Top Banner
Optimizing Formulation Development: Understanding Viscosityโ€™s Role in the Formulation Process and How to Create a Measurement Plan Zachary Imam Stacey Elliott 20 January 2021
19

Optimizing Formulation Development: Understanding ...

Feb 15, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optimizing Formulation Development: Understanding ...

Optimizing Formulation Development: Understanding Viscosityโ€™s Role in the Formulation Process and How to Create a Measurement Plan

Zachary Imam

Stacey Elliott

20 January 2021

Page 2: Optimizing Formulation Development: Understanding ...

Formulation โ€“excipient,

temperature

Interactions &Microstructure

Viscosity

2L

h

แˆถ๐›พ

ho

แˆถ๐›พ๐‘

Viscosityโ€™s Role in Formulation Development

hrel

๐‘‡Tm

D

Na+

Cl-

Page 3: Optimizing Formulation Development: Understanding ...

Viscosity Review โ€“ Resistance to FlowSteady Shear

๐œ‚ โ‰ก๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘ ๐‘ก๐‘Ÿ๐‘’๐‘ ๐‘ 

๐‘ โ„Ž๐‘’๐‘Ž๐‘Ÿ ๐‘Ÿ๐‘Ž๐‘ก๐‘’=๐œŽ

แˆถ๐›พ

๐œŽ = ๐œ‚ ๐‘‡, แˆถ๐›พ, ๐‘, ๐‘ก แˆถ๐›พ

โ€ข Velocity gradient perpendicular to flow

โ€ข Shearing motion โ€“ adjacent fluid elements forced to slide past each other

โ€ข Shear viscosity ยบ internal or molecular friction

โ€ข Reflects molecular level behavior

โ€ข Size, shape, interactions

โ€ข Microstructure

x

y

๐‘ข๐‘ฅ ๐‘ฆ = 0 = 0

๐‘ข๐‘ฅ ๐‘ฆ = โ„Ž = ๐‘ข๐‘๐‘™๐‘Ž๐‘ก๐‘’

h

แˆถ๐›พ =๐œ•๐‘ข๐‘ฅ๐œ•๐‘ฆ

=๐‘ข๐‘๐‘™๐‘Ž๐‘ก๐‘’โ„Ž

๐น๐‘œ๐‘Ÿ๐‘๐‘’

๐ด๐‘Ÿ๐‘’๐‘Ž

๐œŽ

Page 4: Optimizing Formulation Development: Understanding ...

Viscosity โ€“ how can it help you?

1. Practical application โ€“ injectability, processing, blinking, topical, ageing, aggregationโ€ฆโ€ฆโ€ฆโ€ฆ

โ€ข Predict performance & processability

2. Investigative tool โ€“ reflects microscopic behaviorโ€ข Individual molecules โ€“ size, shape

โ€ข Pair interaction

โ€ข Complex structure formation

โ€ข Impact of solution environment on all above

โ€ข Intelligent formulation โ€“ work smart, not hard!

Formulation โ€“excipient,

temperature

Interactions &Microstructure

Viscosity

Page 5: Optimizing Formulation Development: Understanding ...

VROC - Viscometer/Rheometer-on-a-Chip

Microfluidics and MEMS (Micro-Electro-Mechanical Systems)

MEMS Sensors โ€“ Silicon (Si) Pressure Sensor Array

Microfluidics โ€“ Precision Glass Micro-Channel

โ€œrectangular-slit methodโ€ (USP, chapter 914)

๐œ ~๐œ•๐‘ƒ

๐œ•๐‘ฅ

แˆถ๐›พ ~ ๐‘„

๐œ‚ =๐œ

แˆถ๐›พ

Control

Measure

Dynamic

Viscosity

10

20

30

40

50

60

70

80

90

2 4 6 8 10

Pre

ssu

re (

kP

a)

Sensor Position (mm)

๐œ•๐‘ƒ

๐œ•๐‘ฅ

Page 6: Optimizing Formulation Development: Understanding ...

How do I start a measurement plan?

Before you start anything ask: โ€œWhat do I want to learn about my sample?โ€โ€œWill this study be narrow and specific?โ€โ€œAm I performing a broad characterization study?โ€

โ€ข Performance under high shear or low shear?

โ€ข Performance at high or low temperature?

โ€ข Fluid Structure?

โ€ข Molecular Structure?

โ€ข Differentiation?

Knowing this information will help with generating a measurement plan and experimental design

vs

2L

Page 7: Optimizing Formulation Development: Understanding ...

1

10

100

10 100 1000 10000 100000

vis

co

sity

(c

P)

shear rate (sec-1)

0.50%

0.25%

0.125%

Performance at high and low shear rateโ€ข Not universal, but sample dependent

Xanthan Gum

MW = 1,000,000+

Possibly entangled polymer network

๐œผโˆž

๐œผ๐’~๐œผ แˆถ๐œธ โ†’ ๐Ÿ๐ŸŽโˆ’๐Ÿ’๐’”๐’†๐’„โˆ’๐Ÿ

30

32

34

36

38

40

42

44

100 1000 10000 100000

h(c

P)

shear rate (sec-1)

250 mg/mL BgG Phosphate buffer saline (PBS), pH7.4

250 mM Arg-HCl

w/o Arg-HCl

๐œผ๐’

Bovine Gamma Globulin (BgG)

MW = 150,000

Inherently attractive colloid

Page 8: Optimizing Formulation Development: Understanding ...

40

45

50

55

60

65

100 1000 10000 100000 1000000 10000000

h

แˆถ๐›พ

ho

แˆถ๐›พ๐‘ hโˆž

Viscosity vs. Shear Rate โ€“ Qualitative InterpretationLow shear plateau

โ€ข Restorative mechanism

โ€ข Near equilibrium

โ€ข Generates thermodynamic stress

High shear plateau

โ€ข Far from equilibrium

โ€ข Hydrodynamics dominate

โ€ข ๐œ‚๐‘œ โˆ’ ๐œ‚โˆž โ€“ degree of structure & thermodynamic forces

Critical shear rate

โ€ข Non-Newtonian onset

โ€ข Shear flow overcoming

๐œ‚โˆ’๐œ‚โˆž

๐œ‚๐‘œโˆ’๐œ‚โˆžโ‰ˆ

๐œ‚โˆ’๐œ‡

๐œ‚๐‘œโˆ’๐œ‡

Viscosity scaling

Page 9: Optimizing Formulation Development: Understanding ...

Non-Newtonian Viscosity250 mg/mL BgG (Bovine g-Globulin)

15

25

35

45

55

65

75

85

95

100 1000 10000 100000

h(c

P)

shear rate (sec-1)

30

32

34

36

38

40

42

44

100 1000 10000 100000

h(c

P)

shear rate (sec-1)

25ยฐC

Phosphate buffer, 150 mM NaCl, pH7.2 Phosphate buffer saline (PBS), pH7.4

10ยฐC

18ยฐC

25ยฐC

37ยฐC

250 mM Arg-HCl

w/o Arg-HCl25ยฐC

25C

h0 = 44 cP

h0 = 38 cP

h0 = 35 cP

Page 10: Optimizing Formulation Development: Understanding ...

Shear Rate ScalingPeclet Number

๐‘ƒ๐‘’ =๐œ๐ต๐œ๐‘†

=๐ฟ2 แˆถ๐›พ

๐ท๐‘ ๐‘œ =

6๐œ‹๐œ‚๐‘œ๐ฟ3 แˆถ๐›พ

๐‘˜๐‘‡

๐œ๐ต =๐ฟ2

๐ท๐‘ ๐‘œ

๐œ๐‘  =1

แˆถ๐›พ

๐ท๐‘ ๐‘œ =

๐‘˜๐‘‡

6๐œ‹๐œ‚๐‘œ๐ฟ

Peclet number โ€“ ratio of characteristic time scales

Brownian motion โ€“ restoring equilibrium structure

Shear flow โ€“ perturbing equilibrium state

Effective self

diffusion

Increasing time/length scale

Designate thinning onset to

๐‘ƒ๐‘’ แˆถ๐›พ๐‘ = 1 to estimate L

0.75

0.8

0.85

0.9

0.95

1

100 1000 10000 100000

(h-

m)/

(ho-m

)

