Top Banner
Optimizing and Modeling Phase-Locked Deep Brain Stimulation to Suppress Tremor Ruth Fong Supervisor: Professor Rafal Bogacz MSc Neuroscience Dissertation, Hilary Term 13 April 2016 Word Count: 10355 words
76

Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

Jun 21, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

OptimizingandModelingPhase-LockedDeepBrainStimulationtoSuppressTremorRuthFongSupervisor:ProfessorRafalBogaczMScNeuroscienceDissertation,HilaryTerm13April2016WordCount:10355words

Page 2: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

2

AbstractDeepbrainstimulation(DBS)effectivelysuppressestremorsinessentialtremor,dystonictremor,andParkinson’sdiseasepatientswhenadministeredascontinuous,high-frequencystimulationinthethalamus.However,adverseeffectsofsuchnearlyconstantstimulation,whichincludespeechandmotorimpairmentandhighpowerconsumption,motivatethesearchforsmarter,moreenergy-efficientDBSstrategies.Thisdissertationaimstoinvestigateonesuchstrategybasedonrecentresearch,whichsuggeststhattremorsuppressioninessentialtremorpatientsmaydependonthephaseoftremoratwhichlow-frequencystimulationisdelivered(Cagnanetal.,2013).Theworkpresentedinthisdissertationattemptstodemonstrateanoptimal,phase-lockedstimulationstrategythatmaximallysuppressesthetremorofasingleessentialtremorpatient.ItalsousesandextendstheKuramotoneuraloscillatormodel(Kuramoto,1984;Tass,2003;WilsonandMoehlis,2014)toshowthelimitationssuchamathematicalmodelhasinexplaininganoptimal,phasicstimulationstrategythatisconsistentwiththeonedemonstratedintheclinicalsetting.Twoadditionalcontributionsareoutlinedinthisdissertation:First,buildingofftheRayleightest(Mardia,1975),anovel,parameterizedcircularstatistictotestweightedcircularuniformityisdescribedandanalysed.Second,awebsimulationoftheproposedoscillatormodelispresentedasbotharesearchtoolandapublicengagementresource.

Page 3: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

3

TableofContentsAbstract..........................................................................................................................................................2TableofContents.......................................................................................................................................3TableofFigures..........................................................................................................................................5TableofTables............................................................................................................................................6TableofEquations.....................................................................................................................................7Introduction.................................................................................................................................................8Methods......................................................................................................................................................10ExperimentalDataCollection.......................................................................................................10ExperimentalDataProcessing.....................................................................................................13ExperimentalDataAnalysis..........................................................................................................14CalculatingChangeinAmplitudeandinFrequency......................................................14CalculatingthePhaseResponseCurve(PRC)...................................................................15SimilaritybetweenChangeinFrequencyandChangeinPhase...............................17

SignificanceTestingusingCircularStatistics........................................................................18RayleighStatistic...........................................................................................................................18Moore-RayleighStatistic............................................................................................................19ScaledRayleighStatistic.............................................................................................................20ComparisonofWeighted,CircularStatistics.....................................................................21SignificanceTestinginChangeofAmplitude,Frequency,andPhase....................21

KuramotoModel.................................................................................................................................22StimulationFunctionExtensiononTass,2003...............................................................24

OptimizedModelParameters.......................................................................................................25SimulatingPhase-LockedDBS......................................................................................................26ExtendedKuramotoModelOnlineSimulationTool&Tutorial.....................................28

Results.........................................................................................................................................................29AnalysisofExperimentalData.....................................................................................................29ChangeinAmplitude,Frequency,andPhaseCurves....................................................29SignificanceTesting.....................................................................................................................31CorrelationamongChangeinAmplitude,Frequency,andPhase............................33

AnalysisofModelledData..............................................................................................................33PredictingaConsistentTremorSuppressiveModel.....................................................33DefaultParametersforExtendedKuramotoModel......................................................36ResultsusingDefaultParameters..........................................................................................36ResultsusingDifferentStimulationFunctions................................................................43Non-LinearTransformationfromIndividualPRCtoChangeinMeanPhaseofOscillatorPopulation...................................................................................................................47ResultsusingExperimentalChangeinFrequencyandChangeinPhaseCurvesasPRCFunction.............................................................................................................................48

Discussion..................................................................................................................................................54SummaryofResults..........................................................................................................................54FutureWork.........................................................................................................................................55QuantifySignificant,Phase-SpecificTremorModulation............................................55ModelNegativeCorrelationbetweenChangeinTremorAmplitudeandFrequency/Phase..........................................................................................................................55

