Top Banner
UNIVERSITI PUTRA MALAYSIA ANTINOCICEPTIVE ACTIVITY, ELUCIDATION OF MECHANISM OF ACTION AND IDENTIFICATION OF BIOACTIVE COMPONENTS OF Muntingia calabura L. LEAF EXTRACTS MOHD HIJAZ MOHD SANI FPSK(p) 2016 6
50

COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

May 01, 2019

Download

Documents

ngohanh
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

UNIVERSITI PUTRA MALAYSIA

ANTINOCICEPTIVE ACTIVITY, ELUCIDATION OF MECHANISM OF ACTION AND IDENTIFICATION OF BIOACTIVE COMPONENTS OF

Muntingia calabura L. LEAF EXTRACTS

MOHD HIJAZ MOHD SANI

FPSK(p) 2016 6

Page 2: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

ANTINOCICEPTIVE ACTIVITY, ELUCIDATION OF MECHANISM OF

ACTION AND IDENTIFICATION OF BIOACTIVE COMPONENTS OF

Muntingia calabura L. LEAF EXTRACTS

By

MOHD.HIJAZ MOHD SANI

Thesis submitted to the School of Graduate Studies, University Putra Malaysia, in

Fulfilment of the Requirements for the Degree of Doctor of Philosophy

June 2016

Page 3: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons,

photographs and all other artwork, is copyright material of Universiti Putra Malaysia

unless otherwise stated. Use may be made of any material contained within the thesis

for non-commercial purposes from the copyright holder. Commercial use of material

may only be made with the express, prior, written permission of Universiti Putra

Malaysia.

Copyright © Universiti Putra Malaysia

Page 4: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

i

Abstract of thesis presented to the senate of Universiti Putra Malaysia in fulfilment of

the requirement for the degree of Doctor of Philosophy

ANTINOCICEPTIVE ACTIVITY, ELUCIDATION OF MECHANISM OF

ACTION AND IDENTIFICATION OF

BIOACTIVE COMPONENTS OF MUNTINGIA CALABURA L. LEAF

EXTRACTS

By

MOHD.HIJAZ MOHD SANI

June 2016

Chairman: Associate Professor Zainul Amiruddin Zakaria, PhD

Faculty: Medicine and Health Sciences

Research into plant as an alternative treatment for pain has been widely explored due to

its potentially low adverse effect with great therapeutic activity. Muntingia calabura L.

(Tiliaceae) has recently gained a medicinal status as well as attention from throughout

the world. The present study examined the potential antinociceptive activity of

methanol extract of Muntingia calabura (MEMC) leaves using the acetic acid-induced

abdominal constriction, formalin and hot plate test following the determination of its

safety using acute toxicity test. Then the possible involvement of MEMC-induced

antinociception through capsaicin, glutamate, bradykinin, opioidergic, dopaminergic serotonergic, noradrenergic, adenosisnergic, protein kinase C (PKC), nitric oxide

(NO)/cyclic guanosine monophosphate (cGMP) and potassium channel pathway was

evaluated. Experimental animals (n=6) were pretreated orally with 10% dimethyl

sulfoxide (DMSO; negative control), 5 mg/kg morphine or 100 mg/kg aspirin (positive

control) or 100, 250, and 500 mg/kg of MEMC, followed by the administration of

receptor antagonists and/or induction of nociception. The crude MEMC extract was

further partitioned into three fractions: petroleum ether extract (PEMC), ethyl acetate

extract (EAMC) and aqueous extract (AEMC). The antinociceptive profiling

demonstrates PEMC produced a significantly better activity than EAMC and AEMC.

Possible mechanism of PEMC action was studied using the same assays. Result on the

acute toxicity study shows no mortality and significant behavioural and physiological changes detected. Oral administration of MEMC and PEMC shows a dose-dependent

inhibition in acetic acid-induced abdominal constriction test, formalin-, capsaicin-.

glutamate-, bradykinin- and PMA-induced paw licking test, while only the highest dose

produced significant pain inhibition in hot plate test. Furthermore, the antinociception

caused by MEMC and PEMC in acetic acid-induced abdominal constriction test was

significantly attenuated by intraperitoneal treatment of naloxone (non-specific opioid

receptor antagonist; 5 mg/kg), naltrindole (δ opioid receptor antagonist; 1 mg/kg) nor-

binaltorphimine (κ opioid receptor antagonist; 1 mg/kg), β-funaltraxamine (μ opioid

antagonist; 10 mg/kg), pindolol (5-HT1A receptor antagonist; 1 mg/kg), caffeine (non-

selective adenosine receptor antagonist; 3 mg/kg) and yohimbine (α2 adrenoceptor

antagonist; 0.15 mg/kg). While both extracts did not act on dopaminergic receptor system, PEMC, but not MEMC, was significantly reversed by i.p. injection of atropine

Page 5: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

ii

(non-selective cholinergic antagonist; 10 mg/kg). At the same time, MEMC and PEMC

were found to inhibit pain through NO/cGMP/PKC as well as potassium channel

pathways. The potential antinociceptive activity seen was probably due to synergistic

effect of flavonoids, tannins, polyphenolic compounds, triterpene and steroid present in

the extracts based on their phytochemical screening. High performance liquid

chromatography analysis shows several peaks, detected at different wavelengths of the

chromatogram, which were suggested to be flavonoid-based compounds. In conclusion,

the synergistic effects of various bioactive components suggested to be responsible in

the antinociceptive activity of MEMC as well as the semi-purified PEMC extract which

involved in central and peripheral pain pathways. The activation of potassium pathway

as well as opioid, adenosinergic, noradrenergic and serotonergic receptors while inhibits NO/cGMP/PKC pathways, TRPV1, glutamate and bradykinin receptors might

be the possible mode of action of both the extracts in exerting their analgesic effect.

Page 6: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

iii

Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

AKTIVITI ANTINOSISEPTIF, PENJELASAN MEKANISMA TINDAKAN

DAN MENGENAL PASTI KOMPONEN BIOAKTIF DARI EKSTRAK DAUN

MUNTINGIA CALABURA L.

Oleh

MOHD.HIJAZ MOHD SANI

Jun 2016

Pengerusi: Profesor Madya Zainul Amiruddin Zakaria, PhD

Fakulti: Perubatan dan Sains Kesihatan

Penyelidikan ke atas tumbuhan sebagai perubatan alternatif untuk kesakitan telah luas

diteroka kerana potensi kesan sampingan yang rendah disamping memberi aktiviti

terapeutik yang kuat. Muntingia calabura L. (Tiliaceae) baru-baru ini telah mendapat

status tumbuhan perubatan dan juga perhatian penyelidik dari serata dunia.

Penyelidikan ini mengkaji potensi aktiviti antinosiseptif ekstrak metanol dari daun

Muntingia calabura (MEMC) menggunakan ujian penggeliatan perut mencit, ujian

penjilatan tapak kaki tikus dan ujian plat panas selepas ujian keselamatan toksik akut.

Selepas itu, mekanisma tindakan antinosiseptif MEMC dikaji menggunakan model

eksperimen capsaicin, glutamate, bradykinin, opioidergik, dopaminergic, serotonergic, noradrenergic, adenosinergic, protin kinas C (PKC), saluran nitrik oksida (NO)/kitaran

guanosin monofosfat (cGMP) dan saluran kalium. Haiwan ujikaji (n=6) dirawat secara

oral dengan 10% dimetil sulfoksida (DMSO; kawalan negatif), 5 mg/kg morfin atau

100 mg/kg aspirin (kawalan positif), atau 100, 250 dan 500 mg/kg MEMC, diikuti

dengan pemberian reseptor antagonis dan/atau perangsang kesakitan. Ekstrak kasar

MEMC kemudiannya dibahagikan kepada tiga pecahan: ekstrak petroleum eter

(PEMC), ekstrak etil asetat (EAMC) dan ekstrak akues (AEMC). Mekanisma tindakan

yang mungkin untuk PEMC dikaji menggunakan model eksperimen yang sama.

Keputusan toksik akut menunjukkan tiada kematian serta perubahan signifikan

terhadap tingkah laku dan fisiologi. Pemberian MEMC dan PEMC secara oral

menunjukkan perencatan secara signifikan dalam ujian penggeliatan perut mencit serta ujian penjilatan tapak kaki mencit oleh formalin, capsaicin, glutamate, bradykinin dan

PMA, manakala hanya dos paling tinggi menunjukkan penurunan kesakitan yang

signifikan dalam ujian plat panas. Lebih dari itu, kesan antinosiseptif oleh MEMC dan

PEMC dalam ujian pengeliatan perut mencit dilemahkan secara signifikan selepas

dicabar dengan naloxone (reseptor antagonis opioid tidak spesifik; 5 mg/kg),

naltrindole (reseptor antagonis opioid δ; 1 mg/kg) nor-binaltorphimine (reseptor

antagonis opioid κ; 1 mg/kg), β-funaltraxamine (reseptor antagonis opioid μ; 10

mg/kg), pindolol (reseptor antagonis 5-HT1A; 1 mg/kg), kafein (reseptor antagonis

adenosin tidak spesifik; 3 mg/kg) and yohimbine (reseptor antagonis α2; 0.15 mg/kg).

Walaupun kedua-dua ekstrak tidak bertindak ke atas reseptor dopaminergik, aktiviti

PEMC, tetapi tidak MEMC, secara signifikannya direncat oleh atropin (reseptor antagonis kolinergik tidak spesifik; 10 mg/kg). Pada masa yang sama, MEMC dan

Page 7: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

iv

PEMC dibuktikan dapat merencat kesakitan melalui saluran NO/cGMP/PKC dan juga

saluran kalium. Potensi aktiviti antinosiseptif yang ditunjukkan berkemungkinan

disebabkan oleh kesan sinergistik flavonoid, tannin, kompaun polyphenolic, triterpene

dan steroid yang ada di dalam ekstrak berdasarkan dari saringan fitokimia yang dibuat.

Analisa kromatografi cecair berprestasi tinggi (HPLC) menunjukkan beberapa puncak,

dikesan dari gelombang berbeza, yang disyorkan sebagai kompaun dari kategori

flavonoid. Kesimpulannya, kesan sinergistik oleh komponen bioaktif yang berbeza

mungkin bertanggungjawab ke atas aktiviti antinosiseptif MEMC dan juga separa-tulen

PEMC yang terlibat dalam saluran kesakitan periferal dan pusat. Pengaktifan saluran

kalium serta reseptor opioid, adenosinergik, noradrenergik and serotonergik disamping

merencat saluran NO/cGMP/PKC serta reseptor TRPV1, glutamate dan bradykinin berkemungkinan ialah mekanisma tindakan yang diambil oleh kedua-dua ekstrak dalam

kesan antinosiseptif yang ditunjukkan.

Page 8: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

v

ACKNOWLEDGEMENT

Alhamdulillah, all praise and thanks is for Allah subhanahu wa ta’ala for helping me

overcome all the challenges that I had gone through in the study.

I wish to extend my deepest appreciation to my supervisor, Associate Professor Dr.

Zainul Amiruddin Zakaria for his supervision, guidance, valuable advice, patience and

continuous support throughout the course of this project. I truly thank him for giving

me the opportunity to be his postgraduate student. I would like to express my gratitude

and appreciation to my co-supervisors, Associate Professor Dr. Arifah Abdul Kadir and

Dr. Manraj Singh Cheema for their guidance, invaluable advice and support.

Special thanks to my colleague, Tavamani Balan, for her continuous assistance

throughout the study. I would like to thank all my fellow pharmacology lab mates, Kushairi Ahmad, Farhana Yahya, Fauzi Fahmi, Salahuddin and Siti Syariah Mamat for

their companion, cooperation and care towards me. My sincere appreciation dedicates

to the Faculty of Medicine and Heatlth Sciences, Universiti Putra Malaysia for giving

me the opportunity to carry out this project.

Last but not least, my extreme gratitude to my wife, Dr Siti Sarah binti Darussalam for

her patience, support, encouragement and motivation which really help me

accomplished this study. I also owe a depth gratitude to my mother and the family of

my wife for their patience and continuous support.

