Top Banner
1 OPTIMIZING CENTRAL CHILLED WATER SYSTEMS 1 OPTIMIZING CENTRAL CHILLED WATER SYSTEMS Optimizing Central Chilled Water Systems Kent W. Peterson, PE, FASHRAE P2S Engineering, Inc. [email protected]
56

Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

Sep 02, 2019

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

1 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 1 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimizing Central Chilled Water Systems

Kent W. Peterson, PE, FASHRAE P2S Engineering, Inc. [email protected]  

Page 2: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

2 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 2 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 2

Learning Objectives

1.  Gain a better understanding of the operational dynamics of various load and equipment components in chilled water systems

2.  Understand opportunities to provide both functional and energy efficient operation of chilled water systems

3.  Develop a logical approach to the performance optimization of chilled water systems

Page 3: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

3 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 3 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Presentation Outline

•  Foundation of CHW Plant Operation

•  Hydronic System Design

•  Chiller Fundamentals

•  Optimizing Plant Performance

•  Building Interfaces

3

Page 4: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

4 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 4 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Sustainability Opportunities

•  Optimize energy use

•  Protect and conserve water

•  Effective use of natural resources

4

Page 5: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

5 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 5 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Foundation of Operation

•  Why look “outside the plant”? -  Understand how distribution system will operate -  Understand how CHW ∆T will be effected by

dynamics of the systems connected

Deliver CHW to all loads under various load conditions as efficiently as possible

5

Page 6: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

6 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 6 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Loads & Their Impact on Design

•  Overall plant capacity is determined by peak design load

•  Cooling load profile describes how the load varies over time is needed to design the plant to stage efficiently

•  Cooling load “diversity”

6

Page 7: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

7 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 7 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chilled Water Plant Efficiency

•  Operating kW/ton achievable in today’s plants (includes chillers, cooling towers and pumps)

•  0.4 - 0.7 Excellent •  0.7 - 0.85 Good •  >1.0 Needs Improvement

•  We should design plants to measure and provide performance metrics

7

Page 8: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

8 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 8 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Discussion on Hydronics

8

Page 9: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

9 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 9 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Purpose of Pumping Systems

Move enough water through the piping system at the minimum differential pressure

that will satisfy all connected loads

9

Page 10: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

10 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 10 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Hydronics

•  The pumping system will be required to operate under various load conditions

•  Variable flow system differential pressures throughout the system will be dynamic

•  Hydronic systems should be hydraulically modeled to design or troubleshoot complex systems

10

Page 11: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

11 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 11 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Caution

•  Excessive pump head can cause systems to not function as designed and waste considerable energy

•  Pump Selection

Page 12: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

12 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 12 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

System & Pump Curves

Total Flow

Tota

l Pre

ssur

e

12

0

50

100

150

200

250

300

0 1500 3000 4500 6000 7500 9000 10500 12000

S ystem  Curve Combined  Pump  Curve

Page 13: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

13 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 13 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

VFD

Load DP

100 GPM 5 PSID

100 GPM 5 PSID

5 PSID 28 PSID

5 PSID 2 PSID

12 PSID 38 PSID 45 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

13

Load

Page 14: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

14 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 14 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

VFD

DP

100 GPM 5 PSID

0 GPM 0 PSID

5 PSID 28 PSID

38 PSID 0 PSID

BAD SENSOR LOCATION

38 PSID 38 PSID 45 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

14

Load

Load

Page 15: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

15 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 15 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

100 GPM 5 PSID

0 GPM 0 PSID

5 PSID 2 PSID

12 PSID 0 PSID

12 PSID 12 PSID 19 PSID

PUMP CLOSE LOAD REMOTE LOAD

20

60

50

40

30

10

0

70

PRES

SURE

PSI

G

VFD

Load

DP Load

Page 16: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

16 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 16 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

CONTROL VALVE ∆P AT VARIOUS LOAD CONDITIONS

Case 1 Full Flow

Case 2 75% Flow

Case 3 50% Flow

Case 4 25% Flow

Case 5 10% Flow

Branch Flow (gpm) 100 75 50 25 10

Branch ∆P 38 38 38 38 38

Coil ∆P 5.0 2.8 1.3 0.3 0.1

Balancing Valve ∆P 28.0 15.8 7.0 1.8 0.3

Control Valve ∆P 5.0 19.4 29.8 35.9 37.7

16

Page 17: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

17 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 17 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Fundamentals Variable Flow System Dynamics

Impact of Balancing Valve Control Valve ∆P = 3.0 psig Coil ∆P = 5.0 psig Excess ∆P = 7.4 psig Size BV for Excess ∆P

Page 18: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

18 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 18 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Balancing Considerations Variable Flow Systems

