Top Banner
Oxidarea AG Oxidarea AG Oxidarea glicerolului Oxidarea glicerolului Sinteza corpilor Sinteza corpilor cetonici cetonici
39

oxidarea AG.ppt

Nov 24, 2015

Download

Documents

victorasauras
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Oxidarea AGOxidarea gliceroluluiSinteza corpilor cetonici

  • obiectiveleOxidarea acizilor grai: a) saturai cu numr par de atomi de carbon; b) nesaturai cu numr par de atomi de carbon; c) saturai cu numr impar de atomi de carbon; d) n peroxizomi. Reaciile pariale, enzimele, coenzimele, reglarea, randamentul energetic.Catabolismul triacilglicerolilor reaciile pariale, enzimele, reglarea.Oxidarea glicerolului reaciile pariale, enzimele, coenzimale, reglarea, randamentul energetic al oxidrii anaerobe i aerobe.Oxidarea fosfo-, sfingo- i glicolipidelor.Metabolismul corpilor cetonici. Cile biosintezei i utilizrii lor reaciile pariale, enzimele, coenzimele, reglarea. Rolul biologic al corpilor cetonici.

  • Oxidarea AG saturai cu numr par de atomi de carbon oxidarea AG (degradarea, scindarea, catabolizarea oxidativ a AG) moleculele de AG sufer un atac oxidativ n poziia , urmat de desprinderea unui fragment cu 2C (Acetil Co A)3 etape:Activarea AG (citoplasm) Transferul lui Acil CoA n mitocondriib oxidarea propriu zis (mitocondrii)

  • Activarea AG:R-COOH + ATP R-COO-AMP + PPi aciladenilatPPi 2 PiR-COO-AMP + HS-CoA R-CO~SCoA + AMP acil-CoASumar: R-COOH + ATP + HS-CoA R-CO~SCoA + AMP + PPiR-COOH + ATP + HS-CoA +H2O R-CO~SCoA + AMP + 2 PiE- acil Co A sintetazaActivatori: K; MgInhibitori: Na ; Li

  • Transferul lui Acil CoA n mitocondriiAcil CoA nu poate penetra membrana intern a MCEste transportat cu ajutorul carnitinei (-hidroxi--trimetilaminobutirat), ce se formeaz din Lyz i Met activ cu participarea vitaminei C, B6, NAD

  • Transferul lui Acil CoA n mitocondrii

  • b oxidarea propriu zis

    Localizat n MCrepetarea a 4 reacii:Dehidrogenarea lui acil Co A (FAD)hidratarea doua dehidrogenare (NAD)reacie tiolazicn rezultat - se formeaz acetil CoA i acil CoA cu doi atomi de carbon mai puin

  • Bilanul energeticStoichiometria unui ciclu de oxidare:CH3- (CH2)n-CH2 CH2-COSCoA +FAD+H2O+NAD+HSCoA Acil CoA (Cn-2) +FADH2+NADH+H+ Acetil CoAStoichiometria oxidrii a. palmitic (C16): n/2 -1 numrul de cicluri pn la oxidarea complet n numrul atomilor de C

  • Stoichiometria oxidrii a. palmitic16/2 -1 = 7 cicluri 7FADH2-------- 7 X 2=14ATP7NADH+H ----- 7X3=21 ATP8 CH3COSCoA--- 8X12= 96 ATPSumar: 131 mol de ATPDeoarece 2 legturi macroergice sunt irosite la activarea acidului beneficiul net este de 129

  • Oxidarea AG nesaturai-oxidarea AG nesaturai se desfoar normal pn n vecintatea legturii duble (cis configuraie)

    Dup trei cicluri normale de -oxidare se ajunge la un cis 3 enoil CoA.

    Sub aciunea izomerazei legtura dubl din cis 3 trece n trans- 2 se formeaz trans 2 enoil CoA, intermediar normal al -oxidrii.

    Exemplu: oxidarea acidului oleic (C18:19)CH3-(CH2)7-CH=CH-(CH2)7-COOH

  • Pentru AG polienici e necesar i o alt enzim epimeraza, care modific configuraia grupei OH la C3. Aceast E e rezultat din hidratarea legturii duble D-izomer-3 hidroxiacil CoA, ce nu poate fi substrat al enzimei de tipul L

  • Oxidarea AG cu numr inpar de atomi de CSe oxideaz n acelai mod ca AG saturai, dar n ultima etap se formeaz o molecul de propionil CoA i una de Acetil CoA.