Page 4: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

4

DescribePhase-dependentDBSStrategyforDifferentTremulousPathologiesandPatients.....................................................................................................................................57

Conclusion..................................................................................................................................................59References.................................................................................................................................................60Appendix1:AlternativeMetricsofEvaluatingEffectsofTremorSuppression..........63ChangeinAmplitude........................................................................................................................63ChangeinFrequency&Phase......................................................................................................63AlternativeMetrics............................................................................................................................64'subtract_last_block'.....................................................................................................................64'subtract_last_block_norm'........................................................................................................65'point_normalize'...........................................................................................................................65'simple_median'.............................................................................................................................65'normalize'.......................................................................................................................................65'subtract_prev'................................................................................................................................65'subtract_prev_norm'...................................................................................................................65'regression'......................................................................................................................................65'poly2_latent'...................................................................................................................................65'poly2_diff'........................................................................................................................................65'prc_point_normalize'..................................................................................................................66'prc_first_last_median'................................................................................................................66

Appendix2:SimulatedChangeinPhaseCurveswithDifferentNumbersofOscillators..................................................................................................................................................67Appendix3:DifferentStimulationFunctions.............................................................................70Appendix4:ExtendedKuramotoModelSimulationTool....................................................75

Page 5: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

5

TableofFiguresFigure1:AnExperimentalBlockwithPhasicStimulationatphase240°.....................11Figure2:ExperimentalDataforWholeTrial.............................................................................12Figure3:FirstsecondofanExperimentalBlockwithPhase-lockedStimulationat

240°.....................................................................................................................................................13Figure4:EpochsUsedtoCalculateMetricforChangeinAmplitudeandFrequency15Figure5:UnwrappedPhaseoftheTremorAmplitudeforanExperimentalBlock...17Figure6:ExamplePhasesPlottedAlongUnitCircle...............................................................18Figure7:ExamplePhaseswithDifferentRadiiorWeights.................................................19Figure8:VisualizationofNeuronalOscillators.........................................................................22Figure9:SimulatedBlockwithPhasicStimulationat240°usingDefaultParameters

...............................................................................................................................................................27Figure10:ChangeinAmplitude,Frequency,andPhaseofExperimentalData..........30Figure11:VisualizationsofMoore-RayleighTestforNegativeChangeinAmplitude,

ChangeinFrequency,andChangeinPhase......................................................................32Figure12:CosineCurveasIndividualNeuron’sPhaseResponseCurve(PRC)..........34Figure13:DiagramoftheOptimalStimulationStrategyfortheKuramotoModel...35Figure14:DefaultPRCfunction,𝒛𝜽𝒊 = 𝐜𝐨𝐬(𝜽𝒊 + 𝝅𝟔),forExtendedKuramotoModel

...............................................................................................................................................................35Figure15:ChangeinAmplitude,Frequency,andPhaseofSimulatedDatausing

DefaultParameters......................................................................................................................38Figure16:VisualizationsofMoore-RayleighTestforNegativeChangeinAmplitude,

ChangeinFrequency,andChangeinPhaseofSimulatedDatausingDefaultParameters.......................................................................................................................................40

Figure17:ChangeinAmplitudeCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”Stimulationfunctions.............................................................47

Figure18:MeanSquaredErrorbetweenDefaultPRCFunctionandMedianChangeinPhaseinSimulatedDataasNumberofOscillatorsIncreases..............................47

Figure19:Scaled,ExperimentalChangeinFrequencyCurveasPRCFunction𝒛(𝜽𝒊)forExtendedKuramotoModel................................................................................................49

Figure20:ChangeinAmplitude,Frequency,andPhaseCurvesofSimulatedDatausingScaled,ExperimentalChangeinFrequencyCurve(Figure19)asPRCFunction............................................................................................................................................50

Figure21:Scaled,ExperimentalChangeinPhaseCurveasPRCFunction𝒛(𝜽𝒊)forExtendedKuramotoModel.......................................................................................................51

Figure22:ChangeinAmplitude,Frequency,andPhaseofSimulatedDatausingScaled,ExperimentalChangeinPhaseCurve(Figure21)asPRCFunction.......52

Figure23:ChangeinPhaseCurveforSimulatedDatawhenDifferentNumbersofOscillators(N=2,5,8)...............................................................................................................68