•  Too large a balancing valve pressure drop affects the performance and flow characteristic of the control valve. Too small a pressure drop affects its flow measurement accuracy as it is closed to balance the system. -  ASHRAE 2011 Applications Handbook, page 38.8

Page 19: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

19 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 19 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Hydronic Pumping Conclusions

•  Coil heat transfer is easier to control in low head (<50 ft) branches

•  Remote, high head loads can be served more efficiently with variable speed series booster pumping

Page 20: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

20 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 20 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

What You Must Know About

CHW ∆T

20

Page 21: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

21 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 21 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CHW Temperature Differential

•  Poor CHW ∆T is the largest contributor to poor CHW plant performance

•  To predict ∆T, you must know: -  Characteristics of connected loads -  Control valve requirements and limitations -  Control valve control algorithms and set points -  Heat exchanger characteristics

Page 22: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

22 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 22 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chilled Water Coil Characteristics Assumes Constant Load on a Given Coil

22

CHWS Temperature °F

CHW

∆T

°F

40 42 44

46 48

50

0

5

10

15

20

25

Page 23: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

23 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 23 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Factors that Degrade ∆T Assuming Coils are Selected for Desired ∆T

•  Higher CHWS temperature

•  Lower entering air temperature (economizer)

•  Control valve issues -  3-way control valves -  2-position valves on fan coil units -  Valves exposed to high ∆P and can’t shutoff

•  Controls not controlling -  Setpoint cannot be achieved -  Valves not interlocked to close if unit turns off

Page 24: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

24 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 24 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

∆T Conclusions

•  Design, construction and operation errors that cause low ∆T can be avoided

•  Other causes for low ∆T can never be eliminated

•  Therefore, system design must accommodate the level of degradation anticipated

Page 25: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

25 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 25 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Chiller Fundamentals

25

Page 26: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

26 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 26 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Understanding Compressor Lift

•  Temperature Lift = SCT - SST -  Saturated Condensing Temperature (SCT) is

dependent upon LEAVING condenser water temperature

-  Saturated Suction Temperature (SST) is based off of LEAVING chilled water temperature

Page 27: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

27 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 27 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Percent Loaded

KW/t

on

Centrifugal Chiller without VFD 1200T Low Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Page 28: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

28 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 28 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1200T Low Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

Page 29: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

29 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 29 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Centrifugal Chiller without VFD 1200T High Pressure

Percent Loaded

KW/t

on

Page 30: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

30 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 30 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1200T High Pressure

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

Page 31: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

31 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 31 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller Comparison

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

0.20.40.60.81.0

25 50 75 100

0.20.40.60.81.0

25 50 75 100

0.20.40.60.81.0

25 50 75 100 Hig

h Pr

essu

re

Low

Pre

ssur

e

Constant Speed Variable Speed

Page 32: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

32 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 32 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Centrifugal Chiller with VFD 1000T High Pressure, Multiple Oil-Free Compressors

0.2

0.4

0.6

0.8

1.0

25 50 75 100

65  ECWT 75  ECWT 85  ECWT

Percent Loaded

KW/t

on

Page 33: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

33 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 33 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimizing Plant Performance

Page 34: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

34 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 34 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary vs Variable Primary Flow

•  Variable primary flow plants can provide advantages over traditional primary-secondary configurations

•  Less plant space required for VPF

•  VPF is not conducive to CHW Thermal Energy Storage

Page 35: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

35 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 35 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary Variable Flow Part Load Operation - 4500 Ton Plant

Load

58°F

42°F VFD

∆P

6000 GPM 4500 GPM

1500 GPM

42°F

54°F

1500 tons

1500 tons

OFF

Load

Load

Load

Load

Page 36: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

36 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 36 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Primary-Secondary Variable Flow Effect of Low CHWR Temperature

Low ∆T Syndrome

44°F

52°F

42°F

6000 GPM 9000 GPM

3000 GPM

Additional chiller will need to be started to maintain the secondary CHWS temperature setpoint if load increases

Loss of CHWS temp control

Load

Load

Load

Load

Load VFD

∆P 1500 tons

1500 tons

OFF 52°F

Page 37: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

37 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 37 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Variable Primary Flow Part Load Operation - 4500 Ton Plant

42°F

CLOSED

58°F

4500 GPM FM

Bypass is not needed if minimum flow through chiller is guaranteed

1500 tons

1500 tons

OFF

∆P

Load

Load

Load

Load

Load VFD

Page 38: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

38 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 38 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Variable Primary Flow Effect of Low CHWR Temperature

CLOSED

54°F

6000 GPM

42°F

1500 tons

1500 tons

OFF

∆P

Load

Load

Load

Load

Load VFD

FM

Page 39: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

39 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 39 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Series Arrangement

•  In applications with high lift, a series evaporator arrangement can improve overall plant performance

Page 40: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

40 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 40 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

85°F 95°F

40°F 56°F CH-1

CH-2 40°F 56°F

40°F 56°F

0.60 KW/ton

Parallel-Parallel Arrangement

Series versus Parallel With High Lift Requirement

Page 41: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

41 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 41 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

7% KW Reduction on Chillers or

450 KW Reduction on 10,000 ton Plant

30 feet head increase on condenser water would

result in 230 KW increase in pump power

220

Series versus Parallel With High Lift Requirement

CH-1 CH-2

95°F 85°F 90°F

0.52 KW/ton 0.59 KW/ton

0.555 KW/ton

Series-Counterflow Arrangement

40°F 56°F 48°F

Page 42: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

42 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 42 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CH-1 CH-2 40°F 56°F 48°F

0.50 KW/ton 0.61 KW/ton

7% KW Reduction or

450 KW Reduction on 10,000 ton Plant

0.555 KW/ton

Series-Parallel Arrangement

85°F 95°F 85°F 95°F

Series versus Parallel With High Lift Requirement

Page 43: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

43 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 43 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Optimize Heat Rejection

•  Oversized cooling towers can decrease approach to lower chiller lift requirements and improve plant KW/ton

•  Approximately 1.5% chiller KW reduction per °F lift reduction

Lowering CWS by from 95°F to 93°F 3% Chiller KW Reduction

or 180 KW Reduction on 10,000 ton Plant

Page 44: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

44 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 44 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

CHW ∆T

Option 1 40°F 56°F 16°F

10,000 tons 15,000 gpm

200 feet head 667

38% Pump KW Reduction or

254 KW Reduction on 10,000 ton Plant

Option 2 38°F 58°F 20°F

10,000 tons 12,000 gpm

146 feet head 413

CHWS Temp CHWR Temp CHW ∆T Plant Size CHW Flow Head Pump KW

87

Increased chiller lift would result in 167

KW increase in chiller power

Page 45: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

45 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 45 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Thermal Energy Storage

•  Chilled water thermal storage is a viable means of reducing peak electrical demand and increasing plant efficiency

•  Less chiller and cooling tower capacity required

•  You may qualify for a Permanent Load Shift incentive

•  Keep it simple!

Page 46: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

46 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 46 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations

Page 47: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

47 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 47 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations Energy Transfer Stations Using Heat Exchangers

•  Heat exchangers designed with lower approaches will typically yield higher CHW ∆T

•  Always focus on supplying load with proper CHWS temperature

Page 48: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

48 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 48 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations without Heat Exchangers

•  Avoid chilled water tertiary loops -  Remember cooling coil fundamentals

•  A variable speed booster pump should be used to boost differential pressure when needed

Page 49: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

49 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 49 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Building Interface Considerations without Heat Exchangers

Building Load Tertiary Loop

Building Load

VFD

Boosted Secondary

Page 50: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

50 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 50 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

A Case for Metering

•  Most efficiently designed systems are horribly inefficient after several years of operation

•  How can we improve operation if we don’t evaluate the efficiency?

•  Calibrate regularly

Page 51: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

51 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 51 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

A Case for Commissioning

•  Commissioning is a systematic process of assuring that systems perform in accordance with the design intent and owner’s operational needs

•  Retro-commissioning

Page 52: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

52 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 52 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Control Design Issues

•  Control strategies should consider impact on complete system

•  Aim to continually optimize energy efficiency for entire system -  Demand control -  Relational control

•  Aim for reliability and “simplicity”

Page 53: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

53 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 53 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Summary

•  Understand parameters that affect chiller plant and overall system performance

•  Optimize operation through equipment selection and control sequences to deliver CHW to all loads as efficiently as possible throughout the year

•  Commission and monitor plant performance

Page 54: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

54 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 54 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

If you are not prepared to be wrong, you won’t come up with

anything original

Page 55: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

55 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 55 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

For More Information

•  ASHRAE Self Directed Learning Course “Fundamentals of Water System Design”

•  ASHRAE District Cooling Guide, 2013

•  ASHRAE Journal series “Optimizing Chilled Water Plants”

•  Hydronic System Design & Operation by E.G. Hansen

Page 56: Optimizing Central Chilled Water Systems · • Hydronic System Design • Chiller Fundamentals ... • VPF is not conducive to CHW Thermal Energy Storage . OPTIMIZING CENTRAL CHILLED

56 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S 56 O P T I M I Z I N G C E N T R A L C H I L L E D W A T E R S Y S T E M S

Thank You