Top Banner
Overview of chemical stimulations Overview of chemical stimulations for EGS and non EGS reservoirs for EGS and non EGS reservoirs François-D. VUATAZ 1 , Bertrand FRITZ 2 and Laurent ANDRE 1 ENGINE Launching Conference BRGM - Orléans, February 14 th , 2006 Centre for Geothermal Research (1) Neuchâtel - Switzerland Centre de Géochimie de la Surface (2) Strasbourg - France
18

Overview of chemical stimulations for EGS and non EGS reservoirs

Jan 28, 2016

Download

Documents

Kaspar

Centre for Geothermal Research (1) Neuchâtel - Switzerland. Centre de Géochimie de la Surface (2) Strasbourg - France. Overview of chemical stimulations for EGS and non EGS reservoirs. François-D. VUATAZ 1 , Bertrand FRITZ 2 and Laurent ANDRE 1. - PowerPoint PPT Presentation
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Overview of chemical stimulations  for EGS and non EGS reservoirs

Overview of chemical stimulations Overview of chemical stimulations for EGS and non EGS reservoirsfor EGS and non EGS reservoirs

François-D. VUATAZ 1,

Bertrand FRITZ 2

and Laurent ANDRE 1

ENGINE Launching Conference BRGM - Orléans, February 14th, 2006

Centre for Geothermal Research (1)

Neuchâtel - Switzerland

Centre de Géochimie de la Surface (2)

Strasbourg - France

Page 2: Overview of chemical stimulations  for EGS and non EGS reservoirs

Acid treatments of reservoirsAcid treatments of reservoirs Methodology Methodology Different types of acidizing processesDifferent types of acidizing processes

Chemical compoundsChemical compounds Short inventory of reactive agentsShort inventory of reactive agents Mostly used compounds and their propertiesMostly used compounds and their properties

Examples of geothermal reservoir acidificationExamples of geothermal reservoir acidification AcidificationAcidification of high temperature geothermal wellsof high temperature geothermal wells Chemical stimulation of EGS reservoirsChemical stimulation of EGS reservoirs The case of Soultz The case of Soultz

Plan of the presentationPlan of the presentation

Page 3: Overview of chemical stimulations  for EGS and non EGS reservoirs

Acid treatment of reservoirs Acid treatment of reservoirs

Technology mainly developed and applied for the development of oil reservoirs.

Technology frequently applied for the cleaning and the stimulation of high temperature geothermal reservoirs.

Acidizing operation, 1932

AimsEnhancement of well productivity;

Reduction of skin factor by removing near-wellbore damage;

Dissolution of scaling deposits in fractures.

Page 4: Overview of chemical stimulations  for EGS and non EGS reservoirs

Matrix and fracture acidizing Matrix and fracture acidizing

Technology overview

Matrix acidizing Fracture acidizing

Performed below fracturing rate and pressure

Performed above fracturing rate and pressure

Acid reacts with minerals present in existing pores

and natural fractures

Etching of sealed fractures providing well stimulation, not just damage removal

Page 5: Overview of chemical stimulations  for EGS and non EGS reservoirs

Matrix acidizing process (1)Matrix acidizing process (1)

This technology is normally used for the removal of skin damage associated with work-over, well killing or fluids injection as well as to increase formation permeability in undamaged wells.

Followed protocol Adequate preflush with hydrochloric acid (HCl) to dissolve associated

carbonates

Calcite : CaCO3 + HCl Ca2+ + Cl- + HCO3-

Dolomite : CaMg(CO3)2 + 2 HCl Ca2+ + Mg2+ + 2 Cl- + 2 HCO3-

Mainflush with a correct HCl-HF mixture formulation

Overflush with weak HCl or freshwater.

Acid concentrations and amounts Acid concentrations vary from 6 to 12 % for HCl and from 0.5 to 3 % for HF.

Acid amounts vary from 200 L/m of open hole section for wellbore cleanouts to >2000 L/m for extended matrix acidizing.

Page 6: Overview of chemical stimulations  for EGS and non EGS reservoirs

Role played by HCl during preflushRole played by HCl during preflushRapid dissolution reaction with carbonates rocks.

Avoids further reaction of carbonates with HF in the next stage (no precipitation of calcium fluoride CaF2).

Matrix acididizing process (2)Matrix acididizing process (2)

Role played by HCl-HF mud acid during mainflushRole played by HCl-HF mud acid during mainflushReaction with associated minerals of sandstones (clays, feldspars and micas), rather than with quartz.

Reactions of HF with clays or feldspars are 100 to 200 times faster than the one with quartz.

Use of HCl allows to keep a low pH and prevents precipitation of HF reaction products.

Disadvantages of this methodAcids dissolve the rock when reaching the grain surface, creating new pathways and/or wormholes (no connectivity).

