t i ca l S t u d y

K O N D O Kei-Ichi H a j i m e N a k a t a n i

272 P h a s e S t r u c t u r e of U n q u e n c h e d Q E D w i t h Four -Fe rmion I n t e r a c t i o n

K O N D O Kei-Ichi

278 S u m Rules for SU (4) P s e u d o s c a l a r B B P Coupl ings K H A N N A M o h i n d e r P a u l G u r p r e e t K a u r

290 A Par t i c l e w i th Local Wor ld l ine S u p e r s y m m e t y a s the Source of a G r a v i t a t i o n a l F ie ld w i th Tors ion

M A N J O C - B O R S T N I K N o r m a Susana M a t e j Pavs i c

Page 57: P arallel Session 34

1 4 7 8

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l lab o r a t i o n )

295 A n o m a l y i n E v e n D i m e n s i o n s w i t h a n A r b i t r a r y S i g n a t u r e a n d t h e F i n i t e T e m p e r a t u r e Effect

H E X i a o - G a n g G i r i s h C . Jo sh i

306 T o r o n s , C h i r a l S y m m e t r y B r e a k i n g a n d t h e U ( l ) P r o b l e m i n t h e S i g m a - M o d e l a n d i n G a u g e Theor i e s

Z H I T N I T S K Y Ar ie l R a k h m i e l e v i c h

307 S t o c h a s t i c Ca l cu lu s W i t h o u t R o t a t i o n D e p e n d e n c e M O C H I Z U K I Riu j i

308 A N o n p e r t u r b a t i v e C a l c u l a t i o n of t h e S p e c t r u m of a N o n h e r m i t e F o k k e r - P l a n c k H a m i l t o n i a n

N A K A Z A T O Hi romich i Takesh i Y a m a s h i r o

345 L i n e a r S y s t e m s a n d C o n s e r v a t i o n Laws in D == 10, N = 1 Supe rg rav i ty

C H A U Ling-Lie B . Milewski

346 G e o m e t r i c a l C o n s t r a i n t s for D = 10, N = 1 S u p e r g r a v i t y C H A U Ling-Lie C h o n g - S a L i m

357 M u l t i b a r y o n Wavefunc t ions in Q C D 2 F R I S H M A N Y i t z h a k W . J . Zakrzewsk i

358 B a r y o n Wavefunc t ions a n d S t r angenes s C o n t e n d i n Q C D 2 F R I S H M A N Y i t z h a k M . K a r l i n e r

365 G a u g e Inva r i ance of S y s t e m s w i t h F i r s t - C l a s s C o n s t r a i n t s C H A I C H I A N M a s u d A . C a b o

366 A n A t t r a c t i v e D e r i v a t i o n of F a d d e e v - P o p o v P a t h I n t e g r a l C H A I C H I A N M a s u d A . C a b o

378 P e r t u r b a t i v e a n d N o n p e r t u r b a t i v e Imp l i ca t i ons of C a n o n i c a l Q u a n t i z a t i o n i n Axia l G a u g e s

H A L L E R K u r t

411 O n s e t of C h a o s i n T i m e - D e p e n d e n t Spher ica l ly S y m m e t r i c S U ( 2 ) Yang-Mi l l s T h e o r y

K A W A B E Tetsu j i S h o n o s u k e O h t a

415 A n O p e r a t o r R é g u l a r i s a t i o n for C h i r a l G a u g e T h e o r i e s S O T O J o a n Yu . A . K u b y s h i n

458 L a n d a u G a u g e Pecu l i a r i ty in Q E D Schwinge r -Dyson E q u a t i o n K U G O Ta ich i ro e t a l . ( T h i s p a p e r h a s 5 a u t h o r s . )

459 A s y m p t o t i c a l l y Free Versus A s y m p t o t i c a l l y Non-F ree G a u g e T h e o r i e s

K U G O Ta ich i ro e t a l . ( T h i s p a p e r h a s 5 a u t h o r s . )

462 C o m p o s i t e n e s s C o n d i t i o n i n R e n o r m a l i z a t i o n G r o u p E q u a t i o n K U G O Ta ich i ro e t a l . ( T h i s p a p e r h a s 6 a u t h o r s . )

541 T h e R o t a t i o n Inva r i an t G a u g e M o d e l w i t h t h e C o m p a c t M o m e n t u m Space

K A D Y S H E V S K Y V l a d i m i r D . V . F u r s a e v

559 A P o t e n t i a l A m b i g u i t y i n L a t t i c e Q u a n t i z a t i o n F O O N G See K i t

577 Genera l i z ed S ta t i s t i c s K A P O O R A s h o k K u m a r e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

596 Skyrme-L ike a n d Topologica l T e r m s in S i g m a M o d e l s Z A K R Z E W S K I Wojc iech Je r zy M a r i a J . A .de A z c a r r a g a , M . S . R a s h i d

601 T w i s t e d Q u a n t u m G r o u p s of A^i I I R i b b o n L inks S U ( M / L ) C h e r n - S i m o n s T h e o r y a n d G r a d e d Ver tex M o d e l s

L E E H . C . M . C o u t u r e

614 Axia l ly S y m m e t r i c "Pe r iod ic" So lu t ions of t h e Yang-Mi l l s F i e l d T h e o r y w i t h t h e C h e r n - S i m o n s T e r m

T E H R o s y C h o o i G i m

Page 58: P arallel Session 34

1479

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l abora t ion )

616 A Scheme for C o m p l e m e n t a r i t y a n d Higgs P h a s e Analys is L U G o n g r u Bing-Lin Young , X i n m i n Z h a n g

673 T h e o r y of G r a v i t a t i o n a l Monopo le C H O Y . M .

682 B o u n d s o n E x t e n d e d G a u g e Mode l s A L T A R E L L I G. et a l . (Th i s p a p e r h a s 4 a u t h o r s . )

688 D u a l Q C D B A L L J a m e s S. M . B a k e v , F . Zachas iasen

695 A Comple t eness R e l a t i o n for t he g-Analogue Coheren t S t a t e s by g - In te rgra t ion

N E L S O N Char l e s A r n o l d R o b e r t W . G r a y

701 C o m p l e x S ta t i c s Solu t ions t o 2+1 D imens iona l Topological Mass ive G a u g e Fie ld Theor ies

O H C H . L . C . Sia, E . C . G . S u d a r s h a n

P A R A L L E L S E S S I O N 20 — B E Y O N D T H E S T A N D A R D M O D E L

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r (Co l l abora t ion )

11 N e u t r a l Z° Bosons in a Supe r s t r i ng -Re la t ed S U ( 2 ) L X U ( l ) ^ XU (1 ) C X U(1)D E lec t roweak M o d e l

Y U N S u k K o o

54 A Second Z Boson in Fully G a u g e d Weinberg ' s L a g r a n g i a n a n d i t s E x p e r i m e n t a l Test

H S U J o n g P i n g

80 66 -Product ion on the Z Resonance : A Chal lenge to t he S t a n d a r d M o d e l

V E R Z E G N A S S I C l a u d e e t a l . (Th i s p a p e r h a s 5 a u t h o r s . )

127 (27) 3 Yukawa Coupl ings a n d E m b e d d i n g s of Discrete G r o u p s in C P 3 X C P 2 / Z 3 X Z'3 Mode l

N A T H P r a n R . A r n o w i t t , J .Z . W u

128 R e n o r m a l i z a t i o n G r o u p F l u x of t h e Q u a r t i c Coupl ings a n d i t s Influence on t h e Higgs M a s s S p e c t r u m i n T w o Higgs Mode l s a t t h e Fermi Scale

R O D E N B E R G Rudoff

178 Elec t roweak Phys ic s f rom e+ e"~ Ann ih i l a t ion in to H a d r o n s : P r e s e n t a n d F u t u r e

V E R Z E G N A S S I C l a u d e

207 A n Un-Unif iable E x t r a U ( l ) M A H A N T H A P P A K . T . P .K . M o h a p a t r a

208 Effects of E x t r a U ( l ) ' s i n S U ( 3 ) L ® U ( l ) a n d O t h e r Models M A H A N T H A P P A K . T . P . K . M o h a p a t r a

218 Hierarchica l R a d i a t i v e Q u a r k a n d L e p t o n Mass Mat r ices M A E r n e s t

219 C P Nonconse rva t ion i n S u p e r s y m m e t r y w i t h Rad ia t i ve Q u a r k Masses

M A E r n e s t Dan ie l N g

263 Famil ies in Confining T h e o r y of Q u a r k s . S a rks a n d L e p t o n s F R A M P T O N P a u l H . Y . J a c k N g

274 Search for Neu t ra l inos a t t h e Z° P e a k in e + e ~ Collider H I D A K A K e i s h o P . Ratcliffe

289 A S y s t e m a t i c S t u d y of S t rongly Local ized Almost Massless Sys t ems

M A N J O C - B O R S T N I K N o r m a Susana B o j a n Bozic

Page 59: P arallel Session 34

1480

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

326 Higher-Dimension Gluon Operators and Hadronic Scattering S I M M O N S El izabeth H.

329 E6 Models Confront SN1987A RIZZO T h o m a s Gerard J .A. Grifols, E . Masso

333 Charged Higgs B o s o n Product ion in e+ e~" Collisions RIZZO T h o m a s Gerard

355 Neutr ino Counting at the Z Peak in E x t e n d e d Electroweak Models

H E W E T T Joanne Lea

356 N e w Constraints on the Charged Higgs Sector in Two-Higgs-Doublet Models

H E W E T T Joanne Lea V . Barger, R .J .N . Phil l ips

372 Parity and the Standard Model: A New Approach B E N T O Luis

392 Phenomenolg ica l Analysis of a Topless Left-Right Mode l P A K V A S A Sandip D.P . Roy, S. U m a Sankar

398 Relat ing the Long B Lifetime to a Very Heavy Top Quark H O U George Wei-Shu H E Xiao-Gang

457 Natural ly Suppressed Flavor Violations in T w o Higgs Double t Models

J O S H I P U R A A n j a n Sidhvantlal Saurabh D . Rindani

470 F i x e d Point Masses in a T w o Higgs Model F R O G G A T T Colin D a v i d I .G. Knowles , R . G . Moorhouse

525 Families in the Nonperturbative Unification Scheme Z O U P A N O S George S. The isen , D . Kapetanakis

526 Phys ics Beyond the Standard M o d e l in the Non-Perturbative Unification Scheme

Z O U P A N O S George D . Kapetanakis

551 Looking for Universality Violat ions at the Z RIZZO T h o m a s Gerard

582 Constraints on an Addit ional Z' Gauge B o s o n Versus the Wy the Top and the Higgs Masses

VALLE Jose W . F . M . C . Gonzalez-Garcia

583 Constraints on Addit ional Z1 Gauge Bosons from a Precise Measurement of the Z Mass

VALLE José W . F . M . C . Gonzalez-Garcia

584 A Model for Spontaneous R Parity Breaking VALLE José W . F . A. Masiero

585 U p d a t e d Constraints on a New Neutral Gauge B o s o n VALLE José W . F . M . C . Gonzalez-Garcia

590 Flavor Unification Without Mirror Fermions Z E P E D A Arnulfo Robert E . Martinez, Wi l l iam A. Ponce

610 How Model -Dependent are Sparticle Mass Bounds from LEP? D R E E S Manuel Xerxes Tata

615 Unified Model of Metacolor Interaction LU Gongru Bing-Lin Young, Dong-Sheng D u

636 Semileptonic Decays of B Mesons into rvr in a T w o Higgs Double t Model

K A L I N O W S K I Jan

645 Product ion and Decay of Minimal S U S Y Higgs Bosons at L E P / S L C and Beyond

W E I L E R T h o m a s Joseph H e a t h Pois , T z u Chiang Y u a n

693 Mode l Independent Constraints on a Heavy Neutral Vector B o s o n from Present a n d Future L E P and SLC D a t a

V E R Z E G N A S S I C. J. Layssac, F .M. Renard

Page 60: P arallel Session 34

1481

P A R A L L E L S E S S I O N 21 — S O F T H A D R O N P H Y S I C S

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

5 C h a r g e d P a r t i c l e Mul t i p l i c i t y D i s t r i b u t i o n i n L i m i t e d R a p i d i t y W i n d o w s i n H a d r o n - N u c l e u s S c a t t e r i n g

Y O U N G K e n n e t h et a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

46 A P r e d i c t i o n for Mul t ip l i c i t y D i s t r i b u t i o n s a t F u t u r e H a d r o n i c Col l iders

H E G Y I S. S. K r a s z n o v s z k y

4 7 R e g u l a r F e a t u r e s of P r e d i c t e d Mul t ip l i c i ty D i s t r i b u t i o n s for Very H i g h E n e r g i e s

H E G Y I S. S. K r a s z n o v s z k y

48 D o e s K N O Sca l ing H o l d a t L E P Energ ie s? H E G Y I S.

S. K r a s z n o v s z k y

6 3 C o m p a r i n g F e r m i - D i r a c H a d r o n w i t h Bose -E ins t e in H a d r o n i n M u l t i p a r t i c l e P r o d u c t i o n P roces se s

Z H A O S h u s a n g

76 C h i r a l S y m m e t r y a n d V e c t o r D o m i n a n c e S C A D R O N M i c h a e l D a v i d

T . H a k i o g l û

90 S U ( 3 ) B r e a k i n g i n H y p e r o n B e t a Decays R O O S M a t t s

104 M e a s u r e m e n t of K~~ P r o d u c t i o n in 77 Coll isions S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o a t i o n )

117 B r e m s s t r a h l u n g a n d Diffractive D i s soc i a t i on F A E S S L E R M a r t i n A .

K . H . D e d e r i c h s

153 I/>-Meson P r o d u c t i o n i n N e u t r o n - N u c l e u s In t e r ac t i ons a t 3 0 - 7 0 G e V

K E K E L I D Z E V l a d i m i r ( T h e Bis-2 C o l l a b o r a t i o n )

160 F l u c t u a t i o n s of F l u c t u a t i o n s a n d Spiky Spikes D R E M I N L M .

( T h i s p a p e r h a s 7 a u t h o r s . )