0.85

0.9

0.95

1

100 1000 10000

(h-

m)/

(ho-m

)

shear rate (sec-1)

10ยฐC 18ยฐC

25ยฐC

37ยฐC

250 mM

Arg-HCl

w/o

?

Page 11: Optimizing Formulation Development: Understanding ...

Scaled Viscosity vs. Peclet Number Master Curve

rh~5 nm from [h]

Rg=5.3 nm monomer (*)

Rg=7.6 nm dimer (*)

โ€ข Temperature โ€“ no significant change in interactions & clustering

โ€ข Arginine (excipient)

โ€ข Decreases L, consistent with reduced cluster size

โ€ข Supports idea of reversible cluster formation increasing viscosity

T (ยฐC) ho (cP) L (nm)

10 91 10

18 54 9.8

25 35 9.8

37 18 9.9

2L

*S. Da Vela et al., Effective Interactions and Colloidal Stability of Bovine g-Globulin in Solution, J. Phys. Chem. B, 2017, 121, 5759-5769.

0.75

0.8

0.85

0.9

0.95

1

0.01 0.1 1 10(h

-m

)/(h

o-m

)๐‘ท๐’† =

๐Ÿ”๐…๐œผ๐’๐‘ณ๐Ÿ‘ แˆถ๐œธ

๐’Œ๐‘ปArg

(mM)ho (cP) L (nm)

0 44 9.1

250 38 8.1

temperature

excipient

= 25ยฐC

Page 12: Optimizing Formulation Development: Understanding ...

80

90

100

110

120

130

140

150

160

170

10 100 1000

vis

co

sity

(c

P)

shear rate (sec-1)

Sample Differentiation

Real Maple Syrup

Pancake Syrup(Xanthan Gum)

Mix (80/20)

โ€ข Initially explore broad range of shear ratesโ€ข Narrower range possible for QC analysis

1

10

100 1000 10000 100000

vis

co

sity

(c

P)

shear rate (sec-1)

Hydroxypropyl guar

Sodium hyaluronate

Page 13: Optimizing Formulation Development: Understanding ...

Revitalift Prism Maran

Sample Differentiationโ€ข Initially explore broad range of shear ratesโ€ข Narrower range possible for QC analysis

0

5

10

15

20

25

30

35

40

100 1000 10000 100000

Vis

co

sity

(c

P)

Shear Rate (sec-1)

0

2

4

6

8

10

12

14

100 1000 10000

Vis

co

sity

(c

P)

shear rate (sec-1)

Whole Milk Skim Milk Oat Beverage

Unsweet

Almond

Beverage

Almond

BeverageCoconut

Milk

Page 14: Optimizing Formulation Development: Understanding ...

Temperature Sensitive Polymeric Excipients

โ€ข Poloxamer (Lutrolรข)โ€ข Amphiphilic triblock copolymer

โ€ข Poly(propylene oxide) midblock more hydrophobic than poly(ethylene oxide)

โ€ข Form complex microstructures dependent on temperature and concentrationโ€ข Dependent on MW of each block (a,b)

โ€ข Reversible

โ€ข Applicationsโ€ข Rheology/viscosity modifies

โ€ข Solubilizers

โ€ข Sedimentation inhibitors

Increasing Concentration, Temperature

Page 15: Optimizing Formulation Development: Understanding ...