Si and Al have a strong affinity with F and silicium or aluminum complexes (SiF6

2-, AlF2+, AlF2+, AlF3, AlF4

-). If they precipitate, the formation can be damaged by plugging.

Page 7: Overview of chemical stimulations  for EGS and non EGS reservoirs

Fracture acidizingFracture acidizing

Also called acid fraccing, two main techniques could be used:

The fluid-loss control contains the acid in natural or newly opened fractures (use of packers).

A viscous fluid is injected at a rate higher than the reservoir matrix will accept leading to cracking of the rock. Continued fluid injection increases the fracture’s length and width and injected HCl acid reacts all along the fracture to create a flow channel that extends deep into the formation.

The key to success is the penetration of reactive acid along the fracture.

The treatment volumes for fracture acidizing are much larger than for matrix acidizing treatment, being as high as 12 000 -25 000 L/m of open hole.

Page 8: Overview of chemical stimulations  for EGS and non EGS reservoirs

Chemical compoundsChemical compounds

Reactive agents for carbonates and silicatesHydrochloric acid (HCl) and hydrochloric-hydrofluoric (HCl-HF) mud acid

Acetic acid (CH3COOH) and chloroacetic acid (ClCH2COOH)

Formic acid (HCOOH)

Sulfamic acid (H2NSO3H)

Chelatants (EDTA)

Reactive agents for quartzSodium carbonate (Na2CO3).

AdditivesCorrosion inhibitor to protect casings

Anti-sludge agents

Iron chelating agents

Retardants to prolong the effect of the reactive agent further in the fractures

Different solvents according to the treated formation.

Page 9: Overview of chemical stimulations  for EGS and non EGS reservoirs

Strong acidsStrong acids

DisadvantagesCorrosion risks of the casing (to be evaluated); it can be strongly limited by the use of appropriate inhibitor, or by injection through a coil tubing.

Precipitation risks of insoluble compounds formed between the fluoride from HF and the cations from the brine (mitigated by the use of HCl).

High reactivity prevents a deep penetration into the formation. This drawback can be limited by retardants.

Solution of inhibited HCl or HCl-HF mud

Chemical formulation of mud acid depends on the rock composition

Dilute mud acid: HCl < 7.5 % and HF < 1.5 %

Regular mud acid: 7.5 % < HCl < 12 % and 1.5 % < HF < 3 %

Super mud acid: 12 % < HCl < 16 % and 3 % < HF < 6 %

Corrosion inhibitor (MEXEL, …)

Role and advantages Reaction with the carbonates and siliceous minerals;

Rapid reaction rates.

Page 10: Overview of chemical stimulations  for EGS and non EGS reservoirs

Weak acidsWeak acids

Mixture containing organic acid and HF

DisadvantagesCorrosion risks on the casing (to be evaluated); risks can be strongly limited by the use of appropriate inhibitor, or by injection through a coil tubing.

Role and advantagesReaction with the carbonates and siliceous minerals;

Dissolving capacity 25 % higher than HCl;

pH higher than for strong acids, limiting the corrosion risks and the amounts of corrosion inhibitor;

Reaction rate slower than for HCl, allowing a better penetration into the formation.

Chemical formulation 9 % formic acid (or 10 % acetic acid)

Corrosion inhibitor (MEXEL, …)

Page 11: Overview of chemical stimulations  for EGS and non EGS reservoirs

Chelating agentsChelating agents

These solutions are used as formation cleanup and for stimulating oil and gas wells; especially in formations that may be damaged by strong acids.

DisadvantagesCorrosion risks are more limited than with strong or weak acids.Environmental problems in case of fluid discharge.

Role and advantagesActing as a solvent, increasing the water-wetting properties and dissolving (entirely or partially) minerals containing Fe, Ca, Mg and Al;

Dissolving capacity 50 % higher than HCl;

pH higher than HCl, limiting corrosion risks and amounts of corrosion inhibitor;

Reaction rate slower than for HCl allowing a better penetration into the formation.

Chemical formulation EDTA (Ethylenediaminetetraacetic acid), HEDTA (Hydroxyethylenediaminetriacetic acid), HEIDA (Hydroxyethyliminodiacetic acid)

HCl

Corrosion inhibitor (MEXEL, …)

Page 12: Overview of chemical stimulations  for EGS and non EGS reservoirs

Acidification of high temperature geothermal wellsAcidification of high temperature geothermal wells

Geothermal Fields Number of treated wells

Injectivity Index

(kg/s/bar)

Improvement factor

Bacman (Philippines) 20.68 3.01 4.4

0.99 1.4 1.4

Leyte (Philippines) 3

3.01 5.84 1.9

0.68 1.77 2.6

1.52 10.8 7.1

Tiwi (Philippines) 1 2.52 11.34 4.5

Mindanao (Philippines) 1 12.4 21.5 1.7

Salak (Indonesia) 1 4.7 12.1 2.6

Berlín (El Salvador) 5

1.6 7.6 4.8

1.4 8.6 6.1

0.2 1.98 9.9

0.9 3.4 3.8

1.65 4.67 2.8

Beowawe (USA) 1 – 2.2

Coso (USA) 30 24 wells successful

Results of HCl-HF treatments for scaling removal in geothermal wells

Page 13: Overview of chemical stimulations  for EGS and non EGS reservoirs

Chemical stimulation of EGS reservoirsChemical stimulation of EGS reservoirs

Attempts to increase the reservoir connectivity

Fjällbacka (Sweden) The granitic reservoir contains abundant fractures and minor fractures zones which showed an evidence of being hydraulically conductive and which were filled with calcite, chlorite and clay minerals.