Figure24:ChangeinFrequencyCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”Stimulationfunctions.............................................................71

Figure25:ChangeinPhaseCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”Stimulationfunctions....................................................................................73

Figure26:ScreenshotofSimulationTool....................................................................................76

Page 6: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

6

TableofTablesTable1:p-valuesandResultPhasesfromMoore-RayleighandScaledRayleigh

SignificanceTestingofChangeinAmplitude,Frequency,andPhaseofExperimentalData........................................................................................................................31

Table2:CorrelationbetweenChangeinAmplitude,Frequency,andPhaseofIndividualExperimentalBlocks.............................................................................................33

Table3:p-valuesandResultPhasesfromMoore-RayleighandScaledRayleighSignificanceTestingofChangeinAmplitude,Frequency,andPhaseofSimulatedDatausingDefaultParameters...............................................................................................39

Table4:CorrelationsbetweenMedianChangeinAmplitude,Frequency,andPhaseofExperimentalDataandthoseofSimulatedDatausingDefaultParameters..41

Table5:CorrelationbetweenChangeinAmplitude,Frequency,andPhaseofIndividualExperimentalBlocksandIndividualSimulatedBlocksusingDefaultParameters.......................................................................................................................................41

Table6:CorrelationsamongMedianChangeinAmplitude,Frequency,andPhaseaswellasSelectDerivativeApproximationsofExperimentalandSimulatedBlocksusingDefaultParameters..........................................................................................................42

Table7:CorrelationsbetweenMedianChangeinAmplitude,Frequency,andPhaseofExperimentalDataandthoseofSimulatedDatausingDifferentStimulationFunctions..........................................................................................................................................43

Table8:CorrelationsamongMedianChangeinAmplitude,Frequency,andPhaseaswellasSelectDerivativeApproximationsofExperimentalandSimulatedBlocksusingDefaultParameters..........................................................................................................44

Table9:StatisticalSignificanceofAlternativeMetricsMeasuringChangeinAmplitudeinExperimentalData............................................................................................63

Table10:StatisticalSignificanceofAlternativeMetricsMeasuringChangeinFrequencyandPhaseinExperimentalData.....................................................................64

Page 7: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

7

TableofEquationsEquation1:AnalyticSignalofFilteredTremorSignal...........................................................13Equation2:TremorAmplitudefromAnalyticalSignal(Equation1)..............................14Equation3:InstantaneousFrequency...........................................................................................14Equation4:MetricforChangeinAmplitudeandinFrequency.........................................14Equation5:Actual,UnwrappedPhaseofExperimentalBlock...........................................15Equation6:Reference,UnwrappedPhaseofExperimentalBlock....................................15Equation7:1st-OrderTaylorApproximationofPhaseAroundt=0...............................16Equation8:kth-OrderTaylorApproximationofPhaseAroundt=0...............................16Equation9:1st-OrderTaylorApproximationofActual,UnwrappedPhaseof

ExperimentalBlock......................................................................................................................16Equation10:ApproximationofFrequencyasaResultof5-secondPhase-Lock

Stimulation.......................................................................................................................................16Equation11a-b:MetricforChangeinPhase...............................................................................16Equation12a-c:RayleighStatistic...................................................................................................18Equation13a-c:Moore-RayleighStatistic....................................................................................20Equation14a-c:ScaledRayleighStatistic....................................................................................20Equation15:Z-Score.............................................................................................................................21Equation16:UpdateRuleforExtendedKuramotoModel...................................................22Equation17a-c:OrderParametersforKuramotoModel......................................................23Equation18:Tass,2003’sStimulationFunction......................................................................23Equation19:ModelingTremorAmplitude.................................................................................24Equation20:IndicatorFunctionforStimulation......................................................................24Equation21:GeneralformforStimulationFunction.............................................................24Equation22:UniformStimulationEffectFunction..................................................................25Equation23a-b:RandomStimulationEffectFunction...........................................................25Equation24:HalfStimulationEffectFunction..........................................................................25Equation25:MixtureStimulationEffectFunction...................................................................25Equation26:ProposedExtensiontoKuramotoModel’sUpdateRule............................57

