Top Banner
Orthogonal rational functions on the real half line with poles in [-∞, 0] Adhemar Bultheel, Pablo Gonz´ alez-Vera, Erik Hendriksen, Olav Nj˚ astad August 2003 CORFU, Røros, Norway, August, 2003
17

Orthogonal rational functions on the real half line with poles in

May 13, 2023

Download

Documents

Sophie Dufays
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Orthogonal rational functions on the real half line with poles in

Orthogonal rational functions on the real halfline with poles in [−∞, 0]

Adhemar Bultheel, Pablo Gonzalez-Vera, Erik Hendriksen, Olav Njastad

August 2003

CORFU, Røros, Norway, August, 2003

Page 2: Orthogonal rational functions on the real half line with poles in

1/16

Rational functions

Orthogonal wrt 〈f, g〉 =∫

f(x)g(x)dµ(x), supp(µ) ⊂ R = R ∪ ∞.

Rational function spaces, given ζk∞k=0 ⊂ R, (ζ0 = ∞):

Ln =

πn(x)Dn(x)

: πn ∈ Πn;Dn = r0r1 · · · rn

, rk =

ζk − z, ζk 6= ∞1, ζk = ∞

ζk moments PadeLn = Λ0,n ∞ at 0 at ∞Ln = Λ−n,0 0 at ∞ at 0

Ln = Λ−p,n−p 0,∞ strong 2 point

Ln ∈ R rational multipoint

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 3: Orthogonal rational functions on the real half line with poles in

2/16

Unique OFS

Assume µ is real ⇒ OFS real.

Nesting: Ln−1 ⊂ Ln, Ln−1 ⊥ ϕn ∈ Ln \ Ln−1

Note: ϕn = Pn/Dn, Pn(ζn) 6= 0 (l.c. if ζn = ∞)1

Regular: Pn(ζn−1) 6= 0

Sign normalization: Pn(ζn−1)Pn−1(ζn−1) > 0.

1P (x) = µnxn + µn−1xn−1 + · · ·+ µ0 then P (∞) = µn.

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 4: Orthogonal rational functions on the real half line with poles in

3/16

Recurrence and Christoffel-DarbouxRecurrence regular OFS

ϕ−1 = 0, ϕ0 = 1, ϕn(x) = bn(x)ϕn−1(x) + an(x)ϕn−2(x), n ≥ 2

bn(x) =Unxγn−1 + Vnrn−1(x)

rn(x), an(x) =

Wnrn−2(x)rn(x)

γn−1 =

1, ζn−1 = ∞,0, ζn−1 6= ∞,

Un > 0, n ≥ 1Wn = − Un

Un−1< 0, n ≥ 2

Christoffel-Darboux regular OFS and Pn−2(ζn−1) 6= 0, fn = rnϕn

fn(x)fn−1(y)− fn(y)fn−1(x) = Un(x− y)∑n−1

k=0 ϕk(x)ϕn(y), x 6= y

fn(x)f ′n−1(x)− f ′n(x)fn−1(x) = −Un

∑n−1k=0 ϕ2

k(x), x = y

Corr.: ϕn(x) = 0 ⇒ ϕn+1(x)ϕn−1(x)ϕ′n(x) 6= 0

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 5: Orthogonal rational functions on the real half line with poles in

4/16

Quadrature

I(f) =∫

Rf(x)dµ(x) ≈ In(f) =

n∑k=1

Hkf(xk) =∫

RRn(x)dµ(x)

Rn ∈ Ln−1 interpolates in xknk=1 ⊂ supp(µ) \ ζkn

k=1.Hence exact in Ln−1.

Thm.: In(f) exact in larger space Ln · Lr ⇔〈Nn, g〉 = 0, ∀g ∈ Lr, Nn(x) =

∏ni=1(x− xi)/Dn(x).

Corr.: Max domain of validity Ln · Ln−1 if xknk=1 zeros of ϕn(x).

The weights are Hj = λj = 1/∑n−1

k=0 ϕ2k(xj) > 0.

This is Rational Gauss formula: In(f) =∑n

k=1 λkf(xk) =∫

R f(x)dµn(x)

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 6: Orthogonal rational functions on the real half line with poles in

5/16

Eigenvalue problem

zγnϕn(z) = dn−1rn−1(z)ϕn−1(z) + cnrn(z)ϕn(z) + dnrn+1(z)ϕn+1(z)

with cn = −Vn+1/Un+1 and dn = 1/Un+1.

Jacobi matrix:

J = tridiag

d0, d1, . . .c0, c1, . . .

d0, d1, . . .

,R = diag(r0(z), r1(z), . . .),L = diag(zγ0, zγ1, . . .), Φ =

ϕ0

ϕ1...

Then LΦ = JRΦ. Set En = [0, . . . , 0, 1]T then taking finite sections:

(JnRn − Ln)Φn = −dnrn+1(z)ϕn+1(z)En

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 7: Orthogonal rational functions on the real half line with poles in

6/16

Take z = xk, a zero of ϕn+1(z), then

[JnRn(xk)− Ln(xk)]Φn(xk) = 0

If I∞ = diag(γ0, γ1, . . . , γn) and I0 = In − I∞ thenLn = xkI∞+I0 and Rn = I∞+diag(ζj−xk)I0. Set Zn = diag(τ0, . . . , τn)with τk = 1 if ζk = ∞, and τk = ζk otherwise. Then EVP becomes

[JnZn − I0]− λ[JnI0 + I∞]Φn(λ) = 0

All ζj = ∞: det[Jn − λIn] = 0All ζj finite: det[(JnZn − In)− λJn] = 0 or det[(Zn − J−1

n )− λIn] = 0

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 8: Orthogonal rational functions on the real half line with poles in

7/16

Special cases

case supp(µ) ζn∞n=1

general ⊂ R ⊂ RStieltjes ⊂ [0,∞) ⊂ [−∞, 0]balanced Stieltjes ⊂ [0,∞) ζn = βn ∪ αn,

−∞ ≤ βk < αl ≤ 0ζ2m = βm, ζ2m+1 = αm+1

separated balanced Stieltjes ⊂ [0,∞) βk ≤ β < α ≤ αl

monotone separated bal. Stieltjes ⊂ [0,∞) βk+1 ≤ βk, αk ≤ αk+1

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 9: Orthogonal rational functions on the real half line with poles in

8/16

Stieltjes situation

StieltjesThm.: ϕn(x) has n simple zeros in (−∞, 0).Zeros of ϕn and ϕn−1 interlace.

balanced Stieltjes: ζ2m = βm, ζ2m+1 = αm+1

ϕn(x) =

Unxγn−1+Vnrn−1(x)︷ ︸︸ ︷Qnrn−2(x) + Rnrn−1(x)

rn(x)ϕn−1(x) + Wn

rn−2(x)rn(x)

ϕn−2(x)

ζ2m−2 = βm−1 6= ∞:

Q2m < 0Q2m−1 > 0

R2m > 0R2m−1 < 0

ζ2m−2 = βm−1 = ∞:

Q2m > 0Q2m−1 > 0

R2m < 0R2m−1 < 0

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 10: Orthogonal rational functions on the real half line with poles in

9/16

Associated functions

σn(x) :=∫ ∞

0

ϕn(t)− ϕn(x)t− x

dµ(t), n = 0, 1, . . .

Stieltjes

σn(x) =Unxγn−1 + Vnrn−1(x)

rn(x)︸ ︷︷ ︸bn(x)

σn−1(x) + Wnrn−2(x)rn(x)︸ ︷︷ ︸an(x)

σn−2(x)

σ−1 = −1,σ0 = 0,

γn−1(x) =

1, ζn−1 = ∞,0, ζn−1 6= ∞,

W1 = −U1 < 0.

balanced Stieltjes : rewrite bn(x) as

bn(x) =Qnrn−2(x) + Rnrn−1(x)

rn(x)=

δn(x)rn(x)

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 11: Orthogonal rational functions on the real half line with poles in

10/16

Thus[σn(x) σn−1(x)ϕn(x) ϕn−1(x)

]=

[σn−1(x) σn−2(x)ϕn−1(x) ϕn−2(x)

] [bn(x) 1an(x) 0

],

[σ0(x) σ−1(x)ϕ0(x) ϕ−1(x)

]=

[0 −11 0

]Is a CF with convergents: σn(x)/ϕn(x).Do they converge anywhere? and if they do to what?

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 12: Orthogonal rational functions on the real half line with poles in

11/16

Monotonicityseparated balanced Stieltjes :

ζ2m−2 = βm−1 6= ∞:

δ2m(t) > 0, t ∈ (β, α)δ2m−1(t) > 0, t ∈ (β, α)

ζ2m−2 = βm−1 = ∞:

δ2m(t) > 0, t ∈ (β, α)δ2m−1(t) < 0, t ∈ (β, α)

Thm.: For t ∈ (β, α):σ2m(t)ϕ2m(t)

monotonically decreasing

σ2m+1(t)ϕ2m+1(t)

monotonically increasing

Hence (normal families) there is F0 and F∞ analytic outside [0,∞) suchthat there

limm→∞

σ2m(z)ϕ2m(z)

= F∞(z), limm→∞

σ2m+1(z)ϕ2m+1(z)

= F0(z).

