Top Banner
Pál Rakonczai, László Varga, András Zempléni Copula fitting to time- dependent data, with applications to wind speed maxima Eötvös Loránd University Faculty of Science Institute of Mathematics Department of Probability Theory and Statistics
24

P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Dec 23, 2015

Download

Documents

Brooke Hodge
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni

Copula fitting to time-dependent data with applications to wind speed maxima

Eoumltvoumls Loraacutend University Faculty of ScienceInstitute of MathematicsDepartment of Probability Theory and Statistics

Outline

1 Copulae

2 Goodness-of-fit tests

3 Bootstrap methods

4 Serial dependence

5 Applications to wind speed maxima

2

1 Copulae

bull C is a copula if it is a d-dimensional random vector

with marginals ~ Unif [01]

bull Existence (Sklarrsquos Theorem) to any d-dimensional

random variable X with cdf H and marginals Fi

(i=1d) there exists a copula C

H( x1 hellip xd ) = C ( F1(x1) hellip Fd(xd ) )

bull Uniqueness if Fi are continuous (i=1d)

bull Separation of the marginal model and the dependence

3

Elliptical Copulae ndash copulae of elliptical distributions

ndash Gaussian X ~ Nn(0Σ)

where Φ cdf of N(01)

ndash Studentrsquos t X ~

where tv cdf of Studentrsquos t distribution with v degrees of freedom

1 Copulae ndash Examples

4

d

u u

n

Ga dxdxeCtd

2

1)( 1

2

1)( )(

212

111 1

xxu

d

nv

tut ut

n

tv dxdx

vv

nv

Cv dv

1

1

2

2)( 1

21

)( )(

212

11 1

xxu

0Student vn

Archimedean Copulae Copula generator function

ϕ is continuous strictly decreasing and ϕ(1)=0

d-variate Archimedean copula

ndash Gumbel where

ndash Clayton where

1 Copulae - Examples

5

010)(u

d

iiu

1

1 )()( uC

1

1

log

)(

d

iiu

Gumbel euC

)ln()( uu 1

1

1Clayton 1)(

du

d

iiuC

1)( uu 0gt

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 2: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Outline

1 Copulae

2 Goodness-of-fit tests

3 Bootstrap methods

4 Serial dependence

5 Applications to wind speed maxima

2

1 Copulae

bull C is a copula if it is a d-dimensional random vector

with marginals ~ Unif [01]

bull Existence (Sklarrsquos Theorem) to any d-dimensional

random variable X with cdf H and marginals Fi

(i=1d) there exists a copula C

H( x1 hellip xd ) = C ( F1(x1) hellip Fd(xd ) )

bull Uniqueness if Fi are continuous (i=1d)

bull Separation of the marginal model and the dependence

3

Elliptical Copulae ndash copulae of elliptical distributions

ndash Gaussian X ~ Nn(0Σ)

where Φ cdf of N(01)

ndash Studentrsquos t X ~

where tv cdf of Studentrsquos t distribution with v degrees of freedom

1 Copulae ndash Examples

4

d

u u

n

Ga dxdxeCtd

2

1)( 1

2

1)( )(

212

111 1

xxu

d

nv

tut ut

n

tv dxdx

vv

nv

Cv dv

1

1

2

2)( 1

21

)( )(

212

11 1

xxu

0Student vn

Archimedean Copulae Copula generator function

ϕ is continuous strictly decreasing and ϕ(1)=0

d-variate Archimedean copula

ndash Gumbel where

ndash Clayton where

1 Copulae - Examples

5

010)(u

d

iiu

1

1 )()( uC

1

1

log

)(

d

iiu

Gumbel euC

)ln()( uu 1

1

1Clayton 1)(

du

d

iiuC

1)( uu 0gt

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 3: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

1 Copulae

bull C is a copula if it is a d-dimensional random vector

with marginals ~ Unif [01]

bull Existence (Sklarrsquos Theorem) to any d-dimensional

random variable X with cdf H and marginals Fi

(i=1d) there exists a copula C

H( x1 hellip xd ) = C ( F1(x1) hellip Fd(xd ) )

bull Uniqueness if Fi are continuous (i=1d)

bull Separation of the marginal model and the dependence

3

Elliptical Copulae ndash copulae of elliptical distributions

ndash Gaussian X ~ Nn(0Σ)

where Φ cdf of N(01)

ndash Studentrsquos t X ~

where tv cdf of Studentrsquos t distribution with v degrees of freedom

1 Copulae ndash Examples

4

d

u u

n

Ga dxdxeCtd

2

1)( 1

2

1)( )(

212

111 1

xxu

d

nv

tut ut

n

tv dxdx

vv

nv

Cv dv

1

1

2

2)( 1

21

)( )(

212

11 1

xxu

0Student vn

Archimedean Copulae Copula generator function

ϕ is continuous strictly decreasing and ϕ(1)=0

d-variate Archimedean copula

ndash Gumbel where

ndash Clayton where

1 Copulae - Examples

5

010)(u

d

iiu

1

1 )()( uC

1

1

log

)(

d

iiu

Gumbel euC

)ln()( uu 1

1

1Clayton 1)(

du

d

iiuC

1)( uu 0gt

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 4: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Elliptical Copulae ndash copulae of elliptical distributions