Page 9: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

Page 10: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

vii

This thesis was submitted to the senate of Universiti Putra Malaysia and has been

accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The

members of the supervisory committee were as follows:

Zainul Amiruddin Zakaria, PhD

Associate Professor

Faculty of Medicine and Health Sciences Universiti Putra Malaysia

(Chairman)

Arifah Abdul Kadir, PhD

Associate Professor

Faculty of Veterinary Medicine

Universiti Putra Malaysia

(Member)

Manraj Singh Cheema, PhD

Senior Lecturer

Faculty of Medicine and Health Sciences Universiti Putra Malaysia

(Member)

_______________________

BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies

Universiti Putra Malaysia

Date:

Page 11: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

viii

Declaration by graduate student

I hereby confirm that:

This thesis is my original work;

Quotations, illustrations and citations have been duly referenced;

This thesis has not been submitted previously or concurrently for any other degree

at any other institutions;

Intellectual property from the thesis and copyright of thesis are fully-owned by

Universiti Putra Malaysia, as according to the Universiti Putra Malaysia

(Research) Rules 2012;

Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form

of written, printed or in electronic form) including books, journals, modules,

proceedings, popular writings, seminar papers, manuscripts, posters, reports,

lecture notes, learning modules, or any other materials as stated in the Universiti

Putra Malaysia (Research) 2012;

There is no plagiarism or data falsification/fabrication in the thesis, and scholarly

integrity is upheld as according to the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia

(Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: _____________________ Date: __________________

Name and Matric No.: Mohd.Hijaz Mohd Sani GS28051

Page 12: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

ix

Declaration of The Members of Supervisory Committee

This is to confirm that:

The research conducted and the writing of this thesis was under our supervision;

Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate

Studies) Rules 2003 (revision 2012-2013) are adhered to.

Signature:

Name of Chairman of Supervisory

Committee: Zainul Amiruddin Zakaria, PhD

Signature:

Name of Member of

Supervisory

Committee: Arifah Abdul Kadir, PhD

Signature:

Name of Member of

Supervisory

Committee: Manraj Singh Cheema, PhD

Page 13: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

x

TABLE OF CONTENTS

Page

ABSTRACT i

ABSTRAK iii

ACKNOWLEDGEMENTS v

APPROVAL vi

DECLARATION viii

LIST OF TABLES xiv

LIST OF FIGURES xv

LIST OF ABBREVATIONS xvii

CHAPTER

1 INTRODUCTION

1.1 Introduction 1

1.2 Hypothesis 2

1.3 Objectives 2

2 LITERATURE REVIEW

2.1 Pain and nociception 3

2.2 Types of pain 4 2.3 Pain theory 6

2.4 Pain processing and sensitization 8

2.5 Pain receptor 9

2.5.1 TRPV1 receptor 10

2.5.2 Glutamate receptor 11

2.5.3 Bradykinin receptor 11

2.5.4 Involvement of protein kinase C 11

2.5.5 Involvement of Nitric Oxide and cGMP pathway 12

2.5.6 Involvement of potassium channels 13

2.5.7 Adenosinergic receptor 13

2.5.8 Serotonergic receptor 14

2.5.9 Cholinergic receptor 14 2.5.10 Dopaminergic receptor 15

2.5.11 Adrenergic receptor 16

2.6 Non-steroidal anti-inflammatory drugs 16

2.7 Opiate and opioid 17

2.7.1 Opioid receptors 18

2.7.2 Endogenous opioid 18

2.7.3 Exogenous opioid 19

2.7.4 Opioid antagonist 20

2.8 Natural product as an alternative analgesic agent 20

2.9 Muntingia calabura L. 21

2.9.1 Traditional uses 22 2.9.2 Scientific findings 24

2.10 Antinociceptive assays 31

2.10.1 Acetic acid-induced abdominal constriction test 31

2.10.2 Hot plate test 32

2.10.3 Formalin test 33

Page 14: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xi

3 PREPARATION OF METHANOL EXTRACT OF MUNTINGIA

CALABURA LEAVES (MEMC) AND ITS PARTITIONS: ACUTE

TOXICITY STUDY

3.1 Introduction 34

3.2 Materials and methods

3.2.1 Chemicals 34

3.2.2 Plant collection 34

3.2.3 Methanol extraction process 35

3.2.4 Preparation of petroleum ether, ethyl acetate and

aqueous partition

35

3.2.5 Acute toxicity study 35 3.3 Statistical analysis 36

3.4 Result

3.4.1 Preparation of extracts 36

3.4.2 Acute toxicity study 36

3.5 Discussion 41

4 DETERMINATION OF THE ANTINOCICEPTIVE ACTIVITY

OF MEMC

4.1 Introduction 42

4.2 Materials and methods

4.2.1 Preparation of extract 42 4.2.2 Preparation of drugs 43

4.2.3 Experimental animals 43

4.2.4 Acetic acid-induced abdominal writhing test 43

4.2.5 Hot plate test 43

4.2.6 Formalin test 44

4.3 Statistical analysis 44

4.4 Result

4.4.1 Acetic acid-induced abdominal writhing test 44

4.4.2 Hot plate test 44

4.4.3 Formalin test 44

4.5 Discussion 49

5 POSSIBLE MECHANISM OF ACTION THAT MODULATED

THE ANTINOCICEPTION OF MEMC

5.1 Introduction 52

5.2 Materials and methods

5.2.1 Preparation of extract 52

5.2.2 Preparation of drugs 52

5.2.3 Experimental animals 53

5.2.4 Capsaicin-induced paw licking test 53

5.2.5 Glutamate-induced paw licking test 53

5.2.6 Phorbol 12-myristate 13-acetate (PMA)-induced

nociception

53

5.2.7 Bradykinin-induced nociception 54

5.2.8 Involvement of Nitric Oxide/cGMP pathway 54

5.2.9 Involvement of potassium channels 54

5.2.10 Involvement of various non-opioid receptors 54

5.2.11 Involvement of opioid receptor and its subtype 55

5.3 Statistical analysis 55

Page 15: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xii

5.4 Result

5.4.1 Capsaicin-induced paw licking test 55

5.4.2 Glutamate-induced paw licking test 55

5.4.3 Phorbol 12-myristate 13-acetate (PMA)-induced

nociception

55

5.4.4 Bradykinin-induced nociception 56

5.4.5 Involvement of Nitric Oxide/cGMP pathway 56

5.4.6 Involvement of potassium channels 56

5.4.7 Involvement of various non-opioid receptors 56

5.4.8 Involvement of opioid receptor and its subtype 57

5.5 Discussion 67

6 ANTINOCICEPTIVE PROFILE OF VARIOUS PARTITIONS

OBTAINED FROM MEMC: DETERMINATION OF THE MOST

EFFECTIVE PARTITION

6.1 Introduction 73

6.2 Materials and methods 73

6.2.1 Preparation of extract 73

6.2.2 Preparation of drugs 73

6.2.3 Experimental animals 73

6.2.4 Determination of the most effective partition using

acetic acid-induced abdominal constriction test

74

6.2.5 Formalin test 74

6.2.6 Hot plate test 74

6.3 Statistical analysis 74

6.4 Result

6.4.1 Determination of the most effective partition using

acetic acid-induced abdominal constriction test

74

6.4.2 Formalin test 74

6.4.3 Hot plate test 75

6.5 Discussion 79

7 POSSIBLE MECHANISMS OF ACTION THAT MODULATE

ANTINOCICEPTION EXERTED BY PETROLEUM ETHER

PARTITION (PEMC) OF MEMC

7.1 Introduction 81

7.2 Materials and methods

7.2.1 Preparation of extract 81

7.2.2 Preparation of drugs 81

7.2.3 Experimental animals 81

7.2.4 Capsaicin-induced paw licking test 82

7.2.5 Glutamate-induced paw licking test 82

7.2.6 Bradykinin-induced nociception 82

7.2.7 Phorbol 12-myristate 13-acetate (PMA)-induced

nociception

82

7.2.8 Involvement of Nitric Oxide/cGMP pathway 82

7.2.9 Involvement of potassium channels 82

7.2.10 Involvement of various non-opioid receptors 82

7.2.11 Involvement of opioid receptor and its subtype 83

7.3 Statistical analysis 83

7.4 Result

Page 16: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xiii

7.4.1 Capsaicin-induced paw licking test 83

7.4.2 Glutamate-induced paw licking test 83

7.4.3 Bradykinin-induced nociception 83

7.4.4 Phorbol 12-myristate 13-acetate (PMA)-induced

nociception

84

7.4.5 Involvement of Nitric Oxide/cGMP pathway 84

7.4.6 Involvement of potassium channels 84

7.4.7 Involvement of various non-opioid receptors 84

7.4.8 Involvement of opioid receptor and its subtype 85

7.5 Discussion 95

8 PHYTOCHEMICAL SCREENING AND HIGH

PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS

OF MEMC AND PEMC

8.1 Introduction 97

8.2 Method

8.2.1 Phytochemical screening of dried leaves, methanol

extract and petroleum ether partition of M. calabura

97

8.2.2 HPLC profile of MEMC and PEMC at various

wavelengths

98

8.3 Results 99

8.4 Discussion 106

9 SUMMARY, GENERAL CONCLUSION AND

RECOMMENDATION

107

BIBLIOGRAPHY 111

APPENDICES 135

BIODATA OF STUDENT 137

LIST OF PUBLICATIONS 138

Page 17: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xiv

LIST OF TABLES

Table

Page

1 Ethnomedicinal uses of M. calabura

23

2 Pharmacological activities of M. calabura

25

3 Bioactive compounds of M. calabura

26

4 Recorded body weight of control group and rats treated with high dose extract

37

5 Comparison of relative organ weight (in gram) between control

and MEMC-pretreated group obtained at the end of study

38

6 Comparison of complete blood counts between control and

MEMC-pretreated group following the toxicity study

39

7 The comparison of serum biochemistry level between control and

MEMC-pretreated group from the acute toxicity study

40

8 Effect of MEMC on the hot plate test on mice.

47

9 Effect of PEMC in formalin-induced paw licking test.

77

10 Antinociceptive profile of PEMC assessed using the hot-plate test

in mice.

78

11 Comparison on the phytochemical constituents between the leaves

of M. calabura and MEMC.

100

12 Comparison on the phytochemical constituents between the leaves

of M. calabura and PEMC

101

Page 18: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xv

LIST OF FIGURES

Figure

Page

1 Descartes' drawing of a pathway-oriented pain mechanism

7

2 Leaves and fruits of Muntingia calabura L.

22

3 Effect of MEMC in acetic acid-induced abdominal

constriction test in mice.

46

4 Effect of MEMC in formalin-induced paw licking test.

48

5 Effect of MEMC on capsaicin-induced paw licking test in rats.

58

6 Effect of MEMC on glutamate-induced paw licking test in

rats.

59

7 Effect of MEMC on PMA-induced paw licking in rats.

60

8 The antinociceptive effect of MEMC against bradykinin-

induced paw licking.

61

9A Effect of L-arginine, L-NAME and their combination on

MEMC antinociception as assessed by acetic acid-induced

abdominal constriction test.

62

9B Effects of L-arginine, methylene blue and their combination

on MEMC antinociception as assessed by acetic acid-induced

abdominal constriction test.

63

10 Effect of MEMC on nociception in the acetic acid-induced

abdominal constriction test in mice following pre-treatment

with potassium channels inhibitors.

64

11 The involvement of several non-opioid receptor antagonists in

MEMC-induced antinociception against acetic acid-induced

abdominal writhing test in mice.

65

12 Analysis of opioid receptor subtypes involvement in MEMC-

induced antinociception against acetic acid-induced writhing

test in mice.

66

13 Comparison between the numbers of abdominal constriction in

mice during the acetic acid-induced abdominal constriction test.

76

14 Effect of PEMC on capsaicin-induced paw licking test in rats.

86

15 Effect of PEMC on glutamate-induced paw licking test in rats.

85

Page 19: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xvi

16 The antinociceptive effect of PEMC against bradykinin-

induced paw licking.

93

17 Effect of PEMC on nociception induced by PMA on rats

94

18A Effects of L-arginine, L-NAME and their combination on

PEMC antinociception as assessed by acetic acid-induced

abdominal constriction test.

95

18B Effects of L-arginine, methylene blue and their combination

on PEMC antinociception as assessed by acetic acid-induced abdominal constriction test.

96

19 Effect of PEMC on nociception in the acetic acid-induced

abdominal constriction test in mice following pre-treatment

with potassium channels inhibitors.

97

20 The involvement of several non-opioid receptor antagonists in

PEMC-induced antinociception against acetic acid-induced

abdominal writhing test in mice.

98

21 Analysis of opioid receptor subtypes involvement in PEMC-induced antinociception against acetic acid-induced writhing

test in mice.

99

22 The UV spectra analysis of MEMC

102

23 Chromatogram of MEMC at 254 nm showing the presence of

flavonoids type compounds, namely rutin, quercitrin and

fisetin based on the comparison of their respective UV spectra

analysis

103

24 The HPLC profile of PEMC

104

25 Comparison of the HPLC profile of PEMC against several

pure flavonoids at the wavelength of 300 and 366 nm.

105

26 Graphical abstract summarizing the possible mechanism of

action of MEMC and PEMC.