174 S p i n Effects a n d R o t a t i n g Co lou r C h a r g e s i n P r o t o n - P r o t o n E l a s t i c S c a t t e r i n g

M E N G T a - C h u n g L i a n g Z u o - T a n g

184 A Col l ider Diffractive T h r e s h o l d , H a d r o n i c P h o t o n s a n d S e x t e t Q u a r k s

W H I T E A l a n R i c h a r d K y u n g s i k K a n g

259 R e s u l t s F r o m U A l M i n i m u m B i a s E v e n t s on G - M o m e n t s M u l t i f r a c t a l S t r u c t u r e a n d t h e PT D e p e n d e n c e of F a c t o r i a l M o m e n t s

M A R K Y T A N M a n f r e d H . D i b o n

265 O Z I R u l e for t h e S t r a n g e Q u a r k a n d t h e Decoup l ing T h e o r e m L I L i n g - F o n g T . P . C h e n g

269 I n t e r m i t t e n c y S t u d y i n e + e ~ A n n i h i l a t i o n s a t 29 G e V S U G A N O K a t s u h i t o

286 P r o d u c t i o n P o l a r i z a t i o n a n d M a g n e t i c M o m e n t of

A n t i - H y p e r o n s P r o d u c e d b y 800 G e V / c P r o t o n s L U K K a m - B i u

377 S t ab i l i t y of " S p i n n i n g Sol i t ion" i n C h i r a l M o d e l O K A Z A K I T a k a s h i K a n j i Fuji i , N a o h i s a O g a w a

390 H a v e W e P a s s e d a N e w S t r o n g I n t e r a c t i o n T h r e s h o l d ? K A N G K y u n g s i k A l a n R . W h i t e

399 Mul t i p l i c i t y C o r r e l a t i o n a n d C l u s t e r Size i n H i g h E n e r g y Col l is ions

L I M Sin L e n g C H . O h , K . K . P h u a

466 K°s - R e g e n e r a t i o n a t U N K Ene rg i e s S H E L K O V E N K O A l e x a n d e r Nicholas B . V . S t r u m i n s k y

512 F a c t o r i a l C o r r e l a t o r s f r o m 7r+p a n d K*p Coll isions a t 250 G E V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

Page 61: P arallel Session 34

1 4 8 2

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

513 T r i p l e R e g g e Ana lys i s of Inc lus ive A P r o d u c t i o n i n K+p a n d 7T+p I n t e r a c t i o n s a t G e V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

514 Low PT I n t e r m i t t e n c y i n 7 r + p a n d K+p Col l i s ions a t 250 G e V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

520 C o m p a r i s o n of Soft H a d r o n P r o d u c t i o n i n K~p I n t e r a c t i o n s w i t h Q u a r k J e t B e h a v i o u r i n L e p t o n I n t e r a c t i o n s

Z O M O R R O D I A N M o h a m m a d E b r a h i m K . W . J . B a r n h a m

529 I n t e r m i t t e n c y i n M u l t i h a d r o n i c e + e ~ A n n i h i l a t i o n s a t 35 G e V

F E I N D T M i c h a e l ( T h e C E L L O C o l l a b o r a t i o n )

542 S t u d y of I n t e r m i t t e n c y i n e+e~" A n n i h i l a t i o n s a t 29 G e V S U G A N O K . e t a l . ( T h i s p a p e r h a s 32 a u t h o r s . )

553 S t u d y of I n t e r m i t t e n c y i n e + e ~ A n n i h i l a t i o n s a t 29 G e V S U G A N O K a t s u h i t o e t a l . ( T h i s p a p e r h a s 30 a u t h o r s . )

594 Col lec t ive C h a r a c t e r i s t i c s of H a d r o n S y s t e m s P r o d u c e d i n B e a m F r a g m e n t a t i o n of ir+p Col l i s ions a t 2 5 0 G e V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

599 T h e I m p o r t a n c e of P h a s e Space D i m e n s i o n i n t h e I n t e r m i t t e n c y Ana lys i s of M u l t i h a d r o n P r o d u c t i o n

O C H S Wol fgang

600 A S t u d y of D o u b l e P o m e r o n E x c h a n g e i n 7r+p a n d K+p I n t e r a c t i o n s a t 250 G e V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

608 C h a r g e d Mul t i p l i c i t y D i s t r i b u t i o n i n e + e ~ A n n i h i l a t i o n a t L E P E n e r g i e s

C H E W C h o n g - K e e A . H . C h a n , D . K i a n g

611 p-u> M i x i n g a n d C h i r a l Effect ive M o d e l s E P E L E L u i s Nico las e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

612 P r e d i c t i o n for t h e N e u t r o n - P r o t o n M a s s Difference B a s e d o n E x p e r i m e n t a l I n f o r m a t i o n

E P E L E L u i s N ico l a s e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

616 A S c h e m e for C o m p l e m e n t a r i t y a n d Higgs P h a s e A n a l y s i s L U G o n g r u B i n g - L i n Y o u n g , X i n m i n Z h a n g

619 F a c t o r i a l M o m e n t s a n d C o r r e l a t i o n s i n M e s o n - N u c l e u s I n t e r a c t i o n s a t 250 G e V / c

D E W O L F E d d i ( T h e N A 2 2 C o l l a b o r a t i o n )

620 C o h e r e n t I n t e r a c t i o n s of 7r+ a n d M e s o n s o n Al a n d A u N u c l e i a t 250 G e V / c

D E W O L F E d d i A . ( T h e N A 2 2 C o l l a b o r a t i o n )

621 T r a n s v e r s e M o m e n t u m C o r r e l a t i o n s i n M e s o n - P r o t o n a n d M e s o n - N u c l e u s I n t e r a c t i o n s a t 250 G e V / c

K I T T E L W o l f r a m ( T h e N A 2 2 C o l l a b o r a t i o n )

639 O n t h e P r e c i s i o n of t h e P C A C N o t i o n f r o m ~ D e c a y W U Y u e - L i a n g

640 R e m a r k o n Soft P i o n T h e o r e m W U Y u e - L i a n g

650 T h e F e y n m a n F l u i d A n a l o g y i n t h e e + e " A n n i h i l a t i o n H E G Y I S. S. K r a s z n o v s k y

651 S t a t i s t i c a l D i s t a n c e a n d t h e A p p r o a c h t o K N O Sca l ing D I Ô S I L . S. H e g y i , S. K r a s z n o v s z k y

652 D o e s K N O Sca l ing H o l d a t L E P E n e r g i e s ? H E G Y I S. S. K r a s z n o v s z k y

653 R e g u l a r F e a t u r e s of P r e d i c t e d M u l t i p l i c i t y D i s t r i b u t i o n s for Very H i g h E n e r g i e s

H E G Y I S. S. K r a s z n o v s z k y

654 A P r e d i c t i o n for Mu l t i p l i c i t y D i s t r i b u t i o n s a t F u t u r e H a d r o n i c Col l ide rs

H E G Y I S. S. K r a s z n o v s z k y

Page 62: P arallel Session 34

1483

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

655 Intermittency Patterns in Hadron Production C A P E L L A Alfons K. Fialkowski. A . Krzywicki

656 Diffractive Dissociation of Nuclei in 450 G e V / c Proton-Nucleus Collisions

FAESSLER Martin A. (The HELIOS Collaboration)

658 Bose-Einstein Correlations in P ion Production at Tristan OLSEN Stephen L. (The A M Y Collaboration)

660 Direct Soft P h o t o n Product ion in K+p and 7r+p Collision at 250 G e V / c

D E W O L F Eddi A.

671 e + e"~ Multiplicity Distribution from Markov Branching Process

C H E W Chong-Kee A.H. Chan

694 A Resolution-Dependent Cluster Analysis in 7r+p,l i f+p and pp Interactions at 250 G e V / c

D E W O L F Eddi A. (The EHS-NA22 Collaboration)

707 Search for Exotic Baryon States in Baryon Exchange React ion 7r+ p —*• p7r+'IR~ at 4 G e V / c

A B R A M O V B.M. (This paper has 15 authors.)

PARALLEL SESSION 22 — R A R E D E C A Y S

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

8 Large NC Higher Order Weak Chiral Lagrangians Coupled to External Electromagnetic Fields: Applications to Radiative Kaon Decays

CHENG Hai-Yang

21 Radiative Decay of the B o t t o m Quark and the W Coupling

CHIA Swee-Ping

23 Weak Nonleptonic Pseudoscalar K,DyB Decays and Current Algebra

S C A D R O N Michael Dav id R .E . Karlsen

24 Vacuum Saturation Model for A J = 3 / 2 Components on Nonleptonic Weak Decays

S C A D R O N Michael Dav id R .E . Karisen

26 Direct CP Violation in Kj, s —• 27 for Large Top Mass PICEK Ivica J .O. Eeg, B . Nizic

27 K°L - f 2 t t and K°L - + 7r°e+e- without CP-Violation N A K A M U R A Seitaro Nobuya Nakazawa

217 A Search for /i —• e7 at the Level of 10 ~ 1 3 MISCHKE Richard E . et al. (This paper has 69 authors.)

283 Search for —• FIE and KQ

L -» ee Decays KISHIDA Takashi (The Kek E-137 Collaboration)

291 Hadronic Weak Decays of ^ K A M A L Abdul Nairn R . C . Verma, A. Czarnecki

339 A Measurement of the Branching Ratio and Form Factor for KL -> e + e - 7 (YAUG-A-90 /5 )

S C H M I D T Michael Perry et al. (This paper has 12 authors.)

340 Observation of the Decay Mode K°L - > 77ee (YAUG-A-90 /4 ) S C H M I D T Michael Perry et a l . (This paper has 12 authors.)

341 Background to —* 7r°EE from —*• 77e e (YAUG-A-90 /3 )

S C H M I D T Michael Perry H.B . Greenlee

Page 63: P arallel Session 34

1484

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

342 Improved Experimental Limit on KL —• 7 r ° e + e ~ ( Y A U G - A - 9 0 / 2 )

S C H M I D T Michael Perry et al. (This paper has 12 authors.)

347 Comments on Q C D Sum-Rule Calculations of Exclusive T w o - B o d y Decays of Charmed Mesons

C H A U Ling-Lie H.Y. Cheng

348 Analysis of the Recent D a t a of Exclusive T w o - B o d y Charm Decays

C H A U Ling-Lie H.Y. Cheng

349 O n the Non-Resonant Three-Body Decays of Charmed Meson CHAU Ling-Lie H.Y. Cheng

350 Predict ions for the Quark-Mixing Doubly Suppressed Decays of Charmed Mesons

C H A U Ling-Lie Hai-Yang Cheng

397 Higher Order Dominance in the Standard Model H O U George Wei-Shu Robin G. Stuart

409 Search for Right-Handed Currents in the Decay of K+ - + /x+ U A O K I M a s a h a m et al. (This paper has 11 authors.)

429 Current Decomposi t ions and Current Algebra L E E Chien-Er Benjamin Tseng , Yeou-Wei Yang

439 Comment of Z —• 7r°7 and the Axial Anomaly D E S H P A N D E Nilenora G. P. Pal , F . Olness

550 O n the Structure Dependent Radiat ion in the 7r —• OV*i Decay

B O L O T O V Vladimir N . et al. (This paper has 6 authors.)

574 Observation of the Decay KL —» 7r°77 K L E I N K N E C H T Konrad et al. (This paper has 52 authors.)

575 Measurement of the Rate of the Decay KL - * e + e~7 and Observation of a Form Factor in this Decay

K L E I N K N E C H T Konrad (The N A 3 1 Collaboration)

629 Gluebali Contribution to KL —• 2*y and its Possible Detec t ion in DS Decay

W U Yue-Liang et al. (This paper has 4 authors.)

686 Radiat ive and Muonic Decays of KL' Implications for Top Mass

M A S S Ô Eduard Lars Bergstrôm, Paul Singer

P A R A L L E L SESSION 23 — A C C E L E R A T O R P H Y S I C S

Paper N o .

Tit le First Author or Contact Author (Collaboration)

79 Asymmetr ic 23-Factory at K E K T A K A S A K I Fumihiko ( B - F A C T O R Y TASK F O R C E )

430 T h e Fermilab Main Injector M A R T I N Phi l ip S.

697 T h e Present Status of Beijing Electron Positron Collider F A N G Shouxian Chen Senyu, Zheng Zhipeng

Page 64: P arallel Session 34

1485

P A R A L L E L S E S S I O N 24 — H E A V Y I O N C O L L I S I O N S P H E N O M E N O L O G Y

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C ol lab o r a t i o n )

25 J/ijj Suppress ion in Nuc lea r Collisions Revis i ted T R A N T H A N H VAN J e a n e t a l . (Th i s p a p e r h a s 5 a u t h o r s . )

43 Diffractive E x c i t a t i o n of 14.6-, 60- a n d 200 -GeV/Nuc l éon 1 6 0 a n d 14 .6 -GeV/Nuc leon 2 8 S i Nuclear Emuls ion

K I M C h o n g O h e t a l . (Th i s p a p e r h a s 30 a u t h o r s . )

87 O n a Possible Cor re spondence of t h e New Narrow Resonances i n C h a r g e d Par t i c l e s Sys t ems t o t h e Rela t iv is t ic C o u l o m b Levels i n C o n t i n u u m

S A V R I N Vic to r Ivanovich e t a l . (Th i s p a p e r h a s 4 a u t h o r s . )

170 Some Aspec t s of Mul t ip l ic i ty i n Search of Q u a r k G l u o n P l a s m a in 1 6 O + E m

V E R M A A V i n o d K u m a r

180 Increase of t h e /7r+ R a t i o I n d u c e d b y Secondary Collisions in Rela t iv is t ic Heavy I o n Collisions

G A O C h o n g s h o u C h a o Weiqin , Z h u Y u n l u n

243 T h e Role of Ba ryons in C h i r a l - S y m m e t r y R e s t o r a t i o n a t H igh T e m p e r a t u r e

D E T A R C a r l e t o n

244 Scaled Fac to r i a l M o m e n t Analys is of 200 A GeV Sulfur -f Go ld In t e rac t ions

W I L K E S R i c h a r d Jeffrey ( T h e E M U 0 1 Co l l abo ra t i on )