ndash Gaussian X ~ Nn(0Σ)

where Φ cdf of N(01)

ndash Studentrsquos t X ~

where tv cdf of Studentrsquos t distribution with v degrees of freedom

1 Copulae ndash Examples

4

d

u u

n

Ga dxdxeCtd

2

1)( 1

2

1)( )(

212

111 1

xxu

d

nv

tut ut

n

tv dxdx

vv

nv

Cv dv

1

1

2

2)( 1

21

)( )(

212

11 1

xxu

0Student vn

Archimedean Copulae Copula generator function

ϕ is continuous strictly decreasing and ϕ(1)=0

d-variate Archimedean copula

ndash Gumbel where

ndash Clayton where

1 Copulae - Examples

5

010)(u

d

iiu

1

1 )()( uC

1

1

log

)(

d

iiu

Gumbel euC

)ln()( uu 1

1

1Clayton 1)(

du

d

iiuC

1)( uu 0gt

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 5: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Archimedean Copulae Copula generator function

ϕ is continuous strictly decreasing and ϕ(1)=0

d-variate Archimedean copula

ndash Gumbel where

ndash Clayton where

1 Copulae - Examples

5

010)(u

d

iiu

1

1 )()( uC

1

1

log

)(

d

iiu

Gumbel euC

)ln()( uu 1

1

1Clayton 1)(

du

d

iiuC

1)( uu 0gt

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 6: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

6

1 Copulae - Examples

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gauss copula

075n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Gumbel copula

25n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from t-copula

08n 1500

00 02 04 06 08 10

00

02

04

06

08

10

Simulation from Clayton copula

25n 1500

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 7: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

2 Goodness-of-fit tests in one dimension

1 Estimation of the model parameter

2 Goodness-of fit testa) Crameacuter-von Mises tests

bull Fn empirical cdf

bull F cdfbull Φ weight function

Anderson-Darling

b) Critical value ndash simulation1) Simulate a sample from the copula model Cθ under H0

2) Re-estimate by ML-method

3) Calculate the test statistics

Repetition and estimation of p values

Θ θθ CCH 00 C

)()())()(( 2 xdFxxFxFnT n

7

xFxFx

1

1)(

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 8: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

2 Goodness-of-fit tests in more dimensions

bull Probability integral transformation (PIT) ndash mapping into the d-dimensional unit cube

~H ~C for i=1n

bull Kendallrsquos transform (K function)

Advantage one-dimensional

ndash Example Archimedean copulas

where

))(()))(()((()( 111 tUUCPtXFXFCPtΚ ddd

8

nsObservatio

1 )( idii XXX nsobservatioPseudo

1 )(

idiiPIT UUU

tx

i

i

i xdx

dtf

1

tfti

ttK ii

d

i

i

1

1

1

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 9: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

bull Empirical version

where

bull Kendallrsquos process

favorable asymptotic properties

bull Crameacuter-von Mises type statistic

where Φ weight function

9

2 Goodness-of-fit tests in more dimensions

))()(()( tKtKnt nnn

n

jidjdijin UUUU

nE

111

11

n

iinn ttE

ntK

1

101

1

1

0

2 )())(( dtttS nn

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 10: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

3 Serial dependence

bull Let X1 X2 Xn be univariate stationary observations EXi =μ Var(Xi )=σ2

bull If X1 X2 Xn are iid then

bull Serial dependence rarr higher variance

bull Effective sample size (ne)

where estimated variance larr bootstrap10

nX

2

)(Var

)(Var

2

e Xn

)(Var X

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 11: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

4 Bootstrap methods - Bootstrap introbull Efron (1979)

bull Let X1 X2 be iid random variables with (unknown) common distribution F ndash Xn=X1 Xn random sample

ndash Tn=tn(Xn F) random variable of interest itrsquos distribution Gn

bull Goal approximation of the distribution Gn

bull Bootstrap method ndash For given Xn we draw a simple random sample

of size m (usually m asymp n)ndash Common distribution of rsquosndash ndash Repetition 11

X X1 mmX

iX

n

iXn i

nF1

1 nmnm FtT m

X

nmG ˆ

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 12: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

4 Bootstrap methods - CBBbull Nonparametric bootstrap (sample size n)

ndash Block bootstrapbull Circular block bootstrap (CBB)

1 Let2 For some m let i1 i2 im be a uniform sample

from the set 1 2 n 3 For block size b construct nrsquo=mb (nrsquoasympn)

pseudo-data for j=1b4 Functional of interest eg bootstrap sample

mean

)(mod tt nXY

1

jijmb mYY

12

11

nn YYnY

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 13: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