109

Page 20: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xvii

LIST OF ABBREVIATIONS

5-HT Indole 5-hydroxytrptamine/Serotonin

AA Arachidonic acid

ACh Acetylcholine

AEMC Aqueous extract of Muntingia calabura

AMPA α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

ANOVA Analysis of variance

AR Noradrenergic receptor

ASA Acetylsalicylic acid ATP Adenosine triphosphate

Ca2+ Calcium ion

cAMP Cyclic adenosine monophosphate

cGMP Cyclic guanosine monophosphate

Cl- Chloride ion

CNS Central nervous system

COX Cyclooxygenase

DAG Diacylglycerol

dH2O Distilled water

DMSO Dimethyl sulfoxide

DRG Dorsal root ganglion EAMC Ethyl acetate extract of Muntingia calabura

ED50 Median effective dose

FDA Food and drug association

HPLC High performance liquid chromatography

i.p. Intraperitoneal

i.pl. intraplantar

IASP International association for the study of pain

K+ Potassium ion

L-NAME NG-nitro-L-arginine methyl esters

LOX Lypooxygenase

mACh Muscarinic acetylcholine

MB Methylene blue MEMC Methanol extract of Muntingia calabura

Na+ Sodium ion

nACh Nicotinic acetylcholine

NMDA N-methyl-D-aspartate

NO Nitric oxide

NOS Nitric oxide synthase

NSAIDs Non-steroidal anti-inflammatory drugs

p.o. Orally

PAG periaqueductal grey

PEMC Petroleum ether extract of Muntingia calabura

PGs Prostaglandins PKC Protein kinase C

PLC Phospholipase C

PMA Phorbol 12-myristate 13-acetate

PKA Protein kinase A

PNS Peripheral nervous system

S.E.M. Standard error of mean

Page 21: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

xviii

sGC Soluble guanylyl cyclase

SNAT Sodium-coupled neural amino acid transporter

TRPV1 Transient receptor potential vanilloid subtype 1

VR1 Vanilloid receptor subtype 1

WHO World health organization

Page 22: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Pain is a universal experience that can span an enormous spectrum of intensity from

mild discomfort to excruciating agony. In other words, pain is a fundamental and

inevitable form of human suffering, the experience of which is unique to each

individual (Hawthorn and Redmond, 1998). The vocabulary of pain always suggests a

negative event which often relates to an unpleasant experience. Contrary, in basic

biological terms, pain is indeed a protective mechanism. Pain is indispensable for life

and survival that serves a protective function by signalling the presence of noxious,

tissue-damaging condition. From a medical standpoint, the subjective description and

indication of the location of pain may help to pinpoint the underlying cause of disease

(Tortora and Grabowski, 2003).

Human being has been pondering and trying to understand why they feel pain and how

to reduce it. Through the years, understanding and treatment of pain have changed and

developed in accordance with science. Initially viewed religiously as a consequence to

human wrong doing or due to evil spirit entered the body, it has changed to a more

scientific concept. In the first century, the emphasis in medicine shifted from plants to

pills. The usage of natural herbs as analgesia has declined as synthetic drugs with

specific actions were embraced by pharmaceutical industry (Gillis, 1998). However,

these contemporary analgesics, such as opiates and non-steroidal anti-inflammatory

drugs, are often not suitable in all patients and cases, particularly chronic pain on

account of their limitation such as potency, side effects and propensity to lead to

tolerance. As a result, the continuing search for other alternatives is necessary.

Medicinal plants are known to be an important source of new chemical substances with

potential therapeutic effects. The huge discovery of cinchona, morphine, as well as

aspirin which were derived from plant has laid the foundation for further research in

natural plants (Raskin and Ripoll, 2004). The research into plants which are employed

as pain-relievers in traditional ethno-medicine is therefore one of the productive and

logical strategies in the search for new analgesic drugs (Vongtau et al., 2004). Natural

medicine has a net worth of around US$40 billion in global market. The herbal

remedies not only can still be found in ethnic and health food stores, but are also

available in pharmacies and grocery stores (Rasooli, 2011). Data from World Health

Organization (WHO) shows that more than a half of world populations make use of

herbal medicine to relief painful or unpleasant symptoms, with at least 30% are

prescribed (WHO, 1978).

Focusing on natural products as an alternative to many medications, it has been a major

interest not only among scientists but also attract interest from both pharmaceutical

companies as well as financial support from the government. Natural products as

Page 23: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

2

referred to Holt and Chandra (2002) are herbs, herbal concoctions, dietary

supplements, traditional Chinese medicines or alternative medicines. Natural products

research is guided by ethno-pharmacological knowledge and has brought substantial

contributions to drug innovation by providing novel chemical structures and/or

mechanism of actions (Rates, 2001).

1.2 Hypothesis

MEMC possess significant antinociceptive activity due to the presence of

flavonoids-based compounds.

1.3 Objectives

General:

a) To evaluate the antinociceptive activity of crude and the most effective

partition of methanol extract of Muntingia calabura (MEMC).

Specific:

a) To determine the safety of MEMC using single high-dose acute toxicity model

b) To determine antinociceptive profiles of MEMC using various animal models

c) To elucidate the possible mechanisms of action that take part in the

antinociception of MEMC

d) To determine the most effective partition of MEMC using acetic acid-induced

abdominal constriction test.

e) To elucidate the possible mechanisms of action that take part in the

antinociception of PEMC

f) To elucidate and identify the possible bioactive compounds responsible for the

MEMC and PEMC triggered antinociception using the phytochemical

screening test and HPLC analysis

Page 24: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

111

BIBLIOGRAPHY

Aanonsen, L.M. and Wilcox, G.L. 1987. Nociceptive action of excitatory amino acids

in the mouse: effects of spinally administered opioids, phencyclidine and sigma

agonists, Journal of Pharmacology and Experimental Therapeutics. 243: 9-19.

Aanonsen, L.M. and Wilcox, G.L. 1990. Excitatory amino acid receptors and

nociceptive neurotransmission in rat spinal cord, Pain. 41: 309-321.

Abacioglu, N., Tun Tan, B., Akbulut, E. and Akici, I. 2000. Participation of the

components of L-arginine/nitric oxide/cGMP cascade by chemically-induced

abdominal constriction in the mouse, Life Science. 67: 1127-1137.

Abbott, F.V., Franklin, K.B.J. and Westbrook, R.F. 1995. The formalin test: scoring

properties of the first and second phases of the pain response in rats, Pain. 60:

91-102.

Aley, K., Messing, R., Mochly-Rosen, D. and Levine, J. 2000. Chronic hypersensitivity

for inflammatory nociceptor sensitization mediated by the epsilon isozyme of

protein kinase C, Journal of Neuroscience. 20: 4680–4685.

Aley, K.O., McCarter, G. and Levine, J.D. 1998. Nitric oxide signaling in pain and

nociceptor sensitization in the rat, Journal of Neuroscience. 18: 7008–7014.

Alkondon, M. and Albuquerque, E.X. 1993. Diversity of nicotinic acetylcholine

receptors in rat hippocampal neurons: I. Pharmacological and functional

evidence for distinct structural subtypes, Journal of Pharmacology and

Experimental Therapeutics. 265: 1455–1473.

Altier, N. and Stewart, J. 1998. Dopamine receptor antagonists in the nucleus

accumbens attenuate analgesia induced by ventral tegmental area substance P or

morphine and by nucleus accumbens amphetamine, Journal of Pharmacology

and Experimental Therapeutics. 285: 208–215.

Altier, N., and Stewart, J. 1999. The role of dopamine in the nucleus accumbens in

analgesia, Life Science. 65: 2269–2287.

Amenta, F., Ferrante, F. and Ricci, A. 1995. Pharmacological characterization and

autoradiographic localization of dopamine receptor subtypes in the

cardiovascular system and in the kidney. Hypertension research: official journal

of the Japanese society of hypertension. 18: s23-27.

Ankier, S.I. 1974. New hot plate tests to quantify antinociceptive and narcotic

antagonist activities, European Journal of Pharmacoogyl. 27: 1-4.

Archer, S.L., Huang, J.M., Hamp, l.V., Nelson, D.P., Shultz, P.J., and Weir, E.K.,

1994. Nitric oxide and cGMP cause vasorelaxation by activation of a

charybdotoxin-sensitive K+ channel by cGMP-dependent protein kinase,

Proceeding of the National Academy of Science, USA. 91: 7583–7587.

Page 25: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

112

Aznam, N. Atun, S. Arianingrum, R. and Nurestri, S. 2012. Isolation, identification and

antiviral activity of bioactive compounds of Kampheria rotunda, International

Proceedings of Chemical, Biological & Environmental Engineering. 38: 27-30.

Balan, T, Mohd Sani, M.H., Suppaiah, V., Mokhtaruddin, N., Suhaili, Z. Ahmad, Z et

al. 2013. Antiulcer activity of Muntingia calabura leaves involves the

modulation of endogenous nitric oxide and nonprotein sulfhydryl compounds,

Pharmaceutical Biology. 52: 410–18.

Bandeira, G.N., da Camara, C.A.G., de Moraes, M.M., Barros, R., Muhammad, S. and

Akhtar, Y. 2013. Insecticidal activity of M. calabura extracts against larvae and

pupae of diamondback, Plutella xylostella (Lepidoptera, Plutellidae). Journal of

King Saud University – Science. 25: 83–89.

Bantel, C., Maze, M., Stone, L., and Wilcox, G. α2-adrenergic agonists in pain

treatment in Encyclopedia of pain ed. Schmidt, R.F. and Willis, W.D. New

York: Springer-verlag Berlin Heilberg, 2007.

Basbaum, A.I. and Bushnell, M.C. Science of Pain. San Diego: Academic Press, 2009.

Beirith, A., Santos, A.R., Calixto, J.B. 2002. Mechanisms underlying the nociception

and paw oedema caused by injection of glutamate into the mouse paw, Brain

Research. 924: 219-228.

Beirith, A., Santos, A.R.S., Calixto, J.B., Hess, S.C., Messana, I., Ferrari, F. and Yunes,

R.A. 1999. Study of the antinociceptive action of the ethanolic extract and the

triterpene 24-hydroxytormentic acid isolated from the stem bark of Ocotea

suaveolens, Planta Medica. 65: 50–55.

Beitz, A.J. Descending circuitry, transmitters and receptors in Encyclopedia of pain ed.

Schmidt, R.F. and Willis, W.D. New York: Springer-verlag Berlin Heilberg.

2007.

Belmonte, C. and Cervero, F. Neurobiology of Nociceptors: Oxford University Press,

1996.

Belmonte, C. and Viana, F. Transduction and encoding of noxious stimuli in

Encyclopedia of pain ed. Schmidt, R.F. and Willis, W.D. New York: Springer-

verlag Berlin Heilberg. 2007.

Bentley, G.A., Newton, S.H. and Starr, J. 1981. Evidence for an action of morphine

and the enkephalines on sensory nerve endings in the mouse peritoneum, British

Journal of Pharmacology. 73: 325-332.

Bentley, G.A., Newton, S.H. and Starr, J. 1983. Studies on the antinociceptive action of

a-agonist drugs and their interactions with opioid mechanisms, British Journal

of Pharmacology. 79: 125–134.

Berne, M.R. and Levy, N.M. Principles of Physiology. Mosby International. 2000.

Page 26: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

113

Berrazueta, JR., Losada, A., Poveda, J., Ochoteco, A., Riestra, A., Salas, E. et al. 1996.

Successful treatment of shoulder pain syndrome due to supraspinal tendinitis

with transdermal nitroglycerin. A double blind study. Pain. 66: 63-67.

Besson, J.M. 1999. The neurobiology of pain, The Lancet. 353: 1610-1615.

Bhave, G. Karim, F. Carlton, S. M. and Gereau, R.W. 2001. Peripheral group I

metabotropic glutamate receptors modulate nociception in mice, Nature

Neuroscience. 4: 417-423.

Bian, K., Ke, Y., Kamisaki, Y. and Murad, F. 2006. Proteomic modification of nitric

oxide, Journal of Pharmacological Sciences. 101: 271-279.

Bolotina, V.M., Najibi, S., Palacino, J.J., Pagano, P.J. and Cohen, R.A. 1994. Nitric

oxide directly activates calcium-dependent potassium channels in vascular

smooth muscle, Nature. 368: 850–853

Bredt, D.S. and Snyder, S.H. 1992. Nitric oxide, a novel neuronal messenger, Neuron.

8: 3–11.

Brown, D.A. 2010. Muscarinic acetylcholine receptors (mAChRs) in the nervous

system: some functions and mechanisms, Journal of Molecular Neuroscience,

41: 340-346.

Brunori, M. Giuffre, A. Sarti, P., Stubauer, G. and Wilson, M.T. 1999. Nitric oxide and

cellular respiration, Cellular and Molecular Life Science. 56: 549–557.

Burian, M. and Geisslinger, G. 2005. COX-dependent mechanisms involved in the

antinociceptive action of NSAIDs at central and peripheral sites, Pharmacology

and therapeutic. 107: 139-154.

Burnstock, G. 2008. Purinergic signalling and disorders of the central nervous system,

Nature Reviews Drug Discovery. 7: 575–90.