245 Nucleus-Nucleus Collisions a t 60 to 200 G e V / N u c l e o n : R e s u l t s f rom t h e W A 8 0 E x p e r i m e n t a t C E R N

P L A S I L F . ( T h e W A 8 0 Co l l abo ra t ion )

249 A a n d  P r o d u c t i o n i n S u l p h u r - T u n g s t e n In te rac t ions a t 200 G e V / c p e r Nuc léon

B A R N E S R . P . S. A b a t z i s , M . B e n a y o u n

261 S tud ies of Cen t r a l In t e rac t ions of Si Ions a t 14.5 A G e V / c i n A u a n d C u

F O L E Y K e n n e t h J . ( T h e E-810 CoUabora t ion )

279 R e s u l t s on Heavy Ion Collisions G U P T A V i r e n d e r K u m a r ( T h e E m u O l Co l l abora t ion )

280 R a p i d i t y D e p e n d e n c e of Mul t ip l ic i ty Di s t r ibu t ions i n A lpha -Emul s ion In te rac t ions a t 12.4 A GeV

B E R I S u m a n B a l a ( T h e C J J L Co l l abo ra t i on )

281 U n i q u e S igna tu res for Q u a r k G l u o n P l a s m a S I N G H C h a n d r a P r a k a s h Saeed U d d i n

368 Mul t i pa r t i c l e P r o d u c t i o n s a n d F rac t a l s M A S U D A Naoh iko M a s a m i c h i O h r u i

376 Mul t ip l ic i ty Charac te r i s t i c s of 6 L i - E m u l s i o n In te rac t ions a t 4.5 A G e V / c

S H E R I F M o h a m e d M o h a m e d et a l . (Th i s p a p e r h a s 4 a u t h o r s . )

617 D e u t e r o n P r o d u c t i o n in Coll ision of 250 G e V / c , 7r+ a n d Mesons w i t h Al a n d A u Nuclei

A l D E W O L F E d d i A ( T h e N A 2 2 Co l l abo ra t i on )

662 A Genera l ized Mul t ip l ic i ty D i s t r i bu t i on for High-Energy Nucleus-Nucleus Collisions

C H E W C h o n g - K e e A . H . C h a n

706 P i o n - D e u t e r o n E las t i c Sca t t e r ing a t La rge Angles K U L I K O V V . V . (Th i s p a p e r h a s 17 a u t h o r s . )

Page 65: P arallel Session 34

1 4 8 6

P A R A L L E L S E S S I O N 27 — H E A V Y F L A V O R P H Y S I C S

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( Co l l abo ra t i on )

8 3 C a b b i b o E n h a n c e d W e a k Decays of C h a r m e d B a r y o n s i n SU(4) S e m i - D y n a m i c a l Scheme

K H A N N A M o h i n d e r P a u l S .M. She ikholes lami . R . C . V e r m a

91 D e t e r m i n a t i o n of t h e C K M M a t r i x rat, a n d t h e P s e u d o s c a l a r P a r a m e t e r s FB,BBO a n d BKo

R O O S M a t t s J . M a a l a m p i

93 O b s e r v a t i o n of t h e C h a r g e d Isospin P a r t n e r of t h e D*(2459) ° S C H R O D E R H e n n i n g ( T h e A R G U S Co l l abo ra t i on )

94 Search for b —• s'y i n Exclus ive Decays of B M e s o n s S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

95 M e a s u r e m e n t of t h e Decay B ° —» d~l+v S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

98 Search for b -~+ s G l u o n i n B M e s o n Decays S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

99 A S t u d y of C a b i b b o - S u p p r e s s e d D° Decays S C H R O D E R H e n n i n g ( T h e A R G U S Co l l abo ra t i on )

100 R e s o n a n c e Decompos i t i on of t h e D*(2 4 2 0 ) ° T h r o u g h a Decay A n g u l a r Analys i s

S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

101 M e a s u r e m e n t of t h e Lifet ime R a t i o T(B+)/T(B°) S C H R O D E R H e n n i n g ( T h e A R G U S Co l l abo ra t i on )

102 O b s e r v a t i o n of a New C h a r m e d - S t r a n g e M e s o n S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

105 Sea rch for H a d r o n i c b —» u Decays S C H R O D E R H e n n i n g ( T h e A R G U S Co l l abo ra t i on )

106 O b s e r v a t i o n of t h e Decay D f —* 7/71*+ S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

108 O b s e r v a t i o n of Semi lep ton ic C h a r m l e s s B M e s o n Decays S C H R O D E R H e n n i n g ( T h e A R G U S C o l l a b o r a t i o n )

109 Search for R a r e Semi lep ton ic B - M e s o n Decays S C H R O D E R H e n n i n g ( T h e A R G U S Co l l abo ra t i on )

162 C h a r m l e s s C h a r g e d B Decays a n d C P Vio la t ion S Z E W a h - K e u n g e t a l . ( T h i s p a p e r h a s 5 a u t h o r s . )

191 A s p e c t s of t/> a n d V P r o d u c t i o n at Supercol l ider Energ ies B E R G S T R O M L a r s R . W . R o b i n e t t , L . Weinkauf

202 Re la t iv i s t i c Q u a r k o n i u m M o d e l w i th R e t a r d a t i o n Effect I -Mass Level a n d L e p t o n - P a i r - D e c a y

I T O Hi to sh i

242 3-Family T o p Q u a r k M a s s S p e c t r u m A L B R I G H T C a r l H .

331 Q C D Cor rec t ions t o t h e R u n n i n g of t h e F i n e S t r u c t u r e C o n s t a n t

R I Z Z O T h o m a s G e r a r d

354 T o p - Q u a r k M a s s P red i c t i ons f rom W, Z Masses a n d Z P a r t i a l W i d t h s

H E W E T T J o a n n e L e a V . B a r g e r , T . G . R izzo

391 P a r i t y Vio la t ion a n d F lavor Select ion Rules i n C h a r m e d B a r y o n Decay

P A K V A S A S a n d i p S.P. R o s e n . S .F . T u a n

Page 66: P arallel Session 34

1487

Paper No.

Title First Author or Contact Author (Collaboration)

400 Comparison of Bot tom Quark Production Rates in Isajet with a Full QCD 2 -+ 3 Calculation

B E R G E R Edmond L. et al. (This paper has 5 authors.)

403 Phenomenology of Heavy Quark Production BERGER Edmond L.

416 On the Electric Dipole Transition of ^(3770) DING Yi-Bing Qin Dan-Hua, Chao Kuang-Ta

468 Decay Constants JD and JB in a Relativistic Quark Model CHAO Kuang-Ta Jing-Hua Liu

469 Bounds on from QCD Sum Rules CHAO Kuang-Ta Jing-Hua Liu

497 Determination of the Michel Parameter in r Decay SCHRODER Henning (The ARGUS Collaboration)

518 r Decays to Pions KÛHN Johann Heinrich A. Santamaria

530 Measuring Hadronic Currents and Weak Coupling Constants in T —•

F E I N D T Michael

613 Measurement of the Form Factors in the Decay £>+ - > j f ° e + * / «

SPALDING William Jeffrey J.C.Anjos

626 Upper Bounds for Heavy Meson Matrix Elements W U Yue-Liang

628 D and D * Production in Inclusive B Decays W U Yue-Liang M. Wirbel

638 A Detailed Analysis of £ ? " , D J and J3-Meson Transition Form Factors and the Determination of IV^I

Wu Yue-Liang et al. (This paper has 4 authors.)

659 Measurement of Heavy Quark Fragmentation at Tristan OLSEN Stephen L. (The AMY Collaboration)

PARALLEL SESSION 28 — ASTROPARTICLE PHYSICS

Paper No.

Title First Author or Contact Author (Collaboration)

32 Generation of Gravitational Waves by Photons in an External Electromagnetic Field

LONG Hoang Ngoc Le Khac Huong

41 Airborne Detector for Astrophysical Gamma-Ray Measurements

ENOMOTO Ryoji et al. (This paper has 10 authors.)

135 Massive Dirac Neutrinos and the SN1987A Signal GANDHI Raj C. A. Burrows

171 B Non-Conservation Cold Dark Matter and Subpreon Model SENJU Hirofumi

282 Will Interactions in Quark-Gluon Plasma Affect Primordial Nucleosynthesis?

SAKTHI M U R U G E S A N Karuppanathevar G. Janhavi. P.R. Subramanian

284 A Search for the Landau Effect and the Halzen Effect in 1-60 TeV Gamma Ray Interactions

LORD Jere Johns (The JACEE Collaboration)

380 Neutrino Oscillations in the Early Universe TORRES Manuel

Juan Carlos D'olivo, D a r i o Nunez

Page 67: P arallel Session 34

1 4 8 8

Paper N o .

Tit le First Author or Contact Author ( C ollaboration)

543 Coleman's Scenario, Decoupling and the Effective Cosmological Constant

P É R E Z - M E R C A D E R Juan A.

545 T h e Sub-Planck Effective Act ion in the Presence of Wormholes

P É R E Z - M E R C A D E R Juan A.

548 Search for Dark Matter with 1MB LOSECCO John M. et al. (This paper has 27 authors.)

705 Possible Absence of Solar Neutrino Problems MORRISION D . R . O .

PARALLEL SESSION 29 — CP VIOLATION

Paper N o .

Tit le First Author or Contact Author ( C ollab oration)

4 Strong Interaction Effects in Weak Decays H U A N G Tao

31 Chiral Weak Dynamics S A N D A A.I. T . Morozumi, C.S. L im

39 The Peccei-Quinn Mechanism and Dimension Six CP Violating Operators

B A N D E R Myron

61 Large CP Violation in Bs Decays and Light WR T A K A S U G I Eiichi H. Nishiura, M. Tanaka

62 Light WR and the Spontaneous CP Violation T A K A S U G I Eiichi H. Nishiura, M . Tanaka

73 Electric Dipole Moment of the Electron and of the Neutron ZEE Anthony S.M. Barr

86 Transverse Polarization as a Probe for CP-Violat ion from New Physics

B U R G E S S Clifford Peter et al. (This paper has 5 authors.)

182 Fourth-Generation Effect on CP Violation in Bj Hadronic Decays

WAKAIZUMI Seiichi et al. (This paper has 4 authors.)

183 CP Asymmetries in Nonleptonic Decay of Neutral B Mesons for Three and Four Generations

WAKAIZUMI Seiichi et al. (This paper has 4 authors.)

188 B Hadronic Asymmetries and Spin Correlations K A Y S E R Boris et al. (This paper has 4 authors.)

206 The Electric Dipole Moment of the Electron SUZUKI M. Werner Bernreuther

215 T h e Neutron Electric Dipole Moment and the Weinberg Mechanism

C H A N G Darwin

293 The W-Boson Electric Dipole Moment H E Xiao-Gang Bruce H.J. Mckellar

294 C P Violation in TJ —* /i"*"//"" H E Xiao-Gang Bruce H.J. Mckellar, Paul K. Pallaghy

297 T h e Neutron Electric Dipole Moment H E Xiao-Gang Bruce H.J. Mckellar, Sandip Pakrasa

310 Neutron Electric Dipole Moment with Singlet Quarks and Singlet Higgs

N A N D I Satyanarayan B . Mukhopadhyaya

Page 68: P arallel Session 34

1489

Paper No.

Title First Author or Contact Author (Collaboration)

311 Gauge Singlets and the Dipole Moment of the Electron N A N D I Satyanarayan B. Mukhopadhyaya

371 Generation of a Not-Suppressed KM Phase from Spontaneous CP Breaking at a High Energy Scale

B E N T O Luis Gustavo C Branco

393 CP Nonconservation and CPT: Reassessment of Loop Effects in Charmless B Decays

HOU George Wei-shu Jean-Marc Gérard

440 CP Asymmetries in Penguin Dominated b —• s Transitions DESHPANDE Nilenora G. Josie Trampetic

478 e'/e and Heavy Top Quark W U Y.I. Emmanuel A. Paschos. T. Schneider

634 Renormalization Group Analysis of Charged Higgs Effects in ef/e for a Heavy Top Quark

BURAS Andrzej J. Gerhard Buchalla

635 Leading and Next-to-Leading QCD Corrections to ^-Parameter and J9°-2?° Mixing in the Present of a Heavy Top Quark

BURAS Andrzej J. Matthias Jamin, Peter H.Weisz

703 Penguin-Box Expansion FCNC Processes and a Heavy Top BURAS A.J. G. Buchalla, M.K. Harlandet

PARALLEL SESSION 30 — PARTICLE SEARCH

Paper No.