4 Bootstrap methods ndash Block-length selection

DNPolitis-H White (2004) automatic block-length selection

bull Minimalize

where and

g() spectral density function

R() autocovariance function

bull Optimal block size

bull Estimation of G and D

n

bobo

n

bD

b

GMSE Xb )()( 2

2

22

k

kRkG )()0(3

4 2gD

3122

nD

Gbopt

13

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 14: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

5 Applications to wind speed maxima

bull Sample n = 2591 observations of weekly wind speed maxima for 5 German towns

bull Automatic block-length selection results

meteorologically no sense

TownOptimal block-

lengthHamburg 31Hannover 11Bremerhaven 28Fehmarn 31Schleswig 15

14

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 15: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

15

5 Applications to wind speed maxima

Method1 Fitting AR(1) modell to the data

Zt ~Extreme value distr

2 Calculation of the theoretical from AR(1) parameters

3 b optimal block size where the simulated variance of the mean first crosses the theoretical value

ttt ZXX 1

2

21

2

2

)1ˆ(

ˆ2ˆˆ2

)ˆ1(

ˆ)(Var

n

nn

nX

n

n

)(Var nX

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 16: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Bootstrap simulation results

b = 616

5 Applications to wind speed maxima

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 17: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Bootstrap simulation results

5 Applications to wind speed maxima

TownOptimal block-

lengthX-mean variance

Theoretical value

Deviation ()

IID X-mean-variance

Sample size reduction

Hamburg 8-9 00038 00034 1090 00020 185Hannover 7 00067 00071 -529 00042 159Bremerhaven 6 00073 00077 -615 00043 171Fehmarn 7 00035 00034 343 00020 174Schleswig 13 00037 00030 2279 00018 209

17

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 18: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Bremerhaven amp Fehmarn

18

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Fehmarn

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

5 Applications to wind speed maxima

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 19: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Bremerhaven amp Schleswig

19

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Bremerhaven amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

Empirical KTheoretical K

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 20: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Fehmarn amp Schleswig

20

5 Applications to wind speed maxima

GA

US

S

ST

UD

-T

GU

MB

EL

CL

AY

TO

N

00

00

00

00

04

00

00

80

00

12

Fehmarn amp Schleswig

00

00

00

00

04

00

00

80

00

12

n=1514n=2571

95 critical valueobserved statistics

00 02 04 06 08 10

00

04

08

Gumbel

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Clayton

K t

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Gauss

Empirical KTheoretical K

00 02 04 06 08 10

00

04

08

Student-t

K t

Empirical KTheoretical K

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 21: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Prediction regions (Bremerhaven amp Fehmarn)

21

5 Applications to wind speed maxima

Wind speed (ms)

Win

d sp

eed

(ms

)

0 5 10 15 20 25 30

0

5

10

15

20

25

Pred regions 50-95-998lower(5) boundsupper(95) bounds

block=1 lower boundblock=7 lower boundblock=30 lower boundblock=1 upper boundblock=7 upper boundblock=30 upper bound

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 22: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Final remarks

Conclusionsbull Copula choice is important bull Serial dependence largely influences the critical values of

GoF testsbull Block size does not have a major impact on the estimated

prediction region Future workbull Multivariate effective sample sizebull Parametric bootstrap

Acknowledgementbull We are grateful to the Doctoral School of Mathematics of

ELTE for supporting L Vargarsquos participation at SMTDA Conference

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 23: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Thank you for the attention

23

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References
Page 24: P á l Rakonczai, L á szl ó Varga, Andr á s Zempl é ni Copula fitting to time-dependent data, with applications to wind speed maxima Eötvös Loránd University.

Referencesbull P Rakonczai A Zempleacuteni Copulas and goodness of fit tests

Recent advances in stochastic modeling and data analysis World Scientific pp 198-206 2007

bull SN Lahiri Resampling Methods for Dependent Data Springer 2003

bull DNPolitis HWhite Automatic Block-Length Selection for the Dependent Bootstrap Econometric Reviews Vol 23 pp 53-70 2004

bull P Embrechts F Lindskog A McNeil Modelling Dependence with Copulas and Applications to Risk Management Department of Mathematics ETHZ Zuumlrich 2001

bull LKish Survey Sampling J Wiley 1965

24

  • Paacutel Rakonczai Laacuteszloacute Varga Andraacutes Zempleacuteni
  • Outline
  • 1 Copulae
  • Slide 4
  • Slide 5
  • Slide 6
  • 2 Goodness-of-fit tests in one dimension
  • 2 Goodness-of-fit tests in more dimensions
  • 2 Goodness-of-fit tests in more dimensions (2)
  • 3 Serial dependence
  • 4 Bootstrap methods - Bootstrap intro
  • 4 Bootstrap methods - CBB
  • 4 Bootstrap methods ndash Block-length selection
  • 5 Applications to wind speed maxima
  • Slide 15
  • Slide 16
  • 5 Applications to wind speed maxima (2)
  • 5 Applications to wind speed maxima (3)
  • 5 Applications to wind speed maxima (4)
  • 5 Applications to wind speed maxima (5)
  • 5 Applications to wind speed maxima (6)
  • Final remarks
  • Thank you for the attention
  • References