2 m3 of HCl-HF acid were injected in Fjb3 to leach fracture filling. Qualitatively, the results showed the efficiency of acid injection in returning rock particles.

Fenton Hill, Los Alamos Scientific Laboratory (USA) In November 1976, an attempt was carried out to reduce the impedance of the existing system by a chemical leaching treatment. The base Na2CO3 was used to dissolve quartz from the formation.

190 m3 of 1 N Na2CO3 solution were injected. A considerable amount of quartz (about 1000 kg) was dissolved and removed from the granitic reservoir but no reduction impedance resulted.

Page 14: Overview of chemical stimulations  for EGS and non EGS reservoirs

23/01/03: injection of HCl acid solution at a concentration of 1.8 g.L-1 and a flow of 30 L.s-1.

12/02/03: injections of HCl acid solution at concentrations of 1.8 g.L-1 and 0.9 g.L-1 for flows about 15 and 30 L.s-1, respectively.

During this test, 1.5 tons of HCl were injected.

Acidification tests at Soultz: GPK2 wellAcidification tests at Soultz: GPK2 well

(From Gérard et al., 2005)

Impact on wellhead pressure drop : probably due to dissolution in the vicinity of the well.

Estimation of the increase of GPK2 injectivity due to acidification :

from 0.3 to 0.5 L.s-1.bar-1

Page 15: Overview of chemical stimulations  for EGS and non EGS reservoirs

June 2003 : Acidification run during a circulation test between the injector GPK3 and the producer GPK2. 950 m3 of an acid solution at a concentration of about 3.2 g.L-1 injected at a flow of 21.3 L.s-1.During this test, 3 tons of HCl were injected.

Acidification tests at Soultz:Acidification tests at Soultz: GPK3 wellGPK3 well

(From Gérard et al., 2005)

Drop of the wellhead pressure of GPK3 : possibly due to effect of acid on the minerals.

Difficult to estimate the real increase of GPK3 injectivity : no water injection test was performed in similar conditions before and after acidification.

Page 16: Overview of chemical stimulations  for EGS and non EGS reservoirs

23/02/05: 5200 m3 of HCl acid solution at a concentration of about 2 g.L-1 and a flow of 27 L.s-1.During this test, 11 tons of HCl were injected.

Acidification tests at Soultz: GPK4 wellAcidification tests at Soultz: GPK4 well

40% reduction of the wellhead pressure due to the acidification treatment40% reduction of the wellhead pressure due to the acidification treatment(under evaluation).(under evaluation).Decrease of the reservoir impedance by a factor 2 (0.2 to 0.4 L.sDecrease of the reservoir impedance by a factor 2 (0.2 to 0.4 L.s -1-1.bar.bar-1-1).).Due to a leak in the casing, there are still doubts on the effect of acid in GPK4. Due to a leak in the casing, there are still doubts on the effect of acid in GPK4.

Water injection test performed Water injection test performed beforebefore acidification (February 22, 2005)acidification (February 22, 2005)

Water injection test performed Water injection test performed afterafter acidification (March 13, 2005)acidification (March 13, 2005)

P 40 bars

Page 17: Overview of chemical stimulations  for EGS and non EGS reservoirs

Preliminary conclusions on the chemical Preliminary conclusions on the chemical stimulationstimulation

Long and successful experience acquired from the oil industry Large number of methods and experiences set up for oil and gas wells. Effect of acid stimulation is usually limited to the first metres around the wells.

Procedures are partially adapted to geothermal reservoirs.

EGS reservoirs Old projects: only a few chemical stimulations were realised (Fenton Hill, Fjällbacka). The Soultz EGS has probably the best experience on soft HCl stimulation so far. Modelling the effect of acid stimulation for the Soultz reservoir is under progress. New experiments are planned to stimulate GPK4 well and to connect it to major

fractures.

High temperature geothermal fields Numerous wells in geothermal fields have been chemically stimulated, mostly by

strong acids (Philippines, El Salvador, USA, Italy). Mineral deposits on casings and around the well are treated successfully several

times per year at Heber geothermal field, California. Corrosion damage can be mostly avoided by using adequate inhibitors.

Page 18: Overview of chemical stimulations  for EGS and non EGS reservoirs