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 13: Orthogonal rational functions on the real half line with poles in

12/16

Moments

Let Ωn∞n=0 be a basis for L.Consider a linear functional M defined on L · LDefine moments ck,l = M [ΩkΩl], k, l = 0, 1, . . .

A positive measure µ on [0,∞) solves the (rational) Stieltjes momentproblem on L · L if ck,l =

∫∞0

Ωk(x)Ωl(x)dµ(x), k, l = 0, 1, 2, . . . (1)

A positive measure µ on [0,∞) solves the (rational) Stieltjes momentproblem on L if ck,0 =

∫∞0

Ωk(x)dµ(x), k = 0, 1, . . . (2)

Suppose the previous µ is a solution of (1).Stieltjes function:

S(z, µ) =∫ ∞

0

dµ(t)z − t

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 14: Orthogonal rational functions on the real half line with poles in

13/16

Approximation of Stieltjes transform

Thm.: µn rational Gauss quadrature. µ solves MP in L · L. ThenS(z, µn) = σn(z)/ϕn(z), and

σn(z)ϕn(z)

− S(z, µ) =1

rn(z)ϕn(z)2

∫ ∞

0

ϕn(t)2rn(t)t− z

dµ(t)

separated balanced Stieltjes:

σ2m+1(t)ϕ2m+1(t)︸ ︷︷ ︸→F0(t)

< S(t, µ) <σ2m(t)ϕ2m(t)︸ ︷︷ ︸→F∞(t)

, t ∈ (β, α)

F0(z) ↔ µ(0), F∞(z) ↔ µ(∞) solutions of MP in L · L.F0 = F∞ ↔ µ(0) = µ(∞) then unique solution of of MP in L · L.

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 15: Orthogonal rational functions on the real half line with poles in

14/16

Canonical basis

separated balanced Stieltjes: basis for Ln:

Ω0 = 1,

Ω2m(z) =

r1(z)r3(z) · · · r2m−1(z)( zζ2− 1)( z

ζ4− 1) · · · ( z

ζ2m− 1)

Ω2m+1(z) =( zζ2− 1)( z

ζ4− 1) · · · ( z

ζ2m− 1)

r1(z)r3(z) · · · r2m+1(z)

ϕn = vnΩn+· · ·

determinate MP?:

σn(z)ϕn(z)

− σn−2(z)ϕn−2(z)

=∆n(z)

ϕn(z)ϕn−2(z).

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 16: Orthogonal rational functions on the real half line with poles in

15/16

Idea of the proof

σn(z)ϕn(z)

− σn−2(z)ϕn−2(z)

=∆n(z)

ϕn(z)ϕn−2(z).

Bound |∆n(t)| from below on (β, α)

Then since∑

[σnϕn− σn−2

ϕn−2] cvg, hence

∑|ϕn(t)ϕn−2(t)| → ∞

Thus∑|ϕ2m(t)|2 →∞ or

∑|ϕ2m+1(t)|2 →∞

Since σn(z)ϕn(z) − S(z, µ) = 1

ϕn(z)

∫∞0

ϕn(t)t−z dµ(t) for any solution µ

The Fourier coefs, of 1t−z are [σn(x)

ϕn(x) − S(x, µ)]ϕn(x)

Bessel:∑

[σn(x)ϕn(x) − S(x, µ)]2ϕn(x)2 < ∞

Since∑|ϕn(x)|2 = ∞,

∑[σn(x)ϕn(x) − S(x, µ)] = 0

Thus all solutions µ have the same Stieltjes transform on (β, α)

CORFU, Røros, Norway, August, 2003 A. Bultheel

Page 17: Orthogonal rational functions on the real half line with poles in

16/16

Determinate MP

monotone balanced separated Stieltjes:

|∆n(t)| ≥ |RnUn−1||rn(t)rn−2(t)|

≥ 1K

vnvn−2

t ∈ (β, α), n ≥ 2

Thm.: limn→∞ |vn/vn−2|1/2 = ∞ ⇒ determinate MP in L · L

Thm.: cn,n =∫∞0

Ω2n(t)dµ(t) and

∑∞n=0(cn,n)−1/2n = ∞ ⇒ determinate

MP in L · L

Strong Stieltjes moment problem:αk = 0,βk = −∞ ⇒

Ω2m(z) = zm,Ω2m+1(z) = z−(m+1),

cn =∫∞0

tndµ(t), n ∈ Z.

Thm.: Strong Stieltjes MP is determinate if∑∞m=1(c−2m)−

14m−2 = ∞ or

∑∞m=0(c2m)−

14m = ∞

CORFU, Røros, Norway, August, 2003 A. Bultheel