Title First Author or Contact Author (Collaboration)

152 Search for Narrow Baryonia KEKELIDZE Vladimir (The Bis-2 Collaboration)

335 Superheavy Toponium Productions at Multi-TeV Colliders MORII Toshiyuki H. Inazawa

395 Higgs Boson Production from the Decays of the Fourth Generation 6 ;-Quark

HOU George Wei-Shu Robin G. Stuart

396 Semi-Leptonic Flavour Changing Neutral Current Decays of the Fourth Generation 6'-Quark

HOU George Wei-Shu Robin G. Stuart

562 A Search for Neutral Heavy Leptons in — N Interactions D E B A R B A R O Pawel (The CCFR Collaboration)

586 Supersymmetry Phenomenology with Spontaneous R Parity Breaking in Z° Decays

VALLE José W.F. P. Nogueira, J.C. Româo

587 Production Mechanisms and Signatures of Isosinglet Neutral Heavy Leptons in Z° Decays

VALLE José W.F. Dittmar Santamaria, Gonzalez-Garcia

588 Isosinglet Neutral Lepton Production in Z Decays and Neutrino Mass

VALLE José W.F . M.C. Gonzalez-Garcia, A. Santamaria

609 Limits on Axion and Light Higgs Boson Production in T ( l 5 ) Decays

VOLLAND Udo (The Crystal Ball Collaboration)

Page 69: P arallel Session 34

1490

P A R A L L E L S E S S I O N 31 - C O S M O L O G Y A N D P A R T I C L E P H Y S I C S

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

10 W o r m h o l e So lu t ions i n a L o c a l Scale I n v a r i a n t G r a v i t a t i o n T h e o r y

Z H E N G H a n - Q i n g D a n - D i W u , X u n X u e

166 R e f r a c t i o n a n d Osc i l l a t ions of N e u t r i n o s i n t h e E a r l y Un ive r se

E N Q V I S T K a r i P . K . K a i n u l a i n e n , J . M a a l a m p i

167 R e s o n a n t N e u t r i n o T r a n s i t i o n s a n d Nuc leosyn thes i s E N Q V I S T K a r i P . K . K a i n u l a i n e n , J . M a a l a m p i

168 N e u t r i n o A s y m m e t r y a n d Osc i l la t ions i n t h e E a r l y Unive r se E N Q V I S T K a r i P . K . K a i n u l a i n e n , J . M a a l a m p i

179 Spin-Hal f Pa r t i c l e s i n t h e H o t N u t S p a c e t i m e A H M E D M a i n u d d i n

224 Q C D P h a s e T r a n s i t i o n a n d P r i m o r d i a l Nuc leosyn thes i s i n I n h o m o g e n e o u s Universe — P r o d u c t i o n of 9 B e a n d H e a v y E l e m e n t s

S A T O K a t s u s h i k o N . T e r a s a w a

428 A C o m m e n t o n t h e U n i q u e n e s s T h e o r e m for Ax ion ic B lack Hole

H S U R u e R o n

581 Cosmolog ica l C o n s t r a i n t s o n A d d i t i o n a l L igh t N e u t r i n o s a n d N e u t r a l G a u g e B o s o n s

V A L L E J o s é W . F . M . C . G o n z a l e z - G a r c i a

P A R A L L E L S E S S I O N 32 — D E T E C T O R R & D

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

56 M o n t e C a r l o S t u d i e s of R e s p o n s e of a L i q u i d A r g o n C a l o r i m e t e r w i t h L e a d A b s o r b e r

F E R B E L T h o m a s C . P u n

57 I m p r o v i n g E n e r g y R e s o l u t i o n of C a l o r i m e t e r s U s i n g a C o var iance M a t r i x A p p r o a c h

F E R B E L T h o m a s e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

216 L o w - M a s s , H i g h - R a t e Cyl indr ica l M W P C S for t h e M e g a E x p e r i m e n t

M I S C H K E R i c h a r d E . e t a l . ( T h i s p a p e r h a s 22 a u t h o r s . )

251 O b s e r v a t i o n of S u b n a n o s e c o n d T r a n s i e n t s in a S u p e r c o n d u c t i n g M i c r o s t r i p E x p o s e d t o M i n i m u m Ion iz ing R a d i a t i o n

C A R I A M . B . et a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

255 I n v e s t i g a t i o n O r g a n i s a t i o n for N u c l e a r R e s e a r c h A R T A M O N O V A . J . B a h r , E . B i r c k n e r

312 E v a l u a t i o n of A c o u s t i c C h a r g e T r a n s p o r t De lay Lines for S S C / L H C L u b a t t i A p p l i c a t i o n s

H E N R Y J o s e p h et a l . ( T h i s p a p e r h a s 7 a u t h o r s . )

359 E n e r g y T r a n s p o r t P h e n o m e n a i n Single S u p e r c o n d u c t i n g G r a i n s

F R A N K M a t t h i a s e t a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

369 S u p e r c o n d u c t i n g S t r ip s for Microver t ex D e t e c t o r s N I I N I K O S K I T a p i o Olavi et a l . ( T h i s p a p e r h a s 4 a u t h o r s . )

417 S t u d y of Sof tware C o m p e n s a t i o n for Single P a r t i c l e s a n d J e t s in t h e H i

O B E R L A C K H o r s t G u n t e r ( T h e H i C a l o r i m e t e r G r o u p )

426 Q u a s i p a r t i c l e T r a p p i n g in a S u p e r c o n d u c t i v e D e t e c t o r S y s t e m E x h i b i t i n g H i g h E n e r g y a n d P o s i t r o n R e s o l u t i o n

V O N F E I L I T Z S C H F r a n z et a l . ( T h i s p a p e r h a s 6 a u t h o r s . )

Page 70: P arallel Session 34

1491

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l abora t ion )

427 P h a s e T rans i t i on T h e r m o m e t e r s w i t h High T e m p e r a t u r e R e s o l u t i o n for Ca lo r ime t r i c P a r t i c l e De t ec to r s Employ ing Dielec t r ic Abso rbe r s

V O N F E I L I T Z S C H F r a n z et a l . (Th i s p a p e r h a s 6 a u t h o r s . )

476 P r e l i m i n a r y S tud ies of G a A s Sol id-Sta te De tec to r s i n Semi - Insu la t ing S u b s t r a t e M a t e r i a l

S M I T H K e n w a y M . R . B e r t i n

687 D e v e l o p m e n t of Scint i l la t ing F i b r e Track ing D e t e c t o r t o S t u d y B-B P r o d u c t i o n a n d Decay

M O R R I S O N D o u g l a s R . O . ( T h e W A 8 4 C o l l a b o r a t i o n )

P A R A L L E L S E S S I O N 33 — I N T E G R A B L E S Y S T E M S

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l abora t ion )

119 T h e Pa in l evé P r o p e r t y a n d B â c k l u n d Trans fo rma t ion for t h e E q u a t i o n s of E x a c t R e s o n a n c e s

C H A N G K o w - L u n g P . S . H u a n g

343 A Genera l i sed B a c k l u n d T r a n s f o r m a t i o n for t h e ( S u p e r s y m m e t r i c ) Self-Dual Yang-Mil ls F ie ld

C H A U Ling-Lie J . C . Shaw, H . C . Y e n

344 A n A l t e r n a t i v e Expl ic i t C o n s t r u c t i o n of iV-Soliton Solut ions i n T w o Dimens ions

C H A U Ling-Lie J . C . C h a u , H . C . Y e n

597 Sol i ton-Like Sca t t e r i ng i n t h e 0 ( 3 ) <7-Models i n ( 2 + 1 ) D imens ions

Z A K R Z E W S K I Wojc iech Je rzy M a r i a

P A R A L L E L S E S S I O N 34 — Q C D A N D H I G H p T P H Y S I C S

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r (Co l l abo ra t ion )

44 R e n o r m a l i z a t i o n Scheme D e p e n d e n c e for t h e Decay of t h e r L e p t o n a n d t h e Q C D

H A R U Y A M A M a s a h i r o

60 T h e O n e - J e t Inclusive Cross Sect ion a t O r d e r a^: Q u a r k s a n d G l u o n s

S O P E R D a v i s o n E u g e n e S.D. El l is , Z . K u n s z t

351 Di rec t P h o t o n P r o d u c t i o n i n 7r~ B e a n d p B e Collisions a t 530 G e V / c

F E R B E L T h o m a s ( T h e E 7 0 6 Co l l abo ra t i on )

352 P r o d u c t i o n of 7r° a n d rj Mesons i n H a d r o n i c Collisions a t La rge P?

F E R B E L T h o m a s ( T h e E706 Co l l abo ra t i on )

353 E v e n t S t r u c t u r e for Single P h o t o n P r o d u c t i o n a t 530 G e V / c F E B E L T h o m a s ( T h e E 7 0 6 Co l l abo ra t i on )

401 P r o m p t P h o t o n P r o d u c t i o n w i t h a Po la r i zed D e u t e r o n Ta rge t B E R G E R E d m o n d L. Q i u J i a n Wei

405 Phys i c s L a n d s c a p e - F i x e d T a r g e t Energ ies B E R G E R E d m o n d L .

471 La rge PT V~V Coll is ions t o P r o b e t h e Gluonic a n d Sea Sp in D i s t r i b u t i o n i n t h e P r o t o n

R A M A C H A N D R A N R . P r a k a s h M a t h e w s

474 "Sp in Cr is is" : M y t h s a n d Rea l i ty K I S S E L E R A l e x a n d e r Vic to rov ich V . A . P e t r o v

475 M e s o n - P r o t o n S c a t t e r i n g a t H i g h Energ ies P I H o n g Loyal D u r a n d

Page 71: P arallel Session 34

1492

Paper No .

Tit le First Author or Contact Author (Collaboration)

484 Understanding Quark Flow in High Momentum Transfer Exclusive Reactions

M A R S H A K Marvin L. et al. (This paper has 9 authors.)

509 Separation of Minimum and Higher Twist in Photoproduct ion

ELLISON Robert John Apismon

510 A Study of the Point-Like Interactions of the P h o t o n Using Energy-Flows in Photo- and Hadron-Production for Incident Energies Between 65 and 170 GeV

ELLISON Robert John Apismon

511 Inclusive Photoproduction of Single Charged Particles at High PT

ELLISON Robert John (The O M E G A P h o t o n Collaboration)

515 QCD Corrections to the Z Decay Rate K Û H N Johann Heinrich Bernard A. Kniehl

517 Mass Corrections to the Z Decay Rate K Ù H N Johann Heinrich K.G. Chetyrkin

519 Q C D Corrections to the Z Decay Rate K Û H N Johann Heinrich

521 Conventional Versus Optimization Procedures and the Gluon Distribution

P A P A D O P O U L O S S. A.P. Contogouris, D . At w o o d

555 Gluon Contributions to Small x Heavy Flavour Production CIAFALONI Marcello S. Catani, F . Hautmann

663 Problems of the Polarized Nucléon Structure Function C O N T O G O U R I S Andrew P. S. Papadopoulos , B . K a m a !

700 A Sensitive Test of QCD from Parton-Parton Scattering at the ISR

UNCLASSIFIED LATE E N T R I E S

GEIST W.M. (The A M E S - B O L O G N A - C E R N -D O R T M U N D - H E I D E L B E R G - WARSAW Collaboration)

Paper No .

Tit le First Author or Contact Author (Collaboration)

664 Test of the Next-to-Leading Logarithm Q C D Approximation Using A M Y D a t a

SAGAWA Hiroyuki (The A M Y Collaboration)

665 Analysis of Z° Coupling to Charged Leptons W A G N E R Albrecht (The OPAL Collaboration)

666 Single Axial Current and the Protron Spin Question SONI Vikram et al. (This paper has 5 authors.)

676 Study of Factorial Moments in Neutrino Neon and Deuter ium Charged Current Interactions

D E W O L F Eddi A . (The WA59 and E180 Collaboration)

677 Description of the Fermilab E-687 Spectrometer GOURLAY Stephen Alan (The E-687 Collaboration)

681 Understanding the Cross Section for Isolated Prompt Photon Product ion

B E R G E R Edm o nd L. J.W. Qiu

685 A Direct Search for Neutralino Production at LEP W A G N E R Albrecht (The OPAL Collaboration)

704 Isospin Violation in Quark-Parton Distributions S O F F E R J. G. Preparata, P.G. Ratcliffe

Page 72: P arallel Session 34

1493

P a p e r N o .

T i t l e F i r s t A u t h o r or C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

708 A N u m e r i c a l S t u d y of t h e Small-a: B e h a v i o r of t h e D e e p I n e l a s t i c S t r u c t u r e F u n c t i o n s i n Q C D

B A R T E L S J . J . B l u m l e i n , G . A . Schu le r

709 L a t t i c e S i m u l a t i o n s of E l e c t r o w e a k S p h a l e r o n T r a n s i t i o n s i n R e a l T i m e

A M B J O R N J . ( T h i s p a p e r h a s 4 a u t h o r s . )

710 E l e c t r o w e a k R G e n e r a t i o n o n t h e L a t t i c e R e a l T i m e v s . E u c l i d e a n A p p r o a c h

G R I G O R I E V D . Y . M . E . S h a p o s h n i k o v

711 O n t h e M o d e l D e p e n d e n c e of t h e Cosmolog ica l U p p e r B o u n d o n t h e H i g g s B o s o n a n d T o p Q u a r k s M a s s e s

B O C H K A R E V A . I . S.V. K u z m i n , M . E . S h a p o s h n i k o v

712 C o r r e c t e d T h r e e - L o o p Q C D C o r r e c t i o n t o t h e C o r r e l a t o r of t h e Q u a r k Sca la r C u r r e n t s a n d r ^ ^ H 0 —• H a d r o n s )

G O R I S H N Y S.G. ( T h i s p a p e r h a s 4 a u t h o r s . )

713 T h e S c h e m e - D e p e n d e n c e of t h e H i g h e r O r d e r P e r t u r b a t i v e C o r r e c t i o n s t o r ^ o ^ ( H 0 —» H a d r o n s ) a n d t h e S p u r i o u s Q C D I n f r a r e d F i x e d P o i n t

K A T A E V A . L . S.A. L a r i n , L . R . S u r g u l a d z

714 Inc lus ive P h o t o n S p e c t r u m in R a r e B D e c a y s A L I A . C . G r e u b

715 W a r m L i q u i d C a l o r i m e t r y A U B E R T B . ( T h i s p a p e r h a s 23 a u t h o r s . )

716 A L a r g e Sil icon S t r i p S y s t e m for a B e a u t y Tr igger a t t h e S P S - C o l l i d e r

E R H A N S. ( T h i s p a p e r h a s 19 a u t h o r s . )

717 Poss ib l e D y n a m i c s U n d e r l y i n g t h e Q u a r k - L e p t o n S p e c t r u m M A R G O L I S B . R . R . M e n d e l , P . Va l in

718 V e c t o r t o Vec to r P l u s P s e u d o s c a l a r D e c a y M o d e s i n P e r t u r b a t i v e Q C D

I R W I N B . A . B . M a r g o l i s , H . D . T r o t t i e r

719 E l a s t i c S c a t t e r i n g a t = 1800 G e V — T h e F i r s t L o o k a t t h e A s y m p t o t i c N u c l é o n

B L O C K M . M . F . H a l z e n , B . M a r g o l i s

720 T h r e s h o l d E n h a n c e m e n t a n d t h e F l a v o r - C h a n g i n g E l e c t r o m a g n e t i c V e r t e x

R O Y B . D . ( T h i s p a p e r h a s 6 a u t h o r s . )

721 T h e H u n t for N e u t r a l - C u r r e n t R a d i a t i v e D e c a y s of H e a v y Q u a r k s : T h r e s h o l d Effects P r imakof f P r o d u c t i o n a n d N e w P h y s i c s

R O Y B . D . ( T h i s p a p e r h a s 6 a u t h o r s . )

722 E x p e r i m e n t a l R e s u l t s of P b - S c i n t i l l a t i n g F i b r e C a l o r i m e t r y G O G G I V . G . ( T h e S P A C A L C o l l a b o r a t i o n )

723 R e i n t e r p r e t a t i o n of J o r d a n - B r a n s - D i c k e T h e o r y a n d K a l u z a - K l e i n C o s m o l o g y

C H O . Y . M .