Cadiou, H., Studer, M., Jones, N.G., Smith, E.S.J., Ballanrd, A., McMohan, S.B., et al.

2007. Modulation of acid-sensing ion channel activity by nitric oxide, Journal

of Neuroscience. 27: 132-151.

Cahill, C.M., Morinville, A., Lee, M.C., Vincent, J.P., Collier, B. and Beaudet, A.

2001. Prolonged morphine treatment targets delta opioid receptors to neuronal

plasma membranes and enhances delta-mediated antinociception, Journal of

Neuroscience. 21: 7598-7607.

Calixto, J.B., Beirith, A., Ferreira, J., Santos, A.R.S., Filho, V.C. and Yunes, R.A.

2000. Naturally occurring antinociceptive substances from plants, Phytotherapy

research. 14: 401-418.

Calixto, J.B., Cabrini, D.A., Ferreira, J. and Campos, M.M. 2000a. Kinins in pain and

inflammation. Pain. 87: 1–5.

Page 27: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

114

Calixto JB, Santos ARS, Cechinel Filho V, Yunes RA. 1998. A review of the plants of

the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential,

Medicinal Research Review. 18: 225-258.

Carpenter, S.E. and Lynn, B. 1991. Vascular and sensory responses of human skin to

mild injury after topical treatment with capsaicin, British Journal of

Pharmacology. 73: 755-758.

Carrier, G.O., Fuchs, L.C., Winecoff, A.P., Giulumian, A.D. and White, R.E. 1997.

Nitro-vasodilators relax mesenteric microvessels by cGMP-induced stimulation

of Ca2+

-activated K+ channels, American Journal of Physiology. 273: H76–H83.

Carrol, I., Mackey, S. and Gaeta, R. 2007. The role of adrenergic receptors and pain:

The good, the bad, and the unknown, Seminars in Anesthesia, Perioperative

Medicine and Pain. 26: 17-21.

Carroll, D. and Bowsher, D. Pain Management and Nursing Care. Oxford:

Butterworth-Heinemann Ltd, 1995.

Carvalho, J.C., Silva, M.F., Maciel, M.A. et al. 1996. Investigation of anti-

infammatory and antinociceptive activities of transdehydrocrotonin, a 19-nor-

clerodane diterpene from Croton cajucara. Part 1, Planta Medica. 62: 402-404.

Caterina, M. and Julius, D. 2001. The vanilloid receptor: a molecular gateway to the

pain pathway, Annual Review of Neuroscience. 24: 487-517.

Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and

Julius, D. 1997. The capsaicin receptor: a heat-activated ion channel in the pain

pathway, Nature. 389: 816-824.

Caulfield, M.P. and Birdsall, N.J. 1998. International Union of Pharmacology. XVII.

Classification of muscarinic acetylcholine receptors, Pharmacological Reviews.

50: 279-290.

Cervero, F. 2009a. Pain: Friend or Foe? A Neurobiologic Perspective: The 2008

Bonica Award Lecture, Regional Anesthesia and Pain Medicine. 34: 569-574.

Cervero, F. and Laird, J.M.A. 1991. One pain or many pains? A new look at pain

mechanisms, New Physiology Science. 6: 268-273.

Cervero, F. and Laird, J.M.A. 1996a. Mechanism of touch-evoked pain (allodynia): a

new model, Pain. 68: 13-23

.

Cervero, F. Pain theories, in Science of Pain ed. Basbaum, A.I and Bushnell, M.C. San

Diego: Academic Press. 2009.

Cervero, F., Kruger, L., Kumazawa, T., and Kazue, M. 1996. Spinal cord mechanisms

of hyperalgesia and allodynia: role of peripheral input from nociceptors,

Progress in Brain Research. 113: 413-422.

Page 28: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

115

Cesare, P., Dekker, L.V., Sardini, A., Parker, P.J. and McNaughton, P.A. 1999.

Specific involvement of PKCε in sensitization of the neuronal response to

painful heat, Neuron. 23: 617–624.

Chan, K., Islam, M.W., Kamil, M., Radhakrishna, R., Zakaria, M.N.M., Habibullah, M.

and Attas, A. 2000. The analgesic and anti-inflammatory effects of

Portulacaoleracea L. subsp. Sativa (Haw) Celak, Journal of

Ethnopharmacology. 73: 445-451.

Chan, T.F., Tsai, H.Y. and Tian-Shang, W. 1995. Anti-inflammatory and analgesic

activities from the roots of Angelica pubescens, Planta Medica. 61: 2–8.

Chandrasekharan, N.V., Dai, H., Roos, K.L., Evanson, N.K., Tomsik, J., Elton, T.S., et

al. 2002. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and

other analgesic/antipyretic drugs: cloning, structure, and expression,

Proceedings of the National Academy of Sciences. USA. 99: 13926–13931.

Chen, J.J., Lee, H.H., Shih, C.D., Liao, C.H., Chen, I.S. and Chou, T.H. 2007. New

dihydrochalcones and anti-platelet aggregation constituents from the leaves of

Muntingia calabura, Planta Medica. 73: 572–577.

Chen, J.J., Lin, R.W., Duh, C.Y. and Huang, H.Y. 2004. Flavones and cytotoxic

constituents from the stem bark of Muntingia calabura, Journal-Chinese

Chemical Society Taipei. 51: 665–670.

Chen, S.R., Wess, J. and Pan, H.L. 2005. Functional activity of the M2 and M4 receptor

subtypes in the spinal cord studied with muscarinic acetylcholine receptor

knockout mice, Journal of Pharmacology and Experimental Therapeutics. 313:

765-770.

Choi, J.H. Hung, B.H. Kang, O.H. Choi, H.J. Park, P.S. Cho, S.H. et al. 2006. The anti-

inflammatory and anti-nociceptive effects of ethyl acetate fraction of Cynanchi

paniculati Radix, Biological Pharmacology Bulletin. 29: 971–975.

Chuang, H.H., Prescott, E.D., Kong, H., Shields, S., Jordt, S.E., Basbaum, A.I. et al.,

2001. Bradykinin and nerve growth factor release the capsaicin receptor from

PtdIns(4,5)P2-mediated inhibition, Nature. 411: 957–962.

Chung, J.M. Animal models and experimental tests to study nociception and pain, in

Encyclopedia of Pain ed. Schmidt, R.F. and Willis, W.D. New York: Springer-

Verlag Berlin Heidelberg. 2007.

Clark, J.D. and Tempel, B.L. 1998. Hyperalgesia in mice lacking the Kv1.1 potassium

channles gene, Neuroscience letter. 251: 121-124.

Coderre, T.J. 1993. The role of excitatory amino acid receptors and intracellular

messengers in persistent nociception after tissue injury in rats, Molecular

Neurobiology. 7: 229-246.

Coderre, T.J. Noxious stimulus-induced plasticity in spinal cord dorsal horn: evidence

and insights on mechanisms obtained using the formalin test in Spinal cord

Page 29: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

116

plasticity: alteration in reflex function ed. Patterson, M.M. and Grau, J.W.

Boston: Kluwer academic publisher. 2001.

Coderre, T.J. Spinal cord mechanisms of hyperalgesia and allodynia in Science of Pain

ed. Basbaum, A.I. and Bushnell, M.C. San Diego: Academic Press. 2009.

Coderre, T.J., Fundytus, M.E., McKenna, J.E., Dalal, S. and Melzack, R. 1993. The

formalin test: A validation of the weighed-scored method of behavioral pain

rating, Pain. 54: 43-50.

Coggeshall, R.E. and Carlton, S.M. 1997. Receptor localization in the mammalian

dorsal horn and primary afferent neurons, Brain Research Review. 24: 28-66.

Collier, H.O.J, Dinneen, J.C., Johnson, C.A. and Schneider, C. 1968. The abdominal

constriction response and its suppression by analgesic drugs in the mouse,

British Journal of Pharmacology and Chemotherapy. 32: 295–310.

Cui, M. Honore, P. Zhong, C. Gauvin, D. Mikusa, J. Hernandez, G., et al. 2006.

TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of

TRPV1 antagonists, Journal of Neuroscience. 26: 9385–9393.

Cunha, T.M., Roman-Campos, D., Lotufo, C.M., Duarte, H.L., Souza, G.R., Verri Jr.,

W.A., et al. 2010. Morphine peripheral analgesia depends on activation of the

PI3Kγ/AKT/nNOS/NO/KATP signaling pathway, Proceedings of the National

Academy of Sciences USA. 10: 4442-4447.

da Silva, R.S. 2011. Caffeine, Reproductive and Developmental toxicology. 27: 355-

364.

Dahlström, A. and Fuxe, K. 1964. Evidence for the existence of monoamine-containing

neurons in the central nervous system, Acta Physiologica Scandinavica. 62: 3-

55.

Damas, J, Bourdon, V, Remacle-Volon, G, Lecomte, J. 1985. Proinflammatory

flavonoids which are inhibitors of prostaglandin biosynthesis, Prostaglandins

Leukotrienes and Medicine. 19: 11-24.

Davies, S.N. and Lodge, D. 1987. Evidence for involvement of N-methylaspartate

receptors in 'wind-up' of class 2 neurons in the dorsal horn of the rat, Brain

Research. 424: 402-406.

Dawson, T.M. and Snyder, S.H. 1994. Gases as biological messengers: nitric oxide and

carbon monoxide in the brain, Journal of Neuroscience. 14: 5147–5159.

De Moura, R.S., Rios, A.A.S., Santos, E.J.A., Nascimento, A.B.A., Resende, A.C.,

Neto, M.L. et al. 2004. Role of NO-cGMP pathway in the systemic

antinociceptive effect of clonidine in rats and mice, Pharmacology,

biochemistry and behavior. 78: 247-253.

Page 30: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

117

De Smet, P.A.G.M. 1997. The role of plant-derived drugs and herbal medicines in

healthcare, Drugs. 54: 801-840.

De Souza, M.M., Pereira, M.A., Adenghi, A.V., Mora, T.C., Bresciani, L.F., Yunes,

R.A. et al. 2009. Filicene obtained from Adiantum cuneatum interacts with the

cholinergic, dopaminergic, glutamatergic, GABAergic and tachykinergic

systems to exert antinociceptive effect in mice, Pharmacology biochemistry and

behavior. 93: 40-46.

Denninger, J.W. and Marletta, M.A. 1999. Guanylatecyclase and the NO/cGMP

signaling pathway, Biochimica et Biophysica Acta. 1411: 334-350.

Deraedt, R., Jouquey, S., Delevallee, F. and Flahaut, M. 1980. Release of

prostaglandins E and F in an algogenic reaction and its inhibition, European

Journal of Pharmacology. 61: 17-24.

Descartes, R. 1664. L'Homme. Chez Jacques Le Gras.

Dickenson, A.H. and Sullivan, A.F. 1987. Evidence for a role of the NMDA receptor in

the frequency dependent potentiation of deep rat dorsal horn nociceptive

neurones following C fiber stimulation, Neuropharmacology. 26: 1235-1238.

Diguangco, J. Notes on Philippine Medicinal Plants, Manila, Philippines, 1959.

Dray, A. 1992. Mechanism of action of capsaicin-like molecules on sensory neurones,

Life Sciences. 51: 1759-1765.

Dray, A. and Perkins, M. Kinins and pain in The handbook of immunopharmacology:

the kinin system ed. Farmer, S.G. London: Academic Press, 1997.

Dray, A. Pharmacological modulation of pain in Science of Pain ed. Basbaum, A.I. and

Bushnell, M.C. San Diego: Academic Press. 2009.

Duarte, I.D., Lorenzetti, B.B and Ferreira, S.H. 1990. Peripheral analgesia and

activation of the nitric oxide-cyclic GMP pathway, European Journal of

Pharmacology. 186: 289–293.

Dubuisson, D. and Dennis, S.G. 1977. The formalin test: a quantitative study of the

analgesic effects of morphine, meperidine and brain stem stimulation in the rats

and cats, Pain. 4: 161-174.

Duttaroy, A., Gomeza, J., Gan, J.W., Siddiqui, N., Basile, A.S., Harman, W.D. et al.

2002. Evaluation of muscarinic agonist-induced analgesia in muscarinic

acetylcholine receptor knockout mice, Molecular pharmacology. 62: 1084-

1093.

Eisenach, J.C., Detweiler, D.J., Tong, C., D’Angelo, R., and Hood, D.D. 1996.

Cerebrospinal fluid norepinephrine and acetylcholine concentrations during

acute pain, Anesthiology and Analgesia. 82: 621-626.

Page 31: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

118

Espejo, E.F. and Gil, E. 1998. Antagonism of peripheral 5-HT4 receptors reduces

visceral and cutaneous pain in mice, and induces visceral analgesia after

simultaneous inactivation of 5-HT3 receptors, Brain Research. 788: 20–24.

Farnsworth, N.R. and Bingel, A.S. 1977. Problems and prospects of discovering new

drugs from higher plants by pharmacological screening, Preceedings in Life

Sciences. 1-22.