  • Oxidarea AG cu numr inpar de atomi de CE- propionil CoA carboxilazaCo- vitamina H (biotin dependent)E- Metilmalonil-mutazaCo- vitamina B12Lipsa acestei E acidemie metilmalonic (n snge i urin apare acidul metilmalonic, micornd pH sngelui (administrat vitamina B12)

  • Oxidarea AG n peroxisomiCaracteristic AG C20-C26Produsul final este Acetil CoA, dar nu este asociat cu sinteza de ATP (acetil CoA trece n mitocondrii unde este oxidat la CO2 i H2O)Difer de oxidarea mitocondrial prin reacia de oxidare a acil-CoA la enoil-CoA (E- oxidaz)R-(CH2)n-COSCoA+O2 R-(CH2)-CH=CH-COSCoA + H2O2 ( sub aciunea catalazei 2H2O2 2H2O+O2)Amploarea acestui proces variaz n dependen de factorii nutriionali, hormonali, medicamentoi. Numrul peroxisomilor crete n diabet, inaniie, la administrarea unor medicamente (aspirina, preparate hipolemiante)Absena peroxisomilor- sindromul Zellweger: creterea AG cu catena lung i deces n primele luni de via

  • Oxidarea Predomin n esutul nervos (creier)Se formeaz hidroxiacizii grai superiori, proprii lipidelor SNC Necesit: NAD, Vitamina C, ATP, O2, Fe2+Nu intervine CoA i nu se formeaz ATPE- acid gras peroxidaza (necesit H2O2, ce rezult prin autooxidarea flavinenzimelor)Au loc concomitent 2 procese:eliminarea carboxilului sub form de CO2 oxidarea lui C la aldehidAldehida poate fi redus la alcool sau oxidat la acidul corespunztorNu are loc degradarea total a AG, deoarece E este activ numai la AG C13-C18.

  • Oxidarea Are loc n microsomiNecesit: O2, NADPH, citocromul P450E monooxigenaza hepaticAG se degradeaz n final prin beta oxidare

  • Metabolismul TGn plasm exist 2 fluxuri de TG:CM transport TG exogene de la intestin la esuturiVLDL transport TG endogene- de la ficat spre esuturi Mobilizarea TG din esutul adipos are loc n etape, pn la glicerol i AG, sub aciunea lipazelor (mono-; di- , triacilglicerollipaza).

  • Soarta AG i glicerolului:AG sunt transportai spre esuturi de albumina seric, unde:se supun oxidrii ( pentru a obine ATP) sau acetil-CoA (rezultat prin -oxidare) poate fi utilizat la sinteza Col, corpilor cetonici.Se activeaz i particip la sinteza TG, depozitate n esutul adiposDifuzeaz n plasm i circul sub form de AG liberi (sunt captai de esuturile periferice: muchii scheletici, miocard, rinichi, ficat)Eritrocitele i creierul nu pot utiliza AG ca surs de energieGlicerolul:Sinteza de TG i FLGluconeogenezOxideaz pn la CO2 i H2O

  • Oxidarea gliceroluluiE1 glicerolkinaza E2 glicerolfosfatDH

  • TrigliceridlipazaEnzima cheie a lipolizei - trigliceridlipaza adipocitar, cunoscut ca lipaza hormonsensibil.Enzima este convertibil prin fosforilare defosforilare. Forma fosforilat este activ. Catecolaminele (adrenalina, noradrenalina) snt factori majori lipolitici. Glucagonul are acela efect. Insulina, prostoglandina E snt factori antilipolitici, ei favorizeaz sinteza de TG n esutul adipos.

  • Sinteza corpilor cetonici(cetogeneza)Principala cale de metabolizare a acetil CoA includerea n ciclul Krebs (n condiiile n care scindarea lipidelor i a glucidelor este echilibrat)- lipidele ard n flacra glucidelorn lipsa glucidelor; inaniie, diabet - OA se utilizeaz pentru generarea Gl.n lipsa OA, Acetil Co A recurge la formarea corpilor cetonici: acetoacetatul, -hidrohibutiratul i acetonaSinteza lor are loc n ficat, dar se utilizeaz de esuturile perifericeAu rol energetic (muchiul cardiac, stratul cortical al rinichilor)

  • Utilizarea corpilor cetoniciAcetoacetatul 2 mol de acetil CoA, utilizate ulterior n ciclul Krebs (23 ATP)A doua cale de activare a acetoacetatului poate fi:Acetona: pn la propandiol (CH3-CHOH-CH2OH) , scindat la fragmente acetil i formilTransformat n piruvat (prin hidroxilare dubl)