724 Sea rches for N e u t r a l H iggs B o s o n s i n e + e " Coll is ions a t L E P A L B R E C H T H . ( T h e O P A L C o l l a b o r a t i o n )

725 N e u t r i n o T r a n s i t i o n a l M a g n e t i c M o m e n t a n d N o n - A b e l i a n D i s c r e t e S y m m e t r y

K E U N G W . Y . D . C h a n g , G . Sen janov ic

726 M u t i j e t - E v e n t s i n Soft a n d S e m i h a r d H a d r o n i c Col l i s ions W O L F W A N G 0 . T . S h i m a d a

727 SO4 S y m m e t r y i n a H u b b a r d M o d e l Y A N G C . N . S .C . Z h a n g

728 SO4 P a i r i n g a n d Off -Diagonal L o n g - R a n g e O r d e r i n a H u b b a r d M o d e l

Y A N G C . N .

729 Genes i s of t h e L o g n o r m a l M u l t i p l i c i t y D i s t r i b u t i o n i n t h e e + e ~ Col l i s ions a n d O t h e r S t o c h a s t i c P roces se s

W R O B L E W S K I A . K . G . W r o c h n a

Page 73: P arallel Session 34

1494

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

730 S o m e P h o n o m e n o l o g i c a l A n a l y s e s i n R H I C C H A O W . Q .

731 P r o j e c t i v e M u l t i g r i d for P r o p a g a t o r s i n L a t t i c e G a u g e T h e o r y

B R O W E R R . C . C . R e b b i , E. Vicor i

732 R a n d o m Surface D y n a m i c s for Z2 G a u g e T h e o r y B R O W E R R . C S u z h o u H u a n g

733 A Pa ra l l e l M u l t i g r i d A l g o r i t h m for P e r c o l a t i o n C l u s t e r s B R O W E R R . C . P . T a m a y o , B . Y o r k

734 N o n - T r i v i a l R e n o r m a l i s a t i o n G r o u p F i x e d P o i n t s a n d So lu t ions of S t r i n g F i e ld T h e o r y E q u a t i o n s of M o t i o n

S E N A .

735 O n t h e B a c k g r o u n d I n d e p e n d e n c e of S t r i n g F i e l d T h e o r y S E N A .

736 S o m e F r a c t a l A s p e c t s of M u l t i p a r t i c l e P r o d u c t i o n i n H a d r o n - H a d r o n Coll is ion a t y/s = 16.7 G e V

B O C A G . ( T h i s p a p e r h a s 19 a u t h o r s . )

737 C h a r g e d Mul t ip l i c i ty a n d R a p i d i t y D i s t r i b u t i o n i n Z° H a d r o n i c D e c a y s

C H L I A P N I K O V P . V . V . A . U v a r o v

738 R e c o n s t r u c t i o n of Semi l ep ton i c b —» fi D e c a y s A L B R E C H T H . ( T h e A R G U S C o l l a b o r a t i o n )

739 I sosp in V io l a t i on i n Q u a r k - P a r t o n D i s t r i b u t i o n s P R E P A R A T A G .

740 e'/c a n d H e a v y T o p P A S C H O S E . A . T . Schne ide r , Y . L . W u

741 F l u c t u a t i o n s a n d A n o m a l o u s D i m e n s i o n s i n Q C D C a s c a d e s G U S T A F S O N G. ( T h i s p a p e r h a s 4 a u t h o r s . )

742 G a u g e T h e o r i e s a n d t h e P h y s i c s of N e u t r i n o M a s s V A L L E J . W . F .

743 D e t e r m i n a t i o n of t h e A b s o l u t e B r a n c h i n g R a t i o of B ° - D*+n*s~ a n d D S — 0tt

A L B R E C H T H . ( T h e A R G U S C o l l a b o r a t i o n )

744 D e t e r m i n a t i o n of T(B+)/T(B-) a n d N(BB)/N(T4S)

f r o m t h e L e p t o n a n d D i l e p t o n R a t e s i n r(4S) D e c a y s A L B R E C H T H . ( T h e A R G U S C o l l a b o r a t i o n )

745 O b s e r v a t i o n of t h e Decay —• <£e~/x A L B R E C H T H . ( T h e A R G U S C o U a b o r a t i o n )

746 I n t e r m i t t a n c y S t u d i e s in pp Coll is ions a t y/s = 630 G e V A L B A J A R C . ( T h e U A 1 C o U a b o r a t i o n )

747 In i t i a l P e r f o r m a n c e of t h e C L E O I I C s l C a l o r i m e t e r S K W A R N I C K I T . ( T h e C L E O C o U a b o r a t i o n )

748 P r e l i m i n a r y C L E O I I R e s u l t s o n R a d i a t i v e T r a n s i t i o n s f rom t h e r ( 3 5 )

S K W A R N I C K I T . ( T h e C L E O C o U a b o r a t i o n )

749 R e s u l t s of t h e Sea rch for P r o m p t L e p t o n P r o d u c t i o n i n N e w S e r p u k h o v B e a m - D u m p E x p e r i m e n t

A M M O S O V V . V . ( T h e C L E O C o U a b o r a t i o n )

750 A Tes t of t h e G l u e b a l l T h e o r y for t h e £(2230) S H E N Q . X . H o n g Y u

751 A B o u n d o n t h e M a j o r o n C o u p l i n g t o t h e N e u t r i n o W U H . F . H o n g q i u S o n g

752 So lu t ions of Y a n g - B a x t e r E q u a t i o n i n t h e V e r t e x M o d e l a n d t h e Face M o d e l for O c t e t R e p r e s e n t a t i o n

H O U B . Y . ( T h i s p a p e r h a s 4 a u t h o r s . )

753 R a t i o n a l So lu t ion for t h e M i n i m a l R e p r e s e n t a t i o n of G 2 M A Z . Q .

754 B lack Hole T h e r m o d y n a m i c s a n d i t s R e l a t i o n w i t h B ack- R e a c t i on

H U A N G C . G . L i a o L iu , F e n g X u

Page 74: P arallel Session 34

1495

P a p e r N o .

T i t l e First A u t h o r or Contact A u t h o r ( C ol laboration)

755 Light Higgs Search Reconsidered H E J . T . Dan-d i W u , Hang-qing Zheng

756 T h e E m b e d d i n g eo a n d the Spectrum-Dependent R Matr ix for q — F±

M A Z.Q.

757 Strong Interact ion Effects i n Weak Decays H U A N G T .

758 Corrections to Z Hadronic Decays from Compos i te M o d e l G U O X.H. Tao H u a n g

759 First Order Q C D Corrections to the Decay of Higgs into T w o P h o t o n s

Z H E N G H . Q . Dan-d i W u

760 Effect due to Compos i t e of Nucléons in D e e p Inelastic L e p t o n Nuc leus Scattering

M A B . Q .

761 Skyrmions of Different T y p e s LI T.Z.

762 Wormhole Solut ion i n a Local Scale Invariant Gravi tat ion Theory

W U D . D . X u n Xue , Han-qing Zheng

763 O n the Reso lut ion of the Over-Binding P r o b l e m i n 5 H e C H E N G W . K . (This paper has 4 authors . )

764 T h e Spectrum-Dependent Solutions to Yang-Baxter E q u a t i o n for Q u a n t u m E 6 a n d E 7

M A Z.Q.

765 Rat iona l Solut ion to Yang-Baxter Equat ion i n the Octet Representat ion

H O U B . Y . (This paper has 4 authors . )

766 Kobayashi -Maskawa Matr ix a n d Top Quark X I A O D . F .

767 D y n a m i c a l Symmetry Breaking of the Electroweak Interactions a n d the Renormal isat ion Group

HILL C . T .

768 Poss ible Absence of Solar Neutr ino Problems M O R R I S O N D . R . O .

769 Deve lopment of Scinti l lating Fibre Tracking Detec tor to S t u d y B-B P r o d u c t i o n a n d Decay

M O R R I S O N D . R . O (The W A 8 4 Col laborat ion)

770 H i g h Temperature Electroweak Sphaleron Transit ions F R O G G A T T C D . (This paper has 5 authors . )

771 B o u n d States of Relat ivist ic Particles a n d Regge Trajectories W i t h i n the Potent ia l Approach

M I R O N O V A . D . I.I. R o y z e n

772 Gluon Dis tr ibut ion from Hera P lus pp-Colliders K O Y Z E N LI. L R o y z e n

773 P a r t o n Dens i ty at Small x a n d Hard Processes at High Energies

R O Y Z E N LI.

774 General Characterist ics of the Exclus ive Channels i n pp-Ihteractions a t 32 G e V / E

P R O S K K U R Y A . S . (This paper has 17 authors . )

775 Infrared Singularities of Gluon Green's Functions a n d the Quasipotent ia l of a Two-Quark Interaction in Q u a n t u m Chromo dynamics

A R K H I P O V A . A .

776 Masses a n d Decay W i d t h s of Mesons i n the Relat ivist ic Quark M o d e l

F A U S T O V R . N .

777 Min imal D y n a m i c a l S y m m e t r y Breaking of the Standard M o d e l

HILL C . T . W . A . Bordeen . M. Lindre

778 Resul t s from B e a m Tests of U A 1 U / T M P Calorimeter Modules

V I R D E E T . S . ( T h e U A 1 Col laboration)

Page 75: P arallel Session 34

P a p e r N o .

T i t l e F i r s t A u t h o r o r C o n t a c t A u t h o r ( C o l l a b o r a t i o n )

779 S u m m a r y R e p o r t of W o r k i n g Sess ions o n B e n t C r y s t a l B e a m E x t r a c t i o n for t h e S S C b y W o r k i n g Sess ion P a r t i c i p a n t s

T S Y G A N O V

780 M e a s u r e m e n t of t h e F o r w a r d - B a c k w a r d C h a r g e A s y m m e t r y i n t h e P r o c e s s of 6 - Q u a r k P r o d u c t i o n i n t h e e + e"~ A n n i h i l a t i o n A r o u n d y/s = 6 0 G e V

A B E K . ( T h e V E N U S C o l l a b o r a t i o n )

781 P o l a r i z e d e p Co l l i s ions as P r o b e s for C P - V i o l a t i o n f r o m B e y o n d t h e S t a n d a r d M o d e l

A N G L I N J . C P . B u r g e s s , H . d e G u i s e

782 T r a n s v e r s e P o l a r i s a t i o n a t e+e~" C o l l i d e r s a n d C P - V i o l a t i o n f r o m N e w P h y s i c s

B U R G E S S C P . J . A . R o b i n s o n

783 F e r m i o n E l e c t r i c D i p o l e M o m e n t s a n d C P - V i o l a t i o n i n L e f t - R i g h t M o d e l s

A T W O O D D . C H a m z a o u i , C P . B u r g e s s

784 O n e - L o o p P- a n d T - O d d E l e c t r o m a g n e t i c M o m e n t s A T W O O D D . C P . B u r g e s s , C . H a m z a o u i

785 S e a r c h for E x o t i c B a r y o n S t a t e s i n B a r y o n E x c h a n g e R e a c t i o n 7 r + p —• p t 7 r + 7 r + 7 r ~ a t 4 G e V / c

A B R A M O V B . M . ( T h i s p a p e r h a s 15 a u t h o r s . )

786 P i o n - D e u t e r o n E l a s t i c S c a t t e r i n g a t L a r g e A n g l e s for M o m e n t a f r o m 0 .9 t o 2 .025 G e V / c

A B R A M O V B . M . ( T h i s p a p e r h a s 18 a u t h o r s . )

787 M e a s u r e m e n t of t h e P o l a r i z a t i o n of r - l e p t o n s f r o m e + e ~ —• T + T ~ a t y/s — 5 7 G e V

M A K I A . ( T h e A M Y C o l l a b o r a t i o n )

788 A S e a r c h for C h a r g e d H i g g s B o s o n s i n e + e ~ ~ A n n i h i l a t i o n U s i n g t h e A m y D e t e c t o r a t y/s = 5 0 - 6 1 . 4 G e V

M A K I A . ( T h e A M Y C o l l a b o r a t i o n )

789 E n t r o p y D i m e n s i o n s a n d O t h e r M u l t i f r a c t a l C h a r a c t e r i s t i c s of M u l t i p l i c i t y D i s t r i b u t i o n s

S I M A K V . ( T h i s p a p e r h a s 4 a u t h o r s . )

790 H i g h T e m p e r a t u r e E l e c t r o w e a k S p h a l e r o n T r a n s i t i o n s F R O G G A T T C D . ( T h i s p a p e r h a s 5 a u t h o r s . )

1496

Page 76: P arallel Session 34

L I S T O F P A R T I C I P A N T S

Abe, K. Au, C.-K. KEK University of South Carolina

Abo lins, M. A. Aubert, B. L. Michigan State University LAPP, Annecy

Abt, I. Augustin, J.-E. University of Illinois, Urbana-Champaign CERN

Adam, W. Aulakh, C. S. Institut ftir Hochenergiephysik, Wien Institute of Physics, Bhubaneswar

Adelberger, E. G. Avilez, C. University of Washington Universidad de Guanajuato

Ahmed, M. Ayres, D. S. Rajshahi University Argonne National Laboratory

Aihara, H. Azemoon, T. Lawrence Berkeley Laboratory CERN

Albrecht, H. Baaquie, B. E. DESY National University of Singapore

Albright, C. H. Backenstoss, G. K. Northern Illinois University Universitât Basel