Ferreira, J., da Silva, G.L., Calixto, J.B. 2004. Contribution of vanilloid receptors to the

overt nociception induced by B2 kinin receptor activation in mice, British

Journal of Pharmacology. 141: 787-794.

Ferreira, J., Triches, K.M., Medeiros, R., Calixto, J.B. 2005. Mechanisms involved in

the nociception produced by peripheral protein kinase C activation in mice,

Pain. 117: 171–181.

Ferreira, S. 1972. Prostaglandins, aspirin-like drugs and analgesia, Nature: New

Biology. 240: 200–203.

Fidecka, S. and Lalewicz, S. 1997. Studies on the antinociceptive effects of sodium

nitroprusside and molsidomine in mice, Polish Journal of Pharmacology. 49:

395–400.

Forstermann, U. and Sessa, W.C. 2012. Nitric oxide synthases: regulation and function,

European Heart Journal. 33: 829-837.

Fredholm, B.B., Battig, K., Holmen, J., Nehlig, A. and Avartau, E.E. 1999. Actions of

caffeine in the brain with special reference to factors that contribute to its

widespread use, Pharmacological Reviews. 51: 83–133.

Fredholm, B.B., Chen, J.F., Cunha, R.A., Svenningsson, P. and Vaugeois, J.M. 2005.

Adenosine and brain function, International Review of Neurobiology. 63: 191-

270.

Fredholm, B.B., Ijzerman, A.P., Jacobson, K.A., Klotz, K.N., and Linden, J. 2001.

International union of pharmacology XXV. Nomenclature and classification of

adenosine receptors, Pharmacological Reviews. 53: 527–552.

Fu, J.Y., Masferrer, J.L., Seibert, K., Raz, A. and Needleman, P. 1990. The induction

and suppression of prostaglandin H2 synthase (cyclooxygenase) in human

monocytes, Journal of Biological Chemistry. 265: 16737–16740.

Fundytus, M.E. 2001. Glutamate receptors and nociception: implications for the drug

treatment of pain, CNS Drugs. 15: 29–58.

Galvez, J., Cruz, T., Crespo, E., Ocete, M.A., Lorente, M.D., Sánchez de Medina, F.

and Zarzuelo, A. 1997. Rutoside as mucosal protective in acetic acid-induced rat

colitis, Planta Medica. 63: 409–414.

Garcia-Martinez, C., Humet, M., Planells-Casas, R., Gomis, A., Capri, M., Viana, F., et

al. 2002. Attenuation of thermal nociception and hyperalgesia by VR1 blockers.

Proceeding of the National Academy of Science, U.S.A. 99: 2374-2379.

Page 32: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

119

Garthwaite, J. and Boulton, C.L. 1995. Nitric oxide signaling in the central nervous

system, Annual Review of Physiology. 57: 683–706.

Geisslinger, G. Non-steroidal anti-inflammatory drugs (NSAIDs) in Encyclopedia of

pain ed. Schmidt, R.F. and Willis, W.D. 2007. New York: Springer-verlag

Berlin Heilberg. 2007.

Giglio, C.A., Defino, H.L.A., da Silva, C.A., de-Souza, A.S. and del Bel, E.A. 2006.

Behavioral and physiological methods for early quantitative assessment of

spinal cord injury and prognosis in rats, Brazil Journal of Medical Biology

Research, 39: 1613–1623.

Gilchrist, H.D., Allard, B.L. and Simone, D.A. 1996. Enhanced withdrawal responses

to heat and mechanical stimuli following interplantar injection of capsaicin in

rats, Pain. 67: 179-188.

Glazer, E.J., Steinbusch, H., Verhofstad, A., and Basbaum, A.I. 1981. Serotonin

neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain

enkephalin, Journal of Physiology (Paris). 77: 241-245.

Goncalves, C.E., Araldi, D., Panatieri, R.B., Rocha, J.B., Zeni, G., and Nogueira, C.W.

2005. Antinociceptive properties of acetylenic thiophene and furan derivatives:

evidence for the mechanism of action, Life Sciences. 76: 2221–2234.

Gordh, T., Sharma, H.S., Alm, P. and Westman, J. 1998. Spinal nerve lesion induces

upregulation of neuronal nitric oxide synthase in the spinal cord. An

immunohistochemical investigation in the rat, Amino Acids. 14: 105–112.

Gybels, J.M. and Sweet W.H. Neurosurgical treatment of persistent pain in Pain and

Headache ed. Gildenberg, Ph.L. Basel: Karger. 1989.

Hargreaves, K., Dubner, R., Brown, F. and Joris, J. 1988. A new and sensitive method

for measuring thermal nociception in cutaneous hyperalgesia, Pain. 32: 77-88.

Havsteen, B.H. 2002. The biochemistry and medical significance of flavonoids,

Pharmacology and Therapeutics. 96: 67-202.

Hawthorn, J. and Redmond, K. Pain: Causes and Management. Oxford: Blackwell

Science Ltd, 1998.

Heapy, C.G., Jamieson, A. and Russell N.J.W. 1987. Afferent C-fiber and A-delta

activity in models of inflammation, British Journal Pharmacology. 90: 164.

Higgs, J., Wasowski, C., Loscalzo, L.M. and Marder, M. 2013. In vitro binding

affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect

of the synthetic flavonoid 3,3-dibromoflavanone in mice, Neuropharmacology.

72: 9-19.

Hebbes, C. and Lambert, D. 2007. Non-opioid analgesic drugs. Anasthesia and

intensive care medicine. 9: 79-83.

Page 33: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

120

Höglund, A.U. and Baghdoyan, H.A. 1997. M2, M3 and M4, but not M1, muscarinic

receptor subtypes are present in rat spinal cord. Journal of Pharmacology and

Experimental Therapeutics. 281: 470-477.

Holzmann, A. Manktelow, C., Weimann, J., Bloch, K.D. and Zapol, W.M. 2001.

Inhibition of lung phosphodiesterase improves responsiveness to inhaled nitric

oxide in isolated-perfused lungs from rats challenged with endotoxin, Intensive

Care Medicine. 27: 251–257.

Honda, K., Harada, A., Takano, Y. and Kamiya, H. 2000. Involvement of M3

muscarinic receptors of the spinal cord in formalin-induced nociception in mice,

Brain Research. 859: 38-44.

Hosseinzadeh, H. and Younesi, H.M. 2002. Antinociceptive and anti-inflammatory

effects of Crocus sativus L. stigma and petal extracts in mice, BMC

Pharmacology. 2: 7.

Huang, S.M., Bisogno, T., Trevisani, M., Al-Hayani, A., de Petrocellis, L., Fezza, F., et

al. 2002. An endogenous capsaicin-like substance with high potency at

recombinant and native vanilloid VR1 receptors, Proceedings of the National

Academy of Science, U.S.A. 99: 8400–8405.

Hughes, J., Smith, T.W., Kosterlitz, H.W., Fotherqill, L.A., Morgan, B.A., and Morris,

H.R. 1975. Identification of two related pentapeptides from the brain with the

potent opiate agonist activity. Nature (Lond). 58: 577-579.

Hugonin, L., Vukojević, V., Bakalkin, G. and Gräslund, A. 2006. Membrane leakage

induced by dynorphins, FEBS Letters. 580: 3201-3205.

Hunskaar, H.S., Fasmer, O.B. and Hole, K. 1985. Formalin test in mice, a useful

technique for evaluating mild analgesics, Journal of Neuroscience Methods. 14:

69-76.

Hunt, S.P. and Mantyh, P.W. 2001. The molecular dynamics of pain control. Nature

Reviews Neuroscience. 2: 83-91.

Hurley, R.W. and Hammond, D.L. 2001. Contribution of endogenous enkephalins to

the enhanced analgesic effects of supraspinal {micro} opioid receptor agonists

after inflammatory injury, Journal of Neuroscience. 21: 25-36.

Iadarola, M.J., Brady, L.S., Draisci, G., and Dubner, R. 1988. Enhancement of

dynorphin gene expression in spinal cord following experimental inflammation:

stimulus specificity, behavioral parameters and opioid receptor binding,

Pain. 35: 313-326.

Ibrahim, I.A.A., Abdulla, M.A., Abdelwahab, S., Al-Bayaty, F. and Abdul Majid, N.

2012. Leaves extract of Muntingia calabura protects against gastric ulcer

induced by ethanol in Sprague–Dawley rats, Clinical and Experimental

Pharmacology. DOI:10.4172/2161-1459.S5-004.

Page 34: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

121

Ikeda, H., Stark, J., Fischer, H., Wagner, M., Drdla, R., Jager T. et al. 2006. Synaptic

amplifier of inflammatory pain in the spinal dorsal horn. Science. 312: 1659-

1662.

Ikeda, Y., Ueno, A., Narada, H. and Oh-ishi, S. 2001. Involvement of vanilloid

receptor VR1 and prostanoids in the acid-induced writhing responses on mice,

Life sciences. 69: 2911-2919.

Ing, D., Zang, J., Dzau, V., Webster, K. and Bisphopric, N. 1999. Modulation of

cytokine-induced cardiac myocyte apoptosis by nitric oxide Bak- and Bal-x,

Circulation Research. 84: 21-33.

Irving, G.A. and Wallance, M.S. Pain Management for the Practicing Physician. New

York: Churchill Livingstone Inc. 1996.

Ito, A., Kumamoto, E., Takeda, M., Shibata, K., Sagai, H. and Yoshimura, M. 2000.

Mechanisms for ovariectomy-induced hyperalgesia and its relief by calcitonin:

participation of 5- HT1A-like receptor on C-afferent terminals in substantia

gelatinosa of the rat spinal cord, Journal of Neuroscience. 20: 6302–6308.

Iwamoto, E.T. and Marion, L. 1993. Characterization of the antinociception produced

by intrathecally administered muscarinic agonists in rats, Journal of

Pharmacology and Experimental Therapeutics. 266: 329-338.

Jajoo, S., Mukherjea, D., Watabe, K. and Ramkumar, V. 2009. Adenosine A3 receptor

suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity,

Neoplasia. 11: 1132–1145.

Janig, W. 2009. Autonomic nervous system and pain in Science of Pain ed. Basbaum,

A.I. and Bushnell, M.C. San Diego: Elsevier Inc. 2009.

Jhaveri, M.D., Elmes, S.J., Kendall, D.A. and Chapman, V. 2005. Inhibition of

peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of

dorsal horn neurons in naïve, carrageenan-inflamed and neuropathic

rats, European Journal of Neuroscience. 22: 361–370.

Ji, R.R. and Woolf, C.J. 2001. Neuronal plasticity and signal transduction in

nociceptive neurons: implications for the initiation and maintenance of

pathological pain, Neurobiology of Disease. 8: 1–10.

Jones, P.G and Dunlop, J. 2007. Targeting the cholinergic system as a therapeutic

strategy for the treatment of pain, Neuropharmacology, 53: 197-206.

Julie, G.H. Serotonin in Basic neurochemistry: molecular, cellular and medical aspects

ed. Siegel, G.J., Albers, R.W., Brady, S.T. and Price, D.L. San Diego: Elsevier

academic press. 2006.

Julius, D. and Basbaum, A.I. 2001. Molecular mechanism of nociception, Nature. 413:

203-210.

Page 35: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

122

Julius, D. and Basbaum, A.I. 2001. Molecular mechanisms of nociception, Nature

(London). 413: 203–210.

Kandel, E.R., Schwartz, J.H. and Jessell, T.M. Principles of Neural Science. New York:

McGraw-Hill. 2000.

Kaneda, N., Pezzuto, J.M., Soejarto, D.D., Kinghorn, A.D., Farnworth, N.R., Santisuk,

T. 1991. Plant anticancer agents, XLVIII. New cytotoxic flavonoids from

Muntingia calabura roots, Journal of Natural Product. 54: 196–206.

Karlsten, R., Gordh, T. and Post, C. 1992. Local antinociceptive and hyperalgesic

effects in the formalin test after peripheral administration of adenosine

analogues in mice, Pharmacology and Toxicology. 70: 434-438.

Karumi, Y., Onyeyili, P. and Ogugbuaja, V.O. 2003. Anti-inflammatory and

antinociceptive (analgesic) properties of Momordical balsamina Linn. (Balsam

apple) leaves in rats, Pakistan Journal of Biological Science. 6: 1515–1518.

Katavic, P.L., Lamb, K., Navarro, H. and Prisinzano, T.E. 2007. Flavonoids as opioid

receptor ligands: identification and preliminary structure-activity relationships,

Journal of Natural Product. 70: 1278-1282.

Katzung, B.G. and Payan, D.G. Non-steroidal anti-inflammatory drugs; non-opoid

analgesics; drugs used in gout, In Basic and clinical pharmacology ed. Katzung,

B.G. USA: Appleton and Lange. 1995.