Poloxamer Solutions โ€“ Type & Concentration

โ€ข Not simple Arrhenius behavior โ€“indicates complex reversible microstructure

โ€ข Highly sensitive to concentration

โ€ข Dependent on Poloxamer type โ€“ MW & block ratio

โ€ข Detects phase boundaries โ€“ fluid-gel (15% P407, 30 โ€“ 45ยฐC)

Poloxamer a b MW a/b

188 80 27 7680 โ€“ 9510 3

407 101 56 9840 โ€“ 14600 1.8

10

30

50

70

90

110

130

150

15 20 25 30 35 40 45 50 55 60 65 70 75

rela

tiv

e v

isc

osi

ty

Temperature (ยฐC)

10

20

30

40

50

60

70

80

90

100

0 20 40 60

rela

tiv

e v

isc

osi

ty

Temperature (ยฐC)

P407 in DI H2O P188 in DI H2O

13%

24%

15%

22%

20%

14%

Page 16: Optimizing Formulation Development: Understanding ...

0

5

10

15

20

0 5 10 15 20

Sh

ea

r Str

ess

(P

a)

Time (s)

400 sec-1

Poloxamer Solutions โ€“ Yield Stress

โ€ข Can determine whether material is yielding

โ€ข We cannot calculate yield stress, but we can determine where we are in the materialโ€™s phase diagram

Poloxamer a b MW a/b

407 101 56 9840 โ€“ 14600 1.8

0

10

20

30

40

0 5 10 15 20

Sh

ea

r Str

ess

(P

a)

Time (s)

30ยฐC

0

50

100

150

200

0 20 40 60

Sh

ea

r Str

ess

(P

a)

Time (s)

P407 in DI H2O

40ยฐC 50ยฐC

400 sec-1

80 sec-1

300 sec-1

โ€ข Can probe different regions of phase diagram with different temperatures.

โ€ข At 40ยฐC material is still yielding at 80 and 300 sec-1

Page 17: Optimizing Formulation Development: Understanding ...

Poloxamer SolutionsCombine Temperature/Shear Rate Sweeps

โ€ข Rate sweeps at temperatures along profile (20, 25, 30, 45, 70 ยฐC)

โ€ข Transitions from Newtonian ยฎ Non-Newtonian ยฎ Newtonian

โ€ข Non-Newtonian profiles merge at high shear rates

10

20

30

40

50

60

70

15 20 25 30 35 40 45 50 55 60 65 70 75

rela

tiv

e v

isc

osi

ty

Temperature (ยฐC)

10

20

30

40

50

60

70

100 1000 10000 100000

rela

tiv

e v

isc

osi

ty

shear rate (sec-1)

20 ยฐC

70 ยฐC

45 ยฐC

30 ยฐC

25 ยฐC

14% (wt) P407 in DI H2O

Shear rate sweeps at specified

temperatures

Page 18: Optimizing Formulation Development: Understanding ...

Summary

โ€ข Rheological measurements are iterative

โ€ข Ask good questions at the beginning leads to good experiments later

โ€ข Let the data guide you

โ€ข Make educated guesses on what experiment to run and dive in

โ€ข Rheology is a broad field

โ€ข Applicable to many industries and applications

โ€ข Contact us with questions!

โ€ข Weโ€™re here to help you develop your techniques0

10

20

30

40

100 1000 10000 100000

Vis

cosi

ty (

cP)

Shear Rate (s-1)

10

60

110

15 20 25 30 35 40 45 50 55 60 65 70 75rela

tive

vis

cosi

ty

temperature (ยฐC)

Page 19: Optimizing Formulation Development: Understanding ...

Thank You!Dr. Zachary ImamResearch ScientistRheoSense, [email protected]+1 (925) 866-3801 ext. 1013

Grace BaekMarketing & Sales RheoSense, [email protected]+1 (925)-866-3801 ext. 1013

Dr. Stacey ElliottPrincipal ScientistRheoSense, [email protected]+1 (925) 866-3801 ext. 1013

Eden ReidSenior Marketing AssociateRheoSense, [email protected]+1 (925)-866-3801 ext. 1013