Ali, A. Bagger, J. A. DESY Johns Hopkins University

Allaby, J. V. Bailin, D. CERN University of Sussex

Allison, J. Bakich, A. M. University of Manchester University of Sydney

Alvarez, E. Baldini, A. M. CERN INFN, Pisa

Alvarez-Gaume, L. Baldo-Ceolin, M. CERN Università degh Studi di Padova

Amaldi, U. Ball, A H. CERN University of Maryland

Ammossov, V. V. Ball, J. S. IHEP, Moscow University of Utah

Anselm, A. Ball, S. L. Leningrad Nuclear Physics Institute MPI, Heidelberg

Aoki, M. Bambah, B. A. University of Tokyo Panjab University

Ash, W.W. Bander, M. SLAC University of California, Irvine

Aston, D. Banerjee, S. N. SLAC CERN

1497

Page 77: P arallel Session 34

1 4 9 8

Bardadin-Otwinowska, M. Borreani, G. University of Clermont-Ferrand Università di Ferrara

Barger, V. Bosio, C. University of Wisconsin Sezione INFN Sanita

Barish, B. C. Bourquin, M. California Institute of Technology Université de Geneve

Barnes, K. J. Bowick, M. J. University Highfield - Southampton Syracuse University

Barnes, V. E. Bowles, T. J. Purdue University Los Alamos National Laboratory

Barnett, M. Boyanovsky, D. Lawrence Berkeley Laboratory University of Pittsburgh

Barreiro, F. Braibant, S. Universidad Autonoma de Madrid CERN

Bartels, J. W. H. Branson, J. G. Universitât Hamburg University of California, San Diego

Beckers, J. J.-C. Braunschweig, W. Université de Liege RWTH, Aachen

Bengtsson, H.-U. Breedon, R. E. University of California, Los Angeles KEK

Bento, L. F. L. Brezin, E. Universidade de Lisboa Ecole Normale Supérieure

Berdugo, J. Brient, J.-C. CIEMAT, Madrid Ecole Polytechnique, Palaiseau

Beri, S. B. Brink, L. E. G. Panjab University Chalmers University of Technology

Berkelman, K. Brower, R. C. Cornell University Boston University

Bernreuther, W. Brown, R. W. Universitât Heidelberg Case Western Reserve University

Bialkowska, H. Bryman, D. Institute of Nuclear Studies, Warsaw TRIUMF

Bilic, N. Buchanan, C. D. Ruder Boskovic Institute University of CaUfornia, Los Angeles

Bingham, H. H. Buchholtz, D. A. Lawrence Berkeley Laboratory Northwestern University \

Bjorken, J. D. Budde, R. SLAC CERN

Blair, R. E. Bugge, L. Argonne National Laboratory University of Oslo

Boggild, H. Burchat, P. R. Niels Bohr Institute SLAC

Borgia, B. Burgess, C. P. University of Rome McGill University

Page 78: P arallel Session 34

1499

Buschhorn, G. W. Chau, L.-L. MPI, Munchen University of California, Davis

Byrne, J. Chemarin, M. University of Sussex CERN

Caffo, M. Cheng, H.-Y. Sezione INFN Bologna Academia Sinica, Taipei

Callot, 0 . Cheng, L. A. CERN National University of Singapore

Camilleri, L. W. Chew, C. K. CERN National University of Singapore

Campagnari, C. F. Chia, S.-P. University of Chicago University of Malaya

Capella, A. Chien, C.-Y. Univ. Paris-Sud Univ. Science and Tech., Hong Kong

Carlson, C. E. Chiu, T.-W. College of William and Mary, USA National Taiwan University

Carney, J. N. Chivukula, R. S. University of Birmingham Boston University

Carr, J. Cho, Y. M. University of Colorado Seoul National University

Cashmore, R. J. Chou, T.-T. University of Oxford University of Georgia

Castelli, E. Church, M. D. Sezione INFN Trieste Fermilab

Castorina, P. Ciafaloni, M. Sezione INFN Catania Sezione INFN Firenze

Cavasinni, V. Close, F. E. INFN, Pisa Rutherford Appleton Laboratory

Chaichian, M. Cohen, A. G. Helsinki University Boston University

Chan, A. H. P. Coignet, G. J. National University of Singapore LAPP, Annecy

Chan, L.-H. Conforto, G. Louisiana State University CERN

Chang, D. Cooper, J. W. Northwestern University Fermilab

Chang, K.-L. Couchot, F. National Taiwan University Université Paris-Sud

Chang, L. N. Cousinou, M.-C. Virginia Polytechnic List, and State Univ. Université d'Aix-Marseille II

Chang, N.-P. Cowsik, R. City College, City Univ. of New York Tata Institute of Fundamental Research

Chao, W.-Q. Crehan, P. J. IHEP, Beijing College of Technology, Dublin

Page 79: P arallel Session 34

1500

Cribier, M. F. Dowell, J. D. CEN-Saclay University of Birmingham

Crozon, M. J. Drees, M. College de France CERN

Cushman, P. B. Dremin, I. M. Yale University P N Lebedev Physical Institute

Dado, S. Duerdoth, I. P. Israel Institute of Technology CERN

Dalitz, R. H. Duff, M. J. University of Oxford Texas A&M University

Das, S. R. Dug an, G. F. Tata Institute of Fundamental Research Fermilab

Davier, M. Duinker, P. Université Paris-Sud NIKHEF-H

De Marzo, C. N. Dydak, F. SezioneINFNBari CERN

De Wolf, E. A. Dye, S. T. Universitaire Ins telling Antwerpen Boston University

Degré, A. Eeg, J.O. LAPP, Annecy University of Oslo

Delbourgo, R. Ellis, S. D. University of Tasmania University of Washington

Dell'Orso, M. Ellison, R. J. Sezione INFN Pisa University of Manchester

Deshpande, N. G. Engels, E. University of Oregon University of Pittsburgh

DeTar, C. E. Enqvist, K. P. University of Utah Hekinki Universit

Dhar, A. Errede, D. M. Tata Institute of Fundamental Research University of Wisconsin

Di Giacomo, A. Erwin, A. R. Sezione INFN Pisa University of Wisconsin

Dionisi, C. Espriu, D. University of Rome CERN

Dixit, M. S. Extermann, P. National Research Council of Canada Université de Geneve

Dobrzynski, L. C. Fabjan, C. W. College de France CERN

Dolan, L. A. Faessler, M. A. University of North Carolina Ludwig-Maximillians-Universitat

Donati, A. Fang, S. X. Laboratori Nazionali del Gran Sasso IHEP, Beijing

Donnachie, A. Feher, S. University of Manchester Fermilab

Page 80: P arallel Session 34

1501

Feilitzsch, F. V. Gaemers, K. J. F. Technische Universitât Munchen NIKHEF-H

Feindt, M. Gago, J. M. Universitât Hamburg UP, Lisboa

Ferbel, T. Gaines, I. University of Rochester Fermilab

Ferrara, S. Garnet, R. University of California, Los Angeles University of Liverpool

Feruglio, F. Gan, K. K. Université de Geneve Ohio State University

Field, R. C. Gandhi, R. C. SLAC University of Arizona

Finocchiaro, G. Ganguli, S. State University of New York, Stony Brook Tata Institute of Fundamental Research

Flauger, W. Gao, C. S. DESY Peking University

Flitney, A. P. Garcia, C. C. A. University of Adelaide Universidad Nazional de la Plata, Argentina

Foder, Z. Gavrin, V. N. Eôtvôs University Institute for Nuclear Research, Moscow

Foley, K. J. Ge, M.-L. Brookhaven National Laboratory Nankai Institute of Mathematics

Fontaine, G. R. Geiges, R. College de France CERN

Frampton, P. H. Gell-Mann, M. University of North Carolina California Institute of Technology

Franzini, P. Giannini, G. Cornell University Trieste University

Fraser, G. Gilmore, R. S. CERN University of Bristol

Freeman, J. E. Giovaniiini, A. Fermilab Università di Torino

Frishman, Y. Girardi, G. Weizmann Institute of Science LAPP, Annecy

Froggatt, C. D. Girtler, P. K. University of Glasgow Universitât Innsbruck

Fujii, T. Gittelman, B. University of Tokyo Cornell University

Fujikawa, K. Godbole, R. M. Kyoto University University of Bombay

Fukawa, M. Goggi, V.G. KEK CERN

Gabathuler, E. Gollin, G. D. University of Liverpool University of Illinois, Urbana-Champaign

Page 81: P arallel Session 34

1502

Golutvin, I. A. Harnew, N. JINR, Moscow University of Oxford

Gotow, K. Harris, F. A. Virginia Polytechnic List, and State Univ. University of Hawaii

Gotsman, E. A. Hasenfiratz, A. Tel Aviv University University of Arizona

Goulianos, K. Hayashi, M. J. Rockefeller University Tokai University

Gourlay, S. A. Hayashi, T. Fermilab Kagawa University

Graessler, H. He, M. RWTH, Aachen Shandong University

Grant, A. L. He, X.-G. CERN University of Melbourne

Grard, F. H. He,Z. M. Université de l'Etat à Mons Hebei Normal University

Green J. M. Heath, G. P. Northern Hlinois University University of Bristol

Green, M. G. Hebbeker, T. Royal Holloway and Bedford New College RWTH, Aachen

Grégoire, G. S. Heinz, R. M. Université Catholique de Louvain Indiana University

Grunhaus, J. Hidaka, K. Tel Aviv University Tokyo Gakugei University

Gupta, V. Hill, C. T. Tata Institute of Fundamental Research Fermilab

Gustafson, G. Hill, P. V. Lund University DESY

Hagen, C. R. Hirano, M. University of Rochester Hokkaido University of Education

Haissinski, J. Hirayama, M. Université Paris-Sud Toyama University

Halliwell, C. Ho, C.-L. University of Illinois at Chicago Academia Sinica, Taipei

Hamann, N. H. Horetzky, P. CERN St Poelten, Austria

Han, C. G. Horn, D. Pusan National University Tel Aviv University

Hansen, J. R. Hsiung, Y. B. Niels Bohr Institute Fermilab

Hansen, J. D. Hsu, R.-R. Niels Bohr Institute National Cheng Kung University

Hara, Y. Hu,B. University of Tsukuba University of Houston

Page 82: P arallel Session 34

1503

Huang, J. C. Johnson, R. P. University of Missouri CERN

Hull, C M . Jones, K. Queen Mary and Westfield College NORDITA

Hutton, A. M. Jones, L. M. SLAC University of Illinois, Urbana-Champaign

Igi,K. Jullian, S. University of Tokyo Université Paris-Sud

Igo-Kemenes, P. Kabir, P. K. Universitàt Heidelberg Virgina Polytechnic Inst, and State Univ.

Innocente, V. Kadyshevsky, V. G. CERN JINR, Moscow

Linocenti, P. G. Kagan, H. CERN Ohio State University

Ioffe,B.L. Kajita, T. 1TEP, Moscow University of Tokyo

Irving, A. C. Kalman, C. S. University of Liverpool Concordia University

Ishikawa, K. Kalmus, G. E. Hokkaido University Rutherford Appleton Laboratory

Islam, M. M. Kalmus, P. I. P. University of Connecticut Queen Mary and Westfield College

Ito, H. Kamal, A. N. Kinki University University of Alberta

Iwata, S. Kang, K. KEK Brown University

Jacob, M. R. Kao, Y.-C CERN National Tsing Hua University

Jansson, K. I. M. Karlen, D. Manne Siegbahn Institute CERN

Jarlskog, C. Kasper, R. G. University of Stockholm SSC Laboratory

Jarlskog, G. L. B. Kawaguchi, M. Lund University Kobe University

Jarvis, P. D. Kayser, B. University of Tasmania National Science Foundation

Jawahery, A. Kazakov, D. L University of Maryland JINR, Moscow

Jegerlehner, F. Kekelidze, V. D. Paul Scherrer Institut JINR, Moscow

Jin, C. H. Kennedy, J. M. Northeast Normal University University College Dublin

Johnson, D. E. Kenney, V. P. SSC Laboratory University of Notre Dame

Page 83: P arallel Session 34

1 5 0 4

Kernel, G. Koh,I.-G. University of Ljubljani Korea Advanced Inst, of Sci. and Tech.

Khrustalev, O. A. Kohara, Y. Moscow State University Nihon University

Kiang, D. B. I. Konuma, M. Dalhousie University Keio University

Kim, C. O. Koretune, S. Korea University Fukui Medical School

Kim, C. W. Kotthaus, R. Johns Hopkins University MPI, Munchen

Kim, J. K. Kowalewski, R. V. Korea Advanced Inst, of Sci. and Tech. Carleton University

Kim, J. Y. Kreisler, M. N. Chonnam National University University of Massachusetts

Kimura, Y. Kuhn, J. H. KEK MPI, Munchen

Kircz, J. Kunstatter, G. Elsevier Science Publishers University of Winnipeg

Kishida, T. Kuti, J. University of Tokyo University of California, San Diego

Kishkurno, V. V. Kwak,N. ITEP, Moscow University of Kansas

Kiss, D. Kwon, Y. JINR, Moscow University of Minnesota

Kisselev, À. V. Kycia, T. F. IHEP, Protvino Brookhaven National Laboratory

Kittel, W. Ladd,T. G. NIKHEF-H/KUN US Army Science and Tech.