Katzung, B.G. Basic and clinical pharmacology. Stanford, Connecticut: Appleton and

Lange, 1995.

Kavalier, M., Ossenkopp, K.P. and Tysdale, D.M. 1991. Evidence for the involvement

of protein kinase C in the modulation of morphine-induced ‘analgesia’ and the

inhibitory effects of exposure to 60-Hz magnetic fields in the snail, Cepaea

nemoralis, Brain Research. 554: 65-71.

Kenins, P. 1982. Response of single nerve fibers to capsaicin applied to the skin,

Neuroscience letters. 29: 83-88.

Khairatkar-Joshi, N. and Szallasi, A. 2009. TRPV1 antagonists: the challenges for

therapeutic targeting, Trends in Molecular Medicine. 15: 14–22.

Khalid, M.H., Akhtar, M.N., Mohamad, A.S., Perimal, E.K., Akira, A., Israf, D.A.,

Lajis, N. et al., 2011. Antinociceptive effect of the essential oil of Zingiber

zerumbet in mice: possible mechanisms, Jorunal of Ethnopharmacology.137:

345-351.

Khasar, S.G., Lin, Y.H., Martin, A., Dadgar, J., McMahon, T., Wang, D., et al. 1999. A

novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant

mice, Neuron. 24: 253-260.

Koga, K., Honda, K., Ando, S., Harasawa, I., Kamiya, H. and Takano, Y. 2004.

Intrathecal clonidine inhibits mechanical allodynia via activation of the spinal

Page 36: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

123

muscarinic M1 receptor in streptozotocin-induced diabetic mice, European

Journal of Pharmacology. 505: 75-82.

Koyama, K., Imaizumi, T., Akiba, M., Kinoshita, K., Tkahashi, K., Suzuki, A., et al.

1997. Antinociceptive components of Ganoderma lucidum, Planta Medica. 63:

224-227.

Krause, J.E., Chenard, B.L. and Cortright, D.N. 2005. Transient receptor potential ion

channels for the discovery of pain therapeutics, Current opinion in

investigational drugs. 6: 48-57.

Kreis, M.E., Jiang, W., Kirkup, A. J. and Grundy, D. 2002. Cosensitivity of vagal

mucosal afferents to histamine and 5-HT in the rat jejunum, American Journal

of Physiology - Gastrointestinal and Liver Physiology. 283: G612–G617.

Kulkarni, S.K. and Singh, V.P. 2007. Licofelone - a novel analgesic and anti-

inflammatory agent, Current topic medicinal chemistry. 7: 251-263.

Kvamme, E. 1998. Synthesis of glutamate and its regulation, Progress in brain

research. 116: 73-85.

Lavand’homme, P.M. and Eisenach, J.C. 2003. Perioperative Administration of the α2-

Adrenoceptor Agonist Clonidine at the Site of Nerve Injury Reduces the

Development of Mechanical Hypersensitivity and Modulates Local Cytokine

Expression, Pain. 105: 247–254.

Lawson, K. 1996. Potassium channel activation: a potential therapeutic approach?

Pharmacology and Therapeutics. 70: 39–63.

Le Bars, D., Gozariu, M., and Cadden, S.W. 2001. Animal Models of Nociception,

Pharmacological Reviews. 53: 597-652.

Lee, J.L., Mukhtar, H., Bickers, D.R., Kopelovich, L. and Athar, M. 2003.

Cyclooxygenase in the skin: pharmacological and toxicological implications,

Toxicology and applied pharmacology. 192: 294-306.

Lima, F.O., Souza, G.R., Verri, Jr., W.A., Parada, C.A., Ferreira, S.H., Cunha, F.Q., et

al., 2010. Direct blockade of inflammatory hypernociception by peripheral A1

adenosine receptors: involvement of the NO/cGMP/PKG/KATP signaling

pathway, Pain. 151: 506-515.

Lloyd, G.K. and Williams, M., 2000. Neuronal nicotinic acetylcholine receptors as

novel drug targets, Journal of Pharmacology and Experimental Therapeutics.

292: 461-467.

Lopez-Avila, A., Coffeen, U., Ortega-Legaspi, J.M., del Angel, R. and Pellicer, F.

2004. Dopamine and NMDA systems modulate long-term nociception in the rat

anterior cingulate cortex, Pain. 111: 136–143.

Madi, L., Bar-Yehuda, S., Barer, F., Ardon, E., Ochaion, A. and Fishman, P. 2003. A3

adenosine receptor activation in melanoma cells: association between receptor

Page 37: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

124

fate and tumor growth inhibition, The Journal of Biological Chemistry. 278:

42121–42130.

Malmberg, A.B., Chen, C., Tonegawa, S. and Basbaum, A.I. 1997. Preserved acute

pain and reduced neuropathic pain in mice lacking PKC gamma. Science 278:

279–283.

Mandadi, S., Tominaga, T., Numazaki, M., Murayama, N., Saito, N., Armati, P.J., et al.

2006. Increased sensitivity of desensitized TRPV1 by PMA occurs through

PKCε-mediated phosphorylation at S800. Pain. 123: 106–116.

Mantyh, P.W. and Hunt, S.P. 2004. Setting the tone: superficial dorsal horn projection

neurons regulate pain sensitivity, Trends in Neurosciences. 27: 582-584.

Mao, J., Price, D.D., Hayes, R.L., Lu, J. and Mayer, D.J. 1992. Differential roles of

NMDA and non-NMDA receptor activation in induction and maintenance of

thermal hyperalgesia in rats with painful peripheral mononeuropathy, Brain

Research. 598: 271-278.

Marcondes Sari, M.H., Guerra Souza, A.C., Rosa, S.G., Souza, D., Rodrigues, O.E.D.

and Nogueira, C.W. 2014. Contribution of dopaminergic and adenosinergic

systems in the antinociceotive effect of p-cholor-selenosteroid, Europeand

journal of pharmacology. 725: 79-86.

Marieb, E.N. Human Anatomy and Physiology. San Francisco: Pearson Education, Inc.

2004.

Martin, E.A. Oxford Concise Medical Dictionary. Oxford: Market House Book Ltd.

2003.

Martin, W.R., Eades, C.G., Thompson, J.A., Huppler, R.E. and Gilbert, P.E. 1976. The

effects of morphine- and nalorphine-like drugs in the nondependent and

morphine-dependent chronic spinal dog, The Journal of Pharmacology and

Experimental Therapeutics. 197: 517-532.

Mayer, B., Brunner, F., and Schmidt, K. 1993. Inhibition of nitric oxide synthesis by

methylene blue, Biochemical pharmacology. 45: 367-374.

Mayer, S., Izydorczyk, I., Reeh, P.W. and Grubb, B.D. 2007. Bradykinin-induced

nociceptor sensitisation to heat depends on cox-1 and cox-2 in isolated rat skin,

Pain. 130: 14-24.

McKenna, M.C. 2007. The glutamate-glutamine cycle is not stoichiometric; fates of

glutamate in brain, Journal of Neuroscience research. 85: 3347-3358.

Meller, S.T. and Gebhart, G.F. 1993. Nitric oxide (NO) and nociceptive processing in

the spinal cord, Pain. 52: 127–136.

Merskey, N. and Bogduk, N. IASP Pain Terminology: Classification of Chronic Pain,

IASP Taskforce on Taxonomy. Seattle: IASP Press. 1994.

Page 38: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

125

Millan, M.J. 1999. The induction of pain: an integrative review, Progress in

Neurobiology. 57:1-164.

Millan, M.J. 2002. Descending control of pain, Progress in Neurobiology. 66: 355-474.

Miller, K.E., Hoffman, E.M., Sutharshan, M. and Schechter, R. 2011. Glutamate

pharmacology and metabolism in peripheral primary afferents: Physiological

and pathophysiological mechanisms, Pharmacology and Therapeutics. 130:

283-309.

Miller, K.E., Richards, B.A. and Kriebel, R.M. 2002. Glutamine-, glutamine

synthetase-, glutamate dehydrogenase-, pyruvate carboxylase-

immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain

Research. 945: 202-211.

Mohd. Sani, M.H., Zakaria, Z.A., Balan, T., Teh, L.K., Salleh, M.Z., 2012.

Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves

and the Mechanisms of Action Involved. Evidence-Based Complementary and

Alternative Medicine. 2012 10 pages. doi:10.1155/2012/890361.

Morton, J.F. 1987. Jamaica cherry in Fruits of Warm Climates ed. Morton, J.F. Miami,

FL. 1987.

Musa, A.M., Aliyu, A.B., Yaro, A.H., Magaji, M.G., Hassan, H.S. and Abdullahi, M.I.

2009. Preliminary phytochemical, analgesic and anti-inflammatory studies of

the methanol extract of Anisopus mannii in rodents, African Journal of

Pharmacy and Pharmacology. 3: 374-378.

Mycek, M.J., Harvey, R.A. and Champe P.C. Lippincott’s Illustrated Review:

Pharmacology. Philadelphia: Lippicott- Raven. 1997.

Naguib, M. and Yaksh, T.L. 1997. Characterization of muscarinic receptor subtypes

that mediate antinociception in the rat spinal cord, Anesthesiology and

Analgesia. 85: 847-853.

Nascimento, F.P., Macedo, Jr. S.J. and Santos, A.R.S. The Involvement of Purinergic

System in Pain: Adenosine Receptors and Inosine as Pharmacological Tools in

Future Treatments in Pharmacology ed. Luca Gallelli. Croatia: InTechopen.

2012. doi: 10.5772/33754.

Narita, M., Mizoguchi, H., Kampine, J.p. and Tseng, L.F. 1996. Role of protein kinase

C in desensitization of spinal delta-opioid-mediated antinociception in the

mouse, British Journal of Pharmacology. 118: 1829-1835.

Narita, M. and Tseng, L.F. 1995. Stimulation of spinal delta-opioid receptors in mice

selectively enhances the attenuation of delta-opioid receptor-mediated

antinociception by antisence oligodeoxynucleotide, European Journal of

Pharmacology. 284: 185-189.

Neugebauer, V. 2002. Metabotropic glutamate receptors-important modulators of

nociception and pain behavior, Pain. 98: 1-8.

Page 39: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

126

Newman, D.J. and Cragg, G.M. 2007. Natural products as sources of new drugs over

the last 25 years, Journal of Natural Products. 70: 461-477.

Nivethetha, M., Jayasari, J. and Brindha, P. 2009. Effects of Muntingia calabura L. on

isoproterenol-induced myocardial infarction, Singapore Medical Journal.

50:300–302.

Numazaki, M., Tominaga, T., Toyooka, H. and Tominaga, M. Direct phosphorylation

of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two

target serine residues, The Journal of Biological Chemistry. 277: 13375–13378.

Ocana, M., Del Pozo, E., Barrios, M., Robles, L.I. and Baeyens, J.M. 1990. An ATP-

dependent potassium channel blocker antagonizes morphine analgesia.

European Journal of Pharmacology. 186: 377–378.

Ochoa, J. and Torebjork, E. 1983. Sensations evoked by intraneural microstimulation

of single mechanoreceptor units innervating the human hand, Journal of

Physiology. 342: 633-654.

Ochoa, J. and Torebjork, E. 1989. Sensations evoked by intraneural microstimulation

of C nociceptor fibers in human skin nerves, Journal of Physiology. 415: 583-

599.

OECD principles on good laboratory practice in Handbook, Good Laboratory Practice

(GLP), Quality Practices for Regulated Non Clinical Research and Development

TDR PRD/GLP/01.2, 2001.

Ohana, G., Bar-Yehuda, S., Arich, A., Madi, L., Dreznick, Z., Rath-Wolfson, L. et al.

2003. Inhibition of primary colon carcinoma growth and liver metastasis by the

A3 adenosine receptor agonist CF101. British Journal of Cancer. 89: 1552–

1558.

Olah, Z., Karai, L. and Iadarola, M.J. 2002. Protein kinase Cα is required for vanilloid

receptor 1 activation. Evidence for multiple signaling pathways. The Journal of

Biological Chemistry. 277: 35752–35759.

Olivier, B. 2015. Serotonin: A never-ending story. European Journal of Pharmacology.

753: 2-18.

Pan, H.L., Wu, Z.Z., Zhou, H.Y., Chen, S.R., Zhang, H.M. and Li, D.P. 2008.

Modulation of pain transmission by G-protein-coupled receptors, Pharmacology

and Therapeutics. 117: 141-161.

Paris, P.M., and Stewart, R.D. Pain Management in Emergency Medicine. Connecticut:

Appleton and Lange. 1988.

Patil, C.S. Jain, N.K., Singh, A. and Kulkarni, S.K. 2003. Modulatory Effect of

Cyclooxygenase Inhibitors on Sildenafil-Induced Antinociception,

Pharmacology. 69: 183–189.