  • Cetonemie, cetonurieCetonemie- mrirea c% de corpi cetonici n sngeCetonurie apariia CC n urinDiete bogate n lipide, srace n glucide; inaniie, diabet, dereglri gastrointestinale la copii sau gravide; glucozurie renalEliminarea hidroxibutiratului i acetoacetatului din organism (fiind anioni la excreie) conduce la pierderea de cationi Na- rezult cetoacidozaPierderea H2O dehidratarea organismului

  • Control of fatty acid oxidation is exerted mainly at the step of fatty acid entry into mitochondria. Malonyl-CoA (which is also a precursor for fatty acid synthesis) inhibits Carnitine Palmitoyl Transferase I. Malonyl-CoA is produced from acetyl-CoA by the enzyme Acetyl-CoA Carboxylase.

    EMBED ChemDraw.Document.4.5

    acetyl-CoA

    malonyl-CoA

    _1033147502.cdx

  • Activated Kinase, leading to decreased malonyl-CoA. The decrease in malonyl-CoA concentration leads to increased activity of Carnitine Palmitoyl Transferase I. Increased fatty acid oxidation then generates acetyl-CoA, for entry into Krebs cycle with associated ATP production.AMP-Activated Kinase, a sensor of cellular energy levels, is allosterically activated by AMP, which is high in concentration when [ATP] is low.Acetyl-CoA Carboxylase is inhibited when phosphorylated by AMP-

    EMBED ChemDraw.Document.4.5

    acetyl-CoA

    malonyl-CoA

    ATP + HCO3

    ADP + Pi

    Acetyl-CoA Carboxylase

    (inhibited by AMP-Activated Kinase)

    _1155582881.cdx

  • The carbonyl O of the thioester substrate is hydrogen bonded to the 2'-OH of the ribitol moiety of FAD, giving the sugar alcohol a role in positioning the substrate and increasing acidity of the substrate a-proton.

    EMBED ChemDraw.Document.4.5

    EMBED ChemDraw.Document.4.5

    FAD

    FADH2

    2 e + 2 H+

    dimethylisoalloxazine

    _1001749585.cdx

    _1066634605.cdx

    _1066634638.cdx

    _1001749759.cdx

    _1001749458.cdx

  • Human genetic diseases have been identified that involve mutations in:the plasma membrane fatty acid transporter CD36Carnitine Palmitoyltransferases I & II (required for transfer of fatty acids into mitochondria) Acyl-CoA Dehydrogenases for various chain lengths of fatty acidsHydroxyacyl-CoA Dehydrogenases for medium & short chain length fatty acidsMedium Chain b-Ketothiolasethe trifunctional protein complexElectron Transfer Flavoprotein (ETF).

  • Human genetic diseases:Symptoms vary depending on the specific genetic defect but may include:hypoglycemia and failure to increase ketone body production during fastingfatty degeneration of the liverheart and/or skeletal muscle defectsmaternal complications of pregnancysudden infant death (SIDS). Hereditary deficiency of Medium Chain Acyl-CoA Dehydrogenase (MCAD), the most common genetic disease relating to fatty acid catabolism, has been linked to SIDS.

  • The reactions presented accomplish catabolism of a fatty acid with an even number of C atoms & no double bonds. Additional enzymes deal with catabolism of fatty acids with an odd number of C atoms or with double bonds.The final round of b-oxidation of a fatty acid with an odd number of C atoms yields acetyl-CoA & propionyl-CoA. Propionyl-CoA is converted to the Krebs cycle intermediate succinyl-CoA, by a pathway involving vitamin B12 (to be presented later).

  • Most double bonds of naturally occurring fatty acids have the cis configuration. As C atoms are removed two at a time, a double bond may end up in the wrong position or wrong configuration to be the correct substrate for Enoyl-CoA Hydratase. The reactions that allow unsaturated fatty acids to be fully catabolized by the b-oxidation pathway are summarized in the textbook.

  • This impedes entry of acetyl-CoA into Krebs cycle. Acetyl-CoA in liver mitochondria is converted then to ketone bodies, acetoacetate & b-hydroxybutyrate. During fasting or carbohydrate starvation, oxaloacetate is depleted in liver due to gluconeogenesis.

    Glucose-6-phosphatase

    glucose-6-P glucose

    Gluconeogenesis Glycolysis

    pyruvate

    fatty acids

    acetyl CoA ketone bodies

    cholesterol

    oxaloacetate citrate

    Krebs Cycle