Klein, M. Lai, C. H. Institut fur Hochenergiephysik, Zeuthen National University of Singapore

Kleinknecht, K. Lam, C. S. H. Johannes Gutenberg - Universitaet Mainz McGill University

Klinkhamer, F. R. Lançon, E. NIKHEF-H CEN-Saclay

Kobayashi, A. Lande, K. Niigata University University of Pennsylvania

Kobayashi, T. Lariccia, P. Tokyo Metropolitan University Sezione INFN Perugia

Kobes, R. Leader, E. University of Winnipeg Birkbeck College

Kodaira, J. LeClair, A. Hkoshima University Cornell University

Koene, B. Lee, C.-E. NIKHEF-H National Cheng Kang University

Page 84: P arallel Session 34

1505

Lee, H. C. Love, S.T. Chalk River Nuclear Laboratory Purdue University

Lee, H. C. Lu, A. Singapore Univ. California, Santa Barbara

Lee, H.-K. Lu, G. R. Hanyang University Henan Normal University

Lee, S.-C. Lubatti, H. J. Academia Sinica, Taipei University of Washington

Lee-Franzini, J. Ludwig, J. State University of New York, Stony Brook University of Freiburg

Leibbrandt, G. Luk, K.-B. University of Guelph University of California, Berkeley

Lemonne, J. L. Ma, E. Vrije Universiteit Brussel University of California, Riverside

Leung, C. N. MacFarlane, D. B. University of Delaware McGill University

Lichtenberg, D. B. Mahanthappa, K. T. Indiana University University of Colorado

Lillestol, E. Maki, A. CERN KEK

Lillethun, E. Malhotra, P. K. University of Bergen Tata Institute of Fundamental Research

Lim, S. L. Mancarella, G. National University of Singapore Sezione INFN Lecce

Lim, Y. K. Mandelkern, M. A. National University of Singapore University of California, Irvine

Lin, A. M.-T. Mandula, J. E. University of Michigan Department of Energy, Washington

Lin, Y.-C. Mankoc-Borstnik, N. S National Central University, Taiwan University of Ljubljani

Ling,T.Y. Manohar, A. V. Ohio State University University of California, San Diego

Liu, K.-F. Manoukian, E. B. University of Kentucky Royal Military College of Canada

Llewellyn-Smith, C. H. Mapelli, L. P. University of Oxford CERN

Loe, K. F. March, R. H. National University of Singapore University of Wisconsin

Loh, E. C. Markov, P. K. University of Utah List. Nucl. Res. and Nucl. Energy, Bulgaria

Lohr, B. M. Markytan, M. DESY Institut fur Hochenergiephysik, Wien

Lohse, T. Marshak, M. L. CERN University of Minnesota

Page 85: P arallel Session 34

1506

Marshak, R. E. Meyer, T. Virginia Polytechnic List, and State Univ. Iowa State University

Martemianov, V. P. Millard, P. A. IV Kurchatov Institute of Atomic Energy University of Pittsburgh

Martucci, G. Miller, D. J. Université di Firenza University College London

Massaro, G. Milton, K. A. NIKHEF-H University of Oklahoma

Masuda, N. Minkowski, P. C. Yamagata University University of Bern

Mateev, M. D. Minn, J. Sofia University Mokpo Natural University

Matinyan, S. G. Mischke, R. E. Yerevan Physics Institute Los Alamos National Laboratory

Matsui, T. Mo, L. W. KEK Virginia Polytechnic Inst, and State Univ.

Mattison, T. S. Mockett, P. M. SLAC University of Washington

Matveev, V. Mohr, W. Institute for Nucl. Research, Moscow Universitât Freiburg

Maxwell, C. J. Molzon,W. R. University of Durham University of CaUfornia, Irvine

Mazur, P. O. Mondai, N. K. Fermilab Tata Institute of Fundamental Research

McBride, P. L. Morelli, A. CERN Università di Roma "La Sapienza"

McFarlane, K. W. Morgan, D. Temple University Rutherford Appleton Laboratory

Michelini, A. Mori, T. CERN CERN

McKellar, B. H. J. Moroni, L. University of Melbourne INFN - Alte Energie

McMahon, T. J. Morrison, D. R. O. Rutherford Appleton Laboratory CERN

Melanson, H. L. Muller, F. Fermilab CERN

Meng, T.-C. Muller, H. Freie Universitât Berlin Universitât Karlsruhe

Mery, P. J. Munusamy, N. K. CPT, Lurniny National University of Singapore

Meshkov, S. Myers, S. Aspen Center for Physics CERN

Metzger, W. J. Nagamiya, S. NIKHEF-H/KUN Columbia University

Page 86: P arallel Session 34

1507

Nakamura, K. Nilsson,B.E. W. University of Tokyo Chalmers University of Technology

Nakazato, H. Nilsson, S. University of the Ryukyus Stockholm University

Nakazawa, N. Norton, A. R. Kogakuin University CERN

Nakkagawa, H. Norton, P. R. Nara University Rutherford Appleton Laboratory

Nambu, Y. Nunokawa, H. University of Chicago Tokyo Metropolitan University

Nandi, S. Nussbaum, M. M. Oklahoma State University University of Cincinnati

Narjoux, J. L. O'Donnell, P. J. College de France University of Toronto

Nassalski, J. Oberlack, H. G. CERN MPI, Munchen

Nath, P. Ogilvie, M. Northeastern University Washington University

Nauenberg, U. Oh, B. Y. S. University of Colorado Pennsylvania State University

Neal, H. A. Oh, C. H. University of Michigan National University of Singapore

Nelson, C. A. Oh, P. State University of New York, Binghamton Sungkyunkwan University

Nelson, H. N. Ohl,T. CERN Technische Hochschule Darmstadt

Newman, H. B. Okun, L. B. CERN ITEP, Moscow

Ng, J.N. Olesen, P. TRIUMF Niels Bohr Institute

Ng, K.-W. Olsen, S. L. Academia Sinica, Taipei University of Rochester

Ngankham, N. S. Otsuki, S. Manipur University Kyushu University

Ni, W.-T. Ould-Saada, F. National Tsing Hua University Universitàt Hamburg

Niebergall, F. Ouraou, A. CERN CEN-Saclay

Nielsen, B. S. Ouvry, S. CERN Université Paris-Sud

Nieto, M. M. Overseth, O. E. Los Alamos National Laboratory CERN

Niinikoski, T. O. Ovrut, B. A. CERN University of Pennsylvania

Page 87: P arallel Session 34

1508

Oyanagi, Y. Picek, I. University of Tsukuba Ruder Boskovic Institute

Ozaki, S. Pietschmann, H. V. R. Brookhaven National Laboratory Universitât Wien

Pac, P. Y. Plasil, F. Seoul National University Oak Ridge National Laboratory

Pakvasa, S. Pondrom, L. G. University of Hawaii University of Wisconsin, Madison

Palombo, F. Popovic, D. S. Università di Milano Institute of Physics, Belgrade

Pape, L. Porter, F. C. CERN California Institute of Technology

Parker, M. A. Predazzi, E. University of Cambridge University of Torino

Paul, E. Prepost, R. Universitât Bonn University of Wisconsin

Peach, K. J. Pretzl, K. University of Edinburgh University of Bern

Peccei, R. D. Prokoshkin, Y. D. University of California, Los Angeles ITEP, Protvino

Perez-Mercader, J. A. Pusterla, M. Ihstitito de Fisica Fundamental, Madrid Università di Padova

Perini, L. Putzer, A. K. F. CERN Universitât Heidelberg

Perl, M. L. Qing, C.R. SLAC ITP, Beijing

Peroni, C. Qiu, R. Università di Torino Fuzhou University

Perroud, J.-P. Raghavan, P. Université de Lausanne AT&T Bell Laboratories

Petersson, B. Raghavan, R. S. University of Bielefeld AT&T Bell Laboratories

Pevsner, A. Ramachandran, R. Johns Hopkins University Indian Institute of Technology

Pham, Y. X. Range, W. H. Univ. Paris VI et VH University of Liverpool

Phua, K. K. Rao, S. National University of Singapore Institute of Physics, Bhubaneswar

Pi, H. Ratti, S. P. University of Lund Sezione INFN Pavia

Piazzoli, A. Rauft, J. University of Pavia Leipzig

Picciotto, C. E. Rupuano, F. University of Victoria Università di Roma

Page 88: P arallel Session 34

1509

Raychaudhuri, A. Rubinstein, H. R. University of Calcutta Uppsala University

Reay.N. W. Ruckl, R. A. Ohio State University Universitât Munchen

Recalo, M. P. Rudaz, S. Kharkov Institute of Phys. and Tech. University of Minnesota

Renard, F.-M. Rudolf, M. 0 . Université des Sci. et Techniques du Languedoc Leipzig

Renton, P. B. Ruiz, J. A. University of Oxford University of Santander

Revol, J.-P. C. Rusack, R. W. CERN Rockefeller University

Richter, B. Russell, J. J. SLAC Southeastern Massachusetts University

Riles, J. K. Rutherfoord, J. P. CERN University of Arizona

Ristori, L. F. Ryseck, H.-E. Laboratorio Nazionale del Sud, Catania Institut fQr Hochenergiephysik, Zeuthen

Roe, B. P. Saarikko, H. M. CERN Helsinki University

Rohaly, T. E. Sadoff, A. J. University of Pennsylvania Cornell University

Rolandi, L. Safarik,K. CERN Inst, of Experimental Phys., Kosice

Romanov, A. I. Sakai, Y. JINR, Moscow KEK

Roos, M. Salamon, M. H. University of Helsinki University of Utah

Rosenberg, E. Sander, H.-G. Iowa State University Johannes Gutenberg - Univ. Mainz

Rosenfeld, C. Santacesaria, R. University of South Carolina CERN

Rossi, L. Sato, K. Sezione INFN Genova University of Tokyo

Roussarie, A. Savin, I. A. CEN-Saclay JINR, Moscow

Roy, P. Savrin, V. I. Tata Institute of Fundamental Research Moscow State University

Roy, S. M. Scadron, M. D. Tata Institute of Fundamental Research University of Arizona

Rubakov, V. A. Schalk, T.L. Institute for Nucl. Research, Moscow University of California, Santa Cruz

Rubbia, C. Schellekens, A. N. CERN CERN

Page 89: P arallel Session 34

1510

Schindler, R. H. Sijacki, D. SLAC Institute of Physics, Belgrade

Schlein, P. E. Simmons, E. H. CERN Harvard University

Schmidt, M. P. Singh, K. Yale University National University of Singapore

Schmidt-Parzefall, W. Singh, V. DESY Tata Institute of Fundamental Research

Schmitz, D. Sinha,B. RWTH, Aachen Variable Energy Cyclotron, Calcutta

Schmitz, N. Sirois, Y. MPS, Munchen Ecole Polytechnique, Palaisseau

Schopper, H. Sissakian, A. N. CERN JINR, Moscow

Schramm, D. N. Skarke, H. University of Chicago Technische Universitât Wien

Schrempp, F. Skrinsky, A. N. DESY USSR Academy of Sciences

Schroder, H. Skuja, A. DESY University of Maryland

Schubert, K. R. Skwarnicki, T. Universitât Karlsruhe Syracuse University

Schwarz, A. S. Sloan, T. MPI, Munchen University of Lancaster

Schwitters, R. F. Smith, K. M. SSC Laboratory CERN

Sedgbeer, J. K. Soding, P. H. CERN DESY

Sen, A. Soergel, V. Tata Institute of Fundamental Research DESY

Senju, H. Soffer, J. F. Nagoya Municipal Women's College CCT,Lurrriny

Shellard, R. Soni, A. Pontifica Univ. Catolica, Brazil Brookhaven National Laboratory

Shephard,W. D. Soper, D. E. University of Notre Dame University of Oregon

Shibata, E. I. Soto, J. Purdue University Imperial College

Shin, H. J. Spalding, W. J. Kyung Hee University Fermilab

Shulman, J. Spiro, M. I. University College London CEN-Saclay

Siddle, D. R. Starostin, A. S. National University of Singapore ITEP, Moscow

Page 90: P arallel Session 34

1511

Staude, A. Teh, R. C. G. CERN Mara Institute of Technology, Malaysia

Steadman, S. G. Thomas, A. W. Massachusetts Institute of Technology University of Adelaide

Stefanski, R. J. Tiecke, H. G. SSC Laboratory NIKHEF-H

Stelle, K. S. Timmermans, J. J. M. Imperial College NIKHEF-H

Storrow, J. K. Ting, S. C. C. University of Manchester Massachusetts Institute of Technology

Strauch, K. Tokushuku, K. Harvard University University of Tokyo

Strohbusch, U. Tomboulis, T. E. Universitât Hamburg University of California, Los Angeles

Strub, R. Torres, M. Université Louis Pasteur Nat. University of Mexico

Sudarshan, E. C. G. Tovey, S. N. University of Texas, Austin University of Melbourne

Sugano, K. Toyoda, F. Argonne National Laboratory Kinki University

Sun, C. R. Tran, T. V. State University of New York, Albany Université Paris-Sud

Sundaresan, M. K. Tsai, S.-Y. Carleton University Nihon University

Svoboda, R. C. Tsai, Y.-S. Louisiana State University SLAC

Sze, W.-K. Tsukamoto, T. Academia Sinica, Taipei KEK

Takamatou, K. Tsyganov, E. N. KEK JINR, Moscow

Takita, M. Tung, W.-K. Osaka University Illinois Institute of Technology

Tan, C.-I. Tuominiemi, J. K. Brown University Helsinki University

Tanaka, K. Turnbull, R. M. Ohio State University University of Glasgow

Tang, J. F. Turner, M. S. University of Sci. and Tech. of China Fermilab

Taras, P. Tyurin, N. E. Université de Montreal IHEP, Protvino

Taylor, C. C. Ukawa, A. Case Western Reserve University University of Tsukuba

Taylor, R. E. Valle, J.W. F. SLAC Université de Valencie

Page 91: P arallel Session 34

1512

Vander Velde, C. Watts, T. L. Université Libre de Bruxelles Rutgers university

Vassiliev, A. A. Weisz,P. H. Ministry for Atomic Power and Industry, Moscow MPI, Munchen

Vega, R. West, P. C. University of California, Davis King's College

Verzegnassi, C. Widgoff, M. LAPP, Annecy Brown University

Vilenkin, A. Willey, R. S. Tufts University University of Pittsburgh

Virdee, T. S. Williams, J. G. CERN Brandon University

Visser, J. Williams, R.W. Elsevier Science Publishers University of Washington

Vogel, H. Willis, W. J. Carnegie-Mellon University CERN

Volkas, R. R. Willutzki, H. J. University of Melbourne Brookhaven National Laboratory

Volland, U. Wilson, R. J. Universitât Erlangen-Nurnberg Boston University

Volodkov, A. G. Wojcicki, S. G. JINR, Moscow Stanford University

Voss, R. Woloshyn, R. CERN TRIUMF

Wadati, M. Woods, M. B. University of Tokyo SLAC

Wadia, S. R. Wroblewski, A. K. Tata Institute of Fundamental Research Warsaw University

Wagner, A. Wu, Y.-S. CERN University of Utah

Wah, Y.W. Wu, Y. L. University of Chicago Johannes Gutenberg - Universitât Mainz

Wahlen, H. Xu, Z.-Z. Bergische Universitât University of Sci. and Tech., Hefei

Wakaizumi, S. Yamada, S University of Tolaishima University of Tokyo

Walsh, T. F. Yamagishi, K. University of Minnesota Tokuyama University

Wang,T. J. Yamaguchi, Y. IHEP, Beijing University of Tokai

Ward, B. F. L. Yamamoto, Y. University of Tennessee Konan University

Watts, S. J. Yamanaka, T. Brunei University Fermilab

Page 92: P arallel Session 34

1513

Yamauchi, M. Zheng, L. S. KEK IHEP, Beijing

Yang, C. N. Zheng, Z.-P. State University of New York, Stony Brook IHEP, Beijing

Yao, H. Zilberkweit, J. D. Academia Sinica, Taipei DESY

Yao, E. Y.-P. Zitoun, R. University of Michigan Université Paris VI et VU

Ye, M. H. Zumerle, G. fflEP, Beijing Sezione INFN Padova

Yeh, N. K. State Univ. of New York, Binghamton

Yodh, G. B. University of California, Irvine

Yokosawa, A. Argonne National Laboratory

Young, C. C.-H. SLAC

Young, K. Chinese University of Hong Kong

Yu, H.-L. Academia Sinica, Taipei

Yu, H. IHEP, Beijing

Yun, S. K. Saginaw Valley State University

Zaimidoroga, O. A. JINR, Moscow

Zaitsev, A. M. JINR, Moscow

Zakrzewski, W. J. University of Durham

Zanotti, L. University of Milano

Zee, A. University of California, Santa Barbara

Zepeda, A. CINVESTAV, Mexico

Zerwas, P. RWTH, Aachen

Zhakovski, A. V. Ministry for Atomic Power and Industry, Moscow

Zhang, C. C. IHEP, Beijing

Page 93: P arallel Session 34

THE EARLY ROCHESTER CONFERENCES

(Photographs selected from the R. E. Marshak collections by Y. Yamaguchi and M. Konuma in collaboration with R. E. Marshak)

Rochester 2. In the front row, from left to right: Marshak, R.E., Serber, E . , Oppenheimer, J.R., Bethe, H.

Rochester 2. In the front row, from left to right: Ramsey, N.F., Segrè, E., Weisskopf, V., Wentzel, G., Rabi, I.I,

Fermi, E.

Page 94: P arallel Session 34

Rochester 3. From center to right: De Kiewiet (President of the Univ. of Rochester), Marshak, R.E., Amaldi, E.f Oppenheimer, J.R., Fermi, E., Leprince-Ringuet, L.

Rochester 3 . Nobel Laureates: Yukawa, H., McMillan, E.M., Anderson, CD., Fermi, E.

Rochester S, Yukawa, H., Marshak, R.E.

Page 95: P arallel Session 34

Rochester 5. In the front row: Noyes, P., Dyson, F., Steinberger, J., Feynman, R.P., Bethe, H.

Rochester 5. Sal am, A., Lehmann, H.

Rochester 5. Marshak, R.E., Bâcher, R., Oppenheimer, J.R.

Page 96: P arallel Session 34

Rochester 6. Berthelot, A., O'Ceallaigh, C, Occhiahni, G., Friedlander, M.

Rochester 6. Goldhaber, S., Salzman, F., Crussard, J.

Page 97: P arallel Session 34

Rochester 6. Markov, N.A, Veksler, V.I., SiUn, V.P. Rochester 7. Yang, C.N., Gatto, R.

Rochester 7. GeU-Mann, M., Feynman, R.P.

Page 98: P arallel Session 34

Rochester 7. Peierls, R., Chew, G.

Rochester 7. Salvini, G., Bernardini, G,

Page 99: P arallel Session 34

Rochester 9. ZeVdovich, Ya.B., Marx, G.,

Marshak, R.E.

Rochester 10. Teillac I., Budker, G.I., Menon, M.G.K., Segrè, E.

Rochester 10. Nobel Laureates: Segrè, E., Yang, C.N., Chamberlain, 0., Lee, T.D.,

McMillan, E.M., Anderson, CD., Rabi, IL, Heisenberg, W.

Page 100: P arallel Session 34

1 5 2 3

A U T H O R I N D E X

Abe, K. 33 Chau,L.L. 1045,1410 Gandhi, R. 1212 Adam, W. 827 Cheng, H. Y. 1042 Gavrin, V.N. 693 Aivazis, M. A. G. 1455 Chew,C.K. 1004 Ge, M. L. 1407 Albright, C. H. 1188 Ching, C.-R. 497 Gegenberg,J. 707 Altmeyer, R. 753 Chiu,T.-W. 1149 Geiges,R. 850 Alvarez, E. 514 Cho,Y.M. 711,715,919 Gell-Mann,M. 1303 Alvarez-Gaumé, L. 737 Chou, T. T. 1013 Geng,C.Q. 1050 Amaldi, U. 352 Church, M. 567 Giovannini, A. 998 Anselmino, M. 577 Ciafaloni,M. 1176 Gittelman, B. 227 Aston, D. 569 Close, F. E. 213 Goggi,V.G. 1372 Aubert,B. 1368 Cribier,M. 689 Goldman, T. 489 Ayres, D. S. 480 Gotsman, E. 1446

Das, S. R. 721 Gourlay, S. 560 Baaquie, B.E. 522 De Wolf, E. A. 979 Gustafson, G. 993 Bailin,D. 372 Deguchi,T. 1389 Bail, A. H. 1272 DeirOrso,M. 895 Hakioglu,T. 775 Bail, S. 811 Deshpande, N. G. 790 Halliwell,C. 624 Bambah, B. A. 418 DeTar,C. 1159 Han,C.G. 711 Barger, V. 785 Dey, M. 423 Hansen, J. R. 343 Barnett,R.M. 527,960 Di Giacomo, A. 758 Hartle,J.B. 1303 Bastero-Gil, M. 802 Dibon, H. 984 He,X.G. 799 Bazizi, K. 639 Dolan,L. 504 Hebbeker,T. 1428 Bernreuther, W. 1249 Dremin, I. M. 990 Hill, C.T. 949,1331 Biaikowska, H. 1094 Duff, M. 387 Ho,C.-L. 943 Bjorken, J.D. 329, 1195 Dugan, G. 1078 Hong,Yu. 1172 Bolotov, V.N. 1067 Dydak, F. 3 Horn, D. 428 Boos, E.G. 1018 Dye, S. 659 Howe, P. 397 Born, K. 753 Hsiung,Y.B. 1225 Bowles, T. J. 492 Eeg,J.O. 1259 Hwang, P. S. 1404 Boyanovsky, D. 1139 Eletsky, V. L. 423 Branson, J. G. 1181 Ellis, S. D. 1442 Ibadov,M. 928 Brezin, E. 262 Engels, Jr., E. 1439 Ibes,W. 753 Brient, J. C. 347 Enqvist, K. 419, 1329 Innocente, V. 822 Brink, L. 369 Errede,D. 1432 Ioffe, B. L. 423, 646 Buchholz, D. 560 Ishikawa,K. 1143 Burgess, C. P. 1255 Feindt, M. 537, 591 Islam, M. M. 778

Ferbel,T. 573 Callot, 0.,1265 Ferrara, S. 508 Jacob, M. 174,1116 Camilleri,L. 1436 Foley, K.J. 1092 Jarlskog, C. 61 Campagnari, C. 454 Freeman, J. 1297 Jawahery, A. 832 Cavasinni, V. 443 Frishman, Y. 936 Jin, C. 795 Chaichian,M. 923 Fukushima,M. 1280 Johnson, R. P. 837 Chan, A. H. 1004 Fursaev,D.V. 928 Joshi, G. C. 799 Chang, D. 1239 Chang, K.L. 1404 Gago,J.M. 1099 Kadyshevsky, V. G. 928 Chang, L.N. 769 Gamet,R. 1236 Kajita,T. 685

Page 101: P arallel Session 34

1524

Karliner, M. 646 Morrison, D. R. O. 676, 1339 Rijllart, A. 1349 Kayser,B. 1244 Mukku, C. 418 Riles, K. 1276 Kazakov, D.I. 732 Millier, H. 872 Robertson, R. G. H. 492 Kekelidze, V. D. 575 Muta, T. 772 Robinson, J. A. 1255 Kenney, V. P. 459 Roussarie, A. 1267 Kernel, G. 542 Nakamura, K. 281 Rubakov, V. A. 309 Kimura,Y. 1081 Nakazato,H. 932 Kishida,T. 1059 Nambu, Y. 275 Sadoff, A. J. 841,1054 Kleinknecht, K. 1033 Nassalski, J. 619 Sakai,Y. 602 Klepfish, E. G. 428 Nath, P. 376 Santacesaria, R. 655 rOinkhamer, F. R. 913 Nelson, H. N. 243 Sato,K. 1207,1333 Knapp, D. A. 492 Newman, H. B. 1284, 1380 Scadron,M.D. 775 Kobes, R. 414 Ng,J.N. 1050 Schindler, R. H. 819 Koene,B. 1294 Nieto, M. M. 489 Schmidt, M. P. 1037 Kolanoski, H. 1165 Niinikoski, T. 1349 Schramm, D. N. 1311 Kondo, K. 409 Nilsson, B. E. W. 380 Schreiber, A. W. 649 Koures, V.G. 781 Ni2ic,B. 1259 Schroeder, H. 846 Kowalewski, R. V. 866 Nunokawa, H. 681 Schwarz, A. S. 1345 Kuhn, J.H. 1169,1451 Sen, A. 384 Kunstatter, G. 414, 707 Oberlack, H. G. 1377 Shephard, W. D. 560 Kunszt,Z. 1442 Oh, C. H. 941, 1010 Shibata,E.L 815

Okun,L. 319 Sia, L. C. 941 Laermann, E. 753 01ness,F.I. 1455 Signal, A. L 649 Lande, K. 667 Ouraou, A. 634 Sinha,B. 1111 LeClair,A. 501 Ovrut, B. A. 517 Skwarnicki, T. 550, 1359 Lee,H.C. 1400 Oyanagi,Y. 1154 Sloan, T. 639 Lee-Franzini, J. 555 Ozaki,S. 1106 Smith, K. M. 861 Leivo, H. P. 707 Soffer, J. 623, 642 Lew, H. 799 Pakvasa, S. 698 Soper,D.E. 1442 Lichtenberg, D. B. 577 Panin, V. S. 586 Spiro,M. 463 Lim,S.L. 1010 Park, D. H. 711 Starostin, A. S. 494 Lissauer, D. 1446 Parker, M. A. 1185 Steadman, S. G. 1087 Lohse,T. 1423 Paschos,E.A. 1230 Stelle, K. S. 391 Love,S.T. 405 Pennington, M. R. 546 Stephenson, G. J. 492 Lu, J. X. 387 Pérez-Mercader, J. 802 Strehl,B. 1349 Lubatti, H. J. 901, 1384 Perini,L. 451 Sudarshan, E. C. G. 941

Perroud, J. P. 447 Sugano, K. 975 Ma, E. 806 Peyrard,M. 1415 Suzuki, H. 1207 Mahanthappa, K. T. 781,966 Phua,K.K. 1010 Svoboda,R. 662 Mandula, J. E. 763 Picek,I. 1259

Svoboda,R. 662

Markytan, M. 984 Piette,B. 1415 Tan, C. L 727 Marshak, R. E. 200 Plasil,F. 1104 Tang, J. F. 779 Mathews, P. 1449 Poling, R. A. 841 Terasawa,N. 1333 McBride, P. L. 877 Pondrom, L. G. 144 Thomas, A. W. 649 Milton, K. A. 432 Predazzi, E. 577 Thomas, S. 517 Minakata, H. 681 Prokoshkin, Yu. D. 582 Tollsten, A. K. 380 Mischke.R. 1070 Raghavan, R. S. 482 Tran Thanh Van, J. 1102 Mohapatra, P. K. 966 Ramachandran, R. 1449 Tsukamoto,T. 612 Molzon,W.R. 1063 Ratti, S. P. 560 Tung, W. K. 629,1455 Morfin, J.G. 629 Rebhan,A. 414 Tuominiemi, J. 853 Morgan, D. 546 Renard, F. M. 971 Tyurin,N.E. 1075 Mori,T. 360 Renton,P.B. 1290

Tyurin,N.E. 1075

Moroni, L. 560 Revol, J. P. 439 Ukawa,A. 79

Page 102: P arallel Session 34

1525

Unno, Y. 607 Waik, D. L. 492 Yang, C. N. ix, 1013,1127 West, P. 397 Yao,Y.-P. 1193

VaUe, J.W.F. 955,1324 Wikerson, J. F. 492 Ye, M. H. 889 Van Hove, L. 998 Willis, W.J. 105 Yodh, G. B. 470 Virdee,T.S. 1363 Wimpenny, S. J. 639 Yokosawa, A. 1027 Volkas, R. R. 799 Winter, K. 1349 Volland, U. 882 Wrôblewski, A. K. 125 Zakrzewski, W. J. 936,1415 von Feilitzsch, F. 1353 Wu,Y.L. 1230,1135 Zee, A. 206

Zerwas,P.M. 753 Wadati,M. 1389 Xue,K. 1407 Zhang, S.C. 1127 Wadia, S. R. 743 Zheng, Z. P. 49 Wah,Y.W. 1221 Yamashiro, T. 932 Zieminski, A. 907 Walsh, T.F. 548,753 Yamauchi, M. 596 Zitoun,R. 1426