Page 40: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

127

Perez-Arbelaez, E. Plantas Medicinales Y Venenosas De Colombia: Estudio Botánico,

éTnico, Farmacéutico, Veterinario Y Forense. Colombia: Hernando Salazar,

1975.

Peters, J.H., McDougall, S.J., Fawley, J.A., Smith, S.M. and Andresen, M.C. 2010.

Primary Afferent Activation of Thermosensitive TRPV1 Triggers Asynchronous

Glutamate Release at Central Neurons, Neuron. 65: 657–669.

Petrenko, A.B., Yamakura, T., Baba, H. and Shimoji, K. 2003. The role of N-methyl-

D-aspartate (NMDA) receptors in pain: a review, Anesthesia and Analgesia. 97:

1108-1116.

Pini, L.A., Vitale, G., Ottani, A. and Sandrini, M. 1997. Naloxone reversible

antinociception by paracetamol in the rat, Journal of Pharmacology and

Experimental Therapeutics. 280: 934–940.

Preethi, K., Premasudha, P. and Keerthana, K. 2012. Anti-inflammatory activity of

Muntingia calabura fruits, Pharmacognosy Journal. 4: 51–6.

Preethi, K., Vijayalakshmi, N., Shamna, R. and Sasikumar, J.M. 2010. In vitro

antioxidant activity of extracts from fruits of Muntingia calabura Linn. from

India, Pharmacognosy Journal. 2: 11–18.

Raffa, R.B. and Codd, E.E. 1994. Lack of glibenclamide or TEA affinity for opioid

receptors: further evidence for in vivo modulation of antinociception at K+

channels, Brain Research. 650: 146–148.

Raj, P. Pain Medicine: A Comprehensive Review. Texas: Mosby Inc. 2003.

Raskin, I. and Ripoll, C. 2004. Can an apple a day keep the doctor away? Current

pharmaceutical design. 10: 3419-3429.

Rasooli, I. Bioactive compounds in phytomedicine. Croatia: Intechopen, 2011.

Reddy, S.V.R. and Yaksh, T.L. 1980. Spinal noradrenergic terminal system mediates

antinociception, Brain research. 189: 391-401.

Riley, J. and Boulis, N.M. 2006. Molecular mechanisms of pain: a basis for chronic

pain and therapeutic approaches based on the cell and the gene, Clinical

Neurosurgery. 53: 77–97.

Rittner, H.L., Machelska, H. and Stein, C. Immune System, Pain and Analgesia in

Science of Pain ed. Basbaum, A.I. and Bushnell, M.C. San Diego.Elsevier Inc.,

2009.

Rodrigues, A.R. and Duarte, I.D. 2000. The peripheral antinociceptive effect induced

by morphine is associated with ATP-sensitive K+ channels, British Journal of

Pharmacology. 129: 110–114.

Rowbotham, D.J. and Macintyre, P.E. Clinical Pain Management: Acute Pain. London:

Arnold. 2003.

Page 41: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

128

Rudy, B. 1988. Diversity and ubiquity of K channels, Neuroscience. 25: 729-749.

Safayhi, H. and Sailer, E.R. 1997. Anti-infammatory actions of pentacyclic triterpenes.

Planta Medica. 63: 487-493.

Sanchez de Medina, F., Romero, J.A.., Galvez, J. and Zarzuelo, A. 1996. Effect of

quercitrin on acute and chronic experimental colitis in the rat, Journal of

Pharmacology and Experimental Therapeutics. 278: 771–779.

Sanchez de Medina, F., Vera, B., Galvez, J. and Zarzuelo, A. 2002. Effect of quercitrin

on the early stages of hapten-induced colonic inflammation in the rat, Life

Sciences. 70: 3097-3108.

Sandkuhler, J. 2000. Learning and memory in pain pathways, Pain. 88: 113-118.

Sang, C.N., Gracely, R.H., Max, M.B. and Bennet, G.J. 1996. Capsaicin-evoked

mechanical allodynia and hyperalgesia cross nerve territories. Evidence for

central mechanism, Anesthesiology. 85: 491-496.

Sauer, S.K., Schafer, D., Kress, M. and Reeh, P.W. 1998. Stimulated prostaglandin E2

release from rat skin, in vitro, Life Science. 62: 2045–2055.

Sawynok, J, and Liu, X.J. 2003. The formalin test: Characteristics and usefulness of

the model. Reviews in Analgesia. 7: 145-163.

Sawynok, J. 1998. Adenosine receptor activation and nociception, European Journal of

Pharmacology. 347: 1-11.

Sawynok, J. 2011. Caffeine and pain. Pain. 152: 726–729.

Sawynok, J. and Reid, A. 1996. Interactions of descending serotonergic systems with

other neurotransmitters in the modulation of nociception, Behavioural Brain

Research. 73: 63-68.

Schaible, H.G., Schmelz, M. and Tegeder, I. 2006. Pathophysiology and treatment of

pain in joint disease, Advance drug delivery reviews. 58: 323-342.

Schidmt, B. L., Tambeli, C.H., Levine, J.D. and Gear, R.W. 2002. mu/cooperativity

and opposing opioid effects in nucleus accumbens mediated antinociception in

the rat, European Journal of Neuroscience. 15: 861-868.

Schmidt, R.F. and Willis, W.D. Encyclopedia of pain. New York: Springer-verlag

Berlin Heilberg, 2007.

Sebastião, A.M. and Ribeiro, J.A. 2009. Adenosine receptors and central nervous sys-

tem, European Journal of Pharmacology. 623: 41–46.

Serhan, C.N. and Haeggstrom, J.Z. Lipid mediators in acute inflammation and

resolution: eicosanoids, PAF, resolvins and proteins. In fundamentals of

Page 42: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

129

inflammation ed. Serhan, C.N. Cambridge, U.K: Cambridge University press.

2010.

Shih, C.D. 2009. Activation of nitric oxide/cGMP/PKG signaling cascade mediates

antihypertensive effects of Muntingia calabura in anesthetized spontaneously

hypertensive rats, American Journal of Chinese Medicine. 37: 1045–1058.

Shih, C.D., Chen, J.J. and Lee, H.H. 2006. Activation of nitric oxide signaling pathway

mediates hypotensive effect of Muntingia calabura L. (Tiliaceae) leaf extract,

American Journal of Chinese Medicine. 34: 857–72.

Shu, Y.Z. 1998. Recent natural products based drug development: a pharmaceutical

industry perspective, Journal of Natural Products. 61: 1053-1071.

Sibi, G., Naveen, R. Dhananjaya, K., Ravikumar, K.R. and Mallesha, H. 2012.

Potential use of Muntingia calabura L. extracts against human and plant

pathogens, Pharmacognosy Journal. 4: 44–47.

Siddiqua, A., Premakumari, K.B. and Sultana, R. 2010. Antioxidant activity and

estimation of total phenolic content of Muntingia calabura by colorimetry,

International Journal of ChemTech Research. 2: 205–208.

Smith, J.A., Davis, C.L. and Burgess, G.M. 2000. Prostaglandin E2-induced

sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons

is mediated by cAMP-dependent protein kinase A, European Journal of

Neuroscience. 12: 3250–3258.

Smith, R.M., 2003. Before the injection--modern methods of sample preparation for

separation techniques, Journal of Chromatography A. 1000: 3–27

Soares, A.C., Leite, R., Tatsuo, M.A. and Duarte, I.D. 2000. Activation of ATP-

sensitive K+ channels: mechanism of peripheral antinociceptive action of the

nitric oxide donor, sodium nitroprusside, European Journal of Pharmacology.

400: 67–71.

Sommer, C. 2004. Serotonin in pain and analgesia, Molecular Neurobiology. 30: 117-

125.

Sommer, C. 2010. Serotonin in pain and pain control, Handbook of the behavioral

neuroscience. 21: 457-471.

Sousa, A.M. and Prado, W.A. 2001. The dual effect of a nitric oxide donor in

nociception, Brain Research. 897: 9–19.

Spano, M.S., Ellgren, M., Wang, X. and Hurd, Y.L. 2007. Prenatal Cannabis Exposure

Increases Heroin Seeking with Allostatic Changes in Limbic Enkephalin

Systems in Adulthood, Biological Psychiatry. 61: 554-563.

Sridhar, M., Thirupathi, K., Chaitanya, G., Ravi Kumar, B. and Krishna Mohan, G.

2011. Antidiabetic effect of leaves of Muntingia calabura L., in normal and

Page 43: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

130

alloxan-induced diabetic rats, Journal of Pharmacology and

Pharmacotherapeutics. 2: 626–32.

Starec, M., Waitzov’a, D. and Elis, J. 1988. Evaluation of the analgesic effect of RG-

tannin using the ‘‘hot plate’’ and ‘‘tail flick’’ method in mice (in Czech), Cesk

Farm. 37: 319–321.

Steinbush, H.M.W. 1981. Distribution of serotonin-immunoreactivity in the central

nervous system of the rat-cell bodies and terminals, Neuroscience. 4: 557–618.

Steven, M.F. Chronic pain in small animal medicine. Manson Publishing (UK): The

Veterinary Press. 2010.

Strong, J., Unruh, A.M., Wright, A., Baxter, G.D. and Wall, P.D. Pain: A textbook for

therapists. London: Churchill Livingstone. 2002.

Su, N., Jung Park, E., Vigo, J.S., Graham, J.G., Cabieses, F., Fong, H.H., et al. 2003.

Activity-guided isolation of the chemical constituents of Muntingia calabura

using a quinine reductase induction assay, Phytochemistry. 63: 335–341.

Sufian, A.S., Ramasamya, K., Ahmat, N., Zakaria, Z.A. 2013. Isolation and

identification of antibacterial and cytotoxic compounds from the leaves of

Muntingia calabura L., Journal of Ethnopharmacology. 146: 198–204.

Suresh, K.K. 2012. Pharmacognostic evaluation, in vitro antioxidant and in vivo anti-

inflammatory studies of Muntingia calabura Linn., Journal of Global Trends in

Pharmaceutical sciences. 3: 805–811.

Svendsen, P., and Hau, J. Handbook of Laboratory Animal Science: Selection and

Handling of Animals in Biomedical Research, Boca Raton: CRC Press Inc.

1994.

Szolcsanyi, J. Actions of capsaicin on sensory neurons in Capsaicin in the study of pain

ed Wood, J.N. London, England: Academic press. 1993.

Taiwo, Y.O. and Levine, J.D. 1990. Direct cutaneous hyperalgesia induced by

adenosine, Neuroscience. 38: 757-762.

Talarek, S. and Fidecka, S. 2002. Role of nitric oxide in benzodiazepines-induced

antinociception in mice, Polish Journal of Pharmacology. 54: 27–34.

Tata, A.M., Vilaró, M.T. and Mengod, G. 2000. Muscarinic receptor subtypes

expression in rat and chick dorsal root ganglia, Molecular Brain Research. 82:

1-10.

Terenius, L. Families of opioid peptides and classes of opioid receptors. In Advances in

Pain Research and Therapy ed. Fields H.L, Dubner, R., and Cervero, F. New

York Raven. 1985.

Tjolsen, A., Berge, O.G., Hunskaar, S., Rosland, J.H. and Hole, K. 1992. The formalin

test: an evaluation of the method, Pain. 51: 5-17.

Page 44: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

131

Treede, R.D. and Apkarian, A.V. Nociceptive processing in the cerebral cortex in

Science of Pain ed. Basbaum, A.I. and Bushnell, M.C. San Diego: Elsevier.

2009.

Treede, R.D., Meyer, R.A., Raja, S.N. and Campbell, J.N. 1992. Peripheral and central

mechanisms of cutaneous hyperalgesia, Progress in Neurobiology. 38: 397-421.

Tseng, L., Yu, J. and Pieper, G. 1992. Increase of nitric oxide production by L-arginine

potentiates i.c.v. administered beta-endorphin-induced antinociception in the

mouse, European Journal of Pharmacology. 212: 301–303.

Tsimogiannis, D., Samiotaki, M., Panayotou G. and Oreopoulou, V. 2007.

Characterization of Flavonoid Subgroups and Hydroxy Substitution by HPLC-

MS/MS, Molecules. 12: 593-606.

Turner, P.V., Brabb, T., Pekow, C., and Vasbinder, M.A. 2011. Administration of

substances to laboratory animals: routes of administration and factors to

consider, Journal of American Association Laboratory Animal Science. 50:

600–613.

Urban, L. Thompson, S.W.N. and Dray, A. 1994. Modulation of spinal excitability: co-

operation between neurokinin and excitatory amino acid neurotransmitters,

Trend in neurosciences. 17: 432-438.

Valencia, E., Feria, M., Dias, J.G., Gonzalez, A. and Bermejo, J. 1994.

Antinociceptive, antiinfammatory and antipyretic effects of lapidin, a bicyclic

sesquiterpene, Planta Medica. 60: 395-399.

Vane, J.R. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for

aspirin-like drugs, Nature: New Biology. 231: 232–235.

Vane, J.R. and Botting, R.M. 2003. The mechanism of action of aspirin, Thrombosis

research. 110: 255-258.

Vanegas, H. and Schaible, H.G. 2000. Effects of antagonists to high-threshold calcium

channels upon spinal mechanism of pain, hyperalgesia and allodynia, Pain. 85:

9-18.

Vanegas, H. and Schaible, H.G. NMDA receptors in spinal nociceptive processing in

Encyclopedia of pain ed. Schmidt, R.F. and Willis, W.D. New York: Springer-

verlag Berlin Heilberg. 2007.

Vanegas, H. and Schaible, H.G. N-methyl0D-aspartate (NMDA) antagonist in

Encyclopedia of pain ed. Schmidt, R.F. and Willis, W.D. New York: Springer-

verlag Berlin Heilberg. 2007a.

Vasudevan, M. Gunnam, K.K. and Parle, M. 2006. Antinociceptive and anti-

inflammatory properties of Daucus carota seeds extract, Journal of Health

Science. 52: 598–606.

Page 45: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

132

Velazquez, K.T., Mohammad, H. and Sweitzer, S.M. 2007. Protein kinase C in pain:

involvement of multiple isoforms, Pharmacological research. 55: 578-589.

Vellani, V., Mappleback, S., Moriondo, A., Davis, J.B. and McNaughton, P.A. 2001.

Protein kinase C activation gating of the vanilloid receptor VR1 by capsaicin,

protons, heat and anandamide, Journal of Physiology. 560: 391-401.

Vellani, V., Mapplebeck, S., Moriondo, A., Davis, J.B. and McNaughton, P.A. 2001.

Protein kinase C activation potentiates gating of the vanilloid receptor VR1 by

capsaicin, protons, heat and anandamide, Journal of Physiology (Lond.). 543:

813–825.

Vergana, C., latorre, R., Marrison, N.V. and Adelman, J.P. 1998. Calcium-activated

potassium channels, Current opinion in neurobiology. 8: 321-329.

Verma, P.R., Joharapurkar, A.A., Chatpalliwar, V.A. and Asnani, A.J. 2005.

Antinociceptive activity of alcoholic extract of Hemidesmus indicus R.Br. in

mice, Journal of Ethnopharmacology, 102: 298–301.

Vivancos, G.G. Parada, C.A. and Ferreira, S.H. 2003. Opposite nociceptive effects of

the arginine/NO/cGMP pathway stimulation in dermal and subcutaneous

tissues, British Journal of Pharmacology. 138: 1351–1357.

Vogel, H.G. Drug discovery and evaluation: Pharmacological Assays. J.A. Majors

Company, Lewisville, 1997.

von Frey, M. 1895. Beitrage zur sinnesphysiologie der haut, Ber. Sachs. Ges. Wiss. 47:

166–184.

Vongtau, H.O., Abbah, J., Mosugu, O., Chindo, B.A., Ngazal, I.E., Salawu, A.O., et al.

2004. Antinociceptive profile of the methanolic extract of Neorautanenia mitis

root in rats and mice, Journal of Ethnopharmacology. 92: 317-324.

Vongtau, H.O., Abbah, J., Ngazal, I.E., Kunle, O.F., Chinbo, B.A., Otsapa, P.B. and

Gamaniel, K.S. 2004. Antinociceptive and anti-inflammatory activities of the

methanolic extract of Parinari polyandra stem bark in rats and mice, Journal of

Ethnopharmacology. 90: 115-121.

Weisenberg M. Pain: Clinical and Experimental Perspective. Saint Louis: C.V. Mosby

Company. 1975.

Willis, W.D. and Coggeshall, R.E. Sensory mechanisms. The spinal cord. New York:

Plenum Press. 1991.

Willis, W.D. Spinothalamic tract neurons, role of nitric oxide. In Encyclopedia of pain

ed. Schmidt, R.F. and Willis, W.D. New York: Springer-verlag Berlin Heilberg.

2007.

Wilson, S.G., Bryant, C.D., and Lariviere, W.R. 2003. The heritability of

antinociception: Pharmacogenetic mediation of three over-the-counter

Page 46: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

133

analgesics in mice, Journal of Pharmacology and Experimental Therapeutics.

305: 755-764.

Woolf, C.J. 1996. Windup and central sensitization are not equivalent, Pain. 66: 105-

108.

Woolf, C.J. and Salter, M.W. 2000. Neuronal plasticity: increasing the gain in pain,

Science. 288: 1765-1768.

Wu, W.P., Hao, J.X., Halldner, L., Lövdahl, C., DeLander, G.E., Wiesenfeld-Hallin, Z.

et al. 2005. Increased nociceptive response in mice lacking the adenosine A1

receptor, Pain. 113: 395-404.

Xie, W. Assessment of pain in animals. In Animal models of pain ed. Ma, C. and

Zhang, J.M. New York: Human Press, Springer. 2011.

Yaksh, T.L. Central pharmacology of nociceptive transmission in Textbook of pain ed.

Wall, P.D., and Melzack, R. Edinburgh: Churchill Livingston. 1999.

Yalcin, I. and Aksu, F. 2005. Involvement of potassium channels and nitric oxide in

tramadol antinociception, Pharmacology Biochemistry and Behavior. 80: 69–

75.

Yasunaka, K., Abe, F., Nagayama, A., Okabe, H. Lozada-Perez, L. Lopez-Villafranco,

E. et al. 2005. Antibacterial activity of crude extracts from Mexican medicinal

plants and purified coumarins and xanthones, Journal of Ethnopharmacology.

97: 293–299.

Zakaria, Z.A. 2007. Free radical scavenging activity of some plants available in

Malaysia, Iranian Journal of Pharmacology and Therapeutics. 6: 87–91.

Zakaria, Z.A., Fatimah, C.A., Mat, Jais A.M., Zaiton, H., Henie, E.F.P., Sulaiman,

M.R., et al. 2006b. The in vitro antibacterial activity of Muntingia calabura

extracts, International Journal of Pharmacology. 2: 290–293.

Zakaria, Z.A., Hassan, M.H., Nurul Aqmar, M.N., Mohd Zaid, S.N., Abd Ghani, M.

Sulaiman, M.R. et al. 2007d. Effects of various nonopioid receptor antagonists

on the antinociceptive activity of Muntingia calabura extracts in mice, Methods

and Findings in Experimental and Clinical Pharmacology. 29: 515–520.

Zakaria, Z.A., Mat Jais, A.M., Mastura, M., Mat Jusoh, S.H., Mohamed, A.M., Mohd.

Jamil, N.S. et al. 2007a. In vitro antistaphylococcal activity of the extracts of

several neglected plants in Malaysia, International Journal of Pharmacology. 3:

428-431.

Zakaria, Z.A., Mohamed, A.M., Mohd. Jamil, N.S., Rofiee, M.S., Hussain, M.K.,

Sulaiman, M.R., et al., 2011. In vitro antiproliferative and antioxidant activities

of the extracts of Muntingia calabura leaves, The American Journal of Chinese

Medicine. 39: 183-200.

Page 47: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

134

Zakaria, Z.A., Mohd. Nor Hazalin, N.A., Mohd. Zaid, S.N.H., Abd. Ghani, M., Hassan,

M.H., Gopalan, H.K. 2007b. Antinociceptive, anti-inflammatory and antipyretic

effects of Muntingia calabura aqueous extract in animal models, Journal of

Natural Medicines. 61: 443–448.

Zakaria, Z.A., Mustapha, S., Sulaiman, M.R., Mat Jais, A.M, Somchit, M.N. and

Abdullah, F.C. 2007c. The Antinociceptive Action of Aqueous Extract from

Muntingia calabura Leaves: The Role of Opioid Receptors, Medical Principle

and Practice. 16: 130-136.

Zakaria, Z.A., Raden Mohd Nor, R.N., Hanan Kumar, G., Abdul Ghani, Z.D.,

Sulaiman M.R., Rathna Devi, G. et al. 2006. Antinociceptive, anti-inflammatory

and anti-pyretic properties of Melastoma malabathricum leaves aqueous extract

in experimental animals, Canadian Journal of Physiology and Pharmacology.

84: 1291–1299.

Zakaria, Z.A., Somchit, M.N., Sulaiman, M.R., Mat Jais A.M. and Fatimah, C.A. 2008.

Effects of various receptor antagonists, pH and enzymes on Muntingia calabura

antinociception in mice, Research Journal of Pharmacology. 2: 31–37.

Zakaria, Z.A., Sufian, A.S., Ramasamy, K., Ahmat, N., Sulaiman, M.R., Arifah, A. K.,

et al. 2010. In vitro antimicrobial activity of Muntigia calabura extracts and

fractions, African Journal of Microbiology Research. 4: 304–308.

Zakaria, Z.A., Sulaiman, M.R., Jais, A.M.M., Somchit, M.N., Javaraman, K.V. and

Abdullah, F.C. 2006a. The antinociceptive activity of Muntingia calabura

aqueous extract and the involvement of L-arginine/nitric oxide/cyclic guanosine

monophosphate pathway in its observed activity in mice, Fundamental and

Clinical Pharmacology. 20: 365–72.

Zeilhofer, H.U., Kress, M. and Swandulla, D. 1997. Fractional Ca2+

currents through

capsaicin- and proton-activated ion channels in rat dorsal root ganglia neurons,

Journal of Physiology. 503: 67-78.

Zeitz, K.P., Guy, N., Malmberg, A.B., Dirajlal, S., Martin, W.J., Sun, L., et al. 2002.

The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing

via a novel subset of myelinated and unmyelinated nociceptors. Journal of

Neuroscience. 22: 1010-1019.

Zhang, L.J., Wang, X.J. and Han, J.S. 1990. Phorbol ester suppression of opioid

analgesia in rats, Life Science. 47: 1775-1782.

Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in

conscious animals, Pain. 16: 109–110.

Page 48: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

137

BIODATA OF STUDENT

Mohd.Hijaz Mohd Sani was born in Kota Kinabalu, Sabah, Malaysia on April 14th

,

1987. He received his early primary education at Sekolah Kebangsaan Malawa,

Telipok (1994-1999). He then continued his secondary education at Sekolah

Menengah St. Peter, Telipok from 200-2004 before being accepted into Labuan

Matriculation College (2005-2006). In July 2006, his application to further his study in

bachelor degree was accepted by Universiti Putra Malaysia. He completed his degree in

Biomedical Sciences in four years. During the study period, his passion and interest

towards research particularly in medicine field was developed, which encouraged him

to further his study. He pursues his study in Master of Science (Pharmacology) at the

same university. After a year, he managed to complete reasonable amount of his

research which allowed him to publish his first scientific journal. Following this, his

determination prompts him to apply for conversion from master to doctor of

philosophy which was successful.

Page 49: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM

138

LIST OF PUBLICATIONS

Journal:

M.H. Mohd. Sani, Z.A. Zakaria, T. Balan, L.K. Teh and M.Z. Salleh (2012).

Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and

the Mechanisms of Action Involved. Evidence-based Complementary and

Alternative Medicine. Article ID 890361. DOI:10.1155/2012/890361

Z.A. Zakaria, M.H.M. Sani, M.N.H. Abdullah, A. Zuraini, A. Abdul Kader, L.K. Teh

and M.Z. Salleh (2014). Antinociceptive Activity of Methanolic Extract of

Muntingia calabura Leaves: Further Elucidation of the Possible Mechanisms.

BMC Complementary and Alternative Medicine. 14: 63.

Z.A. Zakaria M.H.M Sani, A.A. Kadir, L.K. Teh, M.Z. Salleh, (2016). Antinociceptive

effect of semi-purified petroleum ether partition of Muntinia calabura leaves.

Sociedade Brasileira de Farmacognosia, doi: 10.1016/j.bjp.2015.12.007

Zainul Amiruddin Zakaria, Mohammed Hijaz Sani, Mohammed Fazli Mohammar,

Nurul Shulehaf Mansor, Zurina Shaameri, Teh Ley Kek et al. 2013.

Antinociceptive activity of a synthetic oxopyrrolidine-based compound,

ASH21374, and determination of its possible mechanisms. Can. J. Pharmacol.

91: 1143-1153

Mohd. Hijaz Mohd Sani, Muhammad Taher, Deny Susanti, Teh Ley Kek, Mohd. Zaki

Salleh, Zainul Amiruddin Zakaria. 2014. Mechanisms of α-Mangostin-induced

antinociception in a rodent model. Biological Research for Nursing. 17(1): 68-

77

Page 50: COPYRIGHTpsasir.upm.edu.my/id/eprint/66043/1/FPSK (p) 2016 6 IR.pdf · aktiviti antinosiseptif, penjelasan mekanisma tindakan dan mengenal pasti komponen bioaktif dari ekstrak daun

© COPYRIG

HT UPM