Page 8: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

8

IntroductionTremorsareacommon,debilitatingsymptomofseveralmotordisorders.Continuous,high-frequencydeepbrainstimulation(DBS)inthethalamushasbeenahighlyeffectivetreatmentforsuppressingtremorsinpatientswithParkinson’sdisease,essentialtremor,anddystonictremor(Benabidetal.,1991).However,DBSalsodisruptsphysiologicalmotorfunction(Chenetal.,2006;Rayetal.,2009)andcancauseadverseeffectslikespeechimpairmentsandgaitinstability(Zhangetal.,2010;Baizabal-Carvalloetal.,2014).Thecontinuous,energy-consumingnatureofconventionalDBShasanadditionaltollinrequiringthereplacementofDBSimplantbatterieseveryfewyears.Together,theseeffectsmotivateresearchforamoreefficientDBSparadigmthatreapsthesametremor-suppressingbenefitsoftypicalDBSyetstimulatethethalamussparinglyandsmartly.WhileconventionalDBShassomeparameters,suchasthestrengthandfrequencyofstimulation,thatcanbeoptimallytuned,typical,continuous,high-frequencystimulationdoesnotchangeonceparametersareset.Recently,aclosed-loopparadigmknownasadaptiveDBS(aDBS)onlyadministersstimulationwhenathresholdlevelofbetaoscillations–neuronsfiringwithinthebetafrequencyrangeof13-30Hz–inthebasal-gangliaisexceeded(LittleandBrown,2012;Littleetal.,2013,2015;Rosaetal.,2015).Highlevelsofbetaoscillationsinthebasal-gangliacorticalloophavebeenlinkedtoParkinsoniansymptomssuchaslimbrigidityandbradykinesia,aconditionofslownessofmovement,yettheyhavenotbeenassociatedwithtremor(Hammondetal.,2007).Thus,currentaDBSparadigmsarelimitedtotreatingnon-tremor,Parkinsonian-specificsymptoms.Recentworksuggeststhepotentialforanalternative,tremor-suppressingaDBSparadigmbytimingstimulationtoaspecificphaseoftremor,thatis,aparticularpointinatremoroscillation.Thisresearchshowsatremor-suppressingeffectwhenthephaseoflow-frequencyDBSbecomessynchronizedwiththephaseofhandtremorintremulousessentialtremor(Cagnanetal.,2013)andParkinson’sdiseasepatients(Azodi-AvvalandGharabaghi,2015).Insuchpatients,tremoroscillationsoccurataround4-6Hz,whichisalsothecharacteristicoscillationfrequencyincertainbasalgangliaregionsoftremulouspatients(Hirschmannetal.,2013).Ithasbeenshownthatthalamicneuralactivitysynchronizedtotremorfrequencydrivestheautomatic,repetitivemovement(Hua,2004).Thus,itmaybeplausiblethatstimulatingthethalamusaccordingtotremorphasemaydesynchronizetheneuralactivityresponsiblefortremulousbehavior(BeudelandBrown,2015).Acomputationalmodel(Tass,2003)describeshowDBScanbeincorporatedintoacommonneuraloscillatormodel,theKuramotomodel(Kuramoto,1984),tosimulatethesynchronyofthalamicneuronsandthedesynchronizingeffectofDBS.Arecentworkproposesanoptimal,close-loopedDBSstrategythatdependsonthephaseofanindividualneuronaloscillator(WilsonandMoehlis,2014).However,thiscomputationalresearchhasnotbeenusedtodetermineanoptimal,adaptiveDBSstrategybasedonthephaseoftremor.

Page 9: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

9

Thisdissertationusestremordatacollectedfromanexperimentaltrialthattimestheadministrationofshort,35msburstsofhigh-frequencyDBStoaspecifictremorphaseofanessentialtremorpatientthroughoutadurationof5seconds(Cagnanetal.,2016).Usingthisexperimentaltremordata,thisdissertationdemonstratesthattremorphase-lockedDBSyieldsastatisticallysignificant,phase-dependentchangeintremoramplitudeandidentifiesanoptimalrangeoftremorphasesatwhichphase-lockedDBSbestsuppressestremorforthispatient.ThisworkalsopresentsseveralextensionstotheKuramotomodelandteststheextenttowhichthemodelcanexplaintheclinical,phase-dependenttremorsuppressionobservedintheessentialtremorpatient.Insummary,itishopedthatthisworkwillserveasasteppingstonetowardsfurtherresearchindevelopingnotonlyaclosed-loop,tremorphase-lockedDBSparadigmbutalsoabiologically-plausiblemodeltoexplainhowsuchstimulationeffectivelydampenstremor.

Page 10: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

10

MethodsExperimentaldatacollectionwasconductedbyDr.HayriyeCagnan(Cagnanetal.,2016),andtheoptimizationofmodelparameterswasdonebyDr.GihanWeerasinghe.Allothermethodsdescribedinthissectionweredesignedandcarriedoutbytheauthor.

ExperimentalDataCollectionTheexperimentaldataanalyzedinthisdissertationwascollectedwiththeapprovaloftheappropriate,localethicscommitteeandwiththeinformedconsentofallpatients(Cagnanetal.,2016).OneessentialtremorpatienthadfourDBSelectrodesinsertedintotheirleftventralateralthalamus;placementofelectrodeswasconfirmedusingCTandMRIimagingaftertheoperation.Anaccelerometerwiththreeaxeswasattachedtotheindexfingerofthepatient’srighthand.Minimal,onlineprocessingwasconductedontheacceleratoraxiswiththemosttremor.Withasamplingrateof10,417Hz,thisslightlyprocessedsignalfromthedominanttremoraxisisusedandanalyzedthroughoutthisdissertation.Thetremorsoftheessentialtremorpatientwererecordedwhenphase-locked,35msburstsof130HzDBSwereadministeredthroughouta5-secondblock(Figure1).Stimulationwasphase-lockedtotremor,whichwasmeasuredbythehand-mountedaccelerometer.Givenaphase𝜃forablock,wheneverthetremoroscillationpassedphase𝜃,a35msburstof130HzDBSwasadministered(Figure3).9blockswererecordedforeachofthefollowing12phases:0°,30°,60°,90°,120°,150°,180°,210°,240°,270°,300°,330°(withtheexceptionofthe180°phase,forwhichonly8blocksweresuccessfullyrecorded).Therewasatleast1secondofnostimulationbetweenblocks.

Page 11: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

11

Figure1:AnExperimentalBlockwithPhasicStimulationatphase240°

(1st row) The unfiltered tremor acceleration signal (m/s2)was recorded by a single hand-mountedaccelerometer.(2ndrow)Thetremorsignalfromthe1strowwasband-passfilteredbetween3Hzand6Hz;thetremoramplitude(m/s2)istracedinorangeandwasderivedfromtheanalyticalsignal.(3rdrow)Theinstantaneousfrequency(Hz)ofthetremoramplitudewasalso derived from the analytical signal. (4th row) 35 ms bursts of 130 Hz, phase-lockedstimulationwereappliedwheneverthetremoramplitudepassedthe240°phase.

Tremorswererecordedin9batches(Figure2).Ineachbatch,12blockswererecorded,oneforeachofthe12phases.Tomitigatetheeffectaparticularorderofphasicstimulationblocksmayhave,theorderofphaseblockswasrandomlypermutedforeachbatch.Inbetweenbatches,thepatientrestedtheirhandsfromtheextended,elevatedhandpositionmaintainedduringthebatches,resultinginnegligibletremoramplitudebeingrecorded(Figure2,seefilteredamplitudesignalduringt=1000-1200seconds).Theserestperiodsexplainthenoisyinstantaneousfrequencycalculatedinbetweenbatches.

-1000 0 1000 2000 3000 4000 5000 6000-4

-2

0

2

Unf

ilt. T

rem

or

Experimental Data Block #37 with Phasic Stimulation at 240 degrees

-1000 0 1000 2000 3000 4000 5000 6000-2

0

2

Filt.

Tre

mor

-1000 0 1000 2000 3000 4000 5000 60004.5

5

5.5

6

Inst

Fre

q

-1000 0 1000 2000 3000 4000 5000 6000Time from stimulation onset (in ms)

0

0.5

1

Stim

ulat

ion

Page 12: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

12

Figure2:ExperimentalDataforWholeTrial

(1st row) The unfiltered tremor signal (m/s2) was recorded by a single hand-mountedaccelerometer.(2ndrow)Theunfilteredtremorsignalwasband-passfilteredbetween3Hzand6Hz;thetremoramplitudeistracedinorange.(3rdrow)Theinstantaneousfrequency(Hz)ofthefilteredtremoramplitudewasderived.(4throw)Thephase(degrees)ofstimulationwassetaprioriviaarandompermutationforeachbatch.(5throw)35msburstsof130Hz,phase-lockedstimulationwereappliedwheneverthetremoramplitudepassedthephaseforagivenblock;phaseoftremorwascalculatedonlinethroughoutthetrialfromthefilteredamplitude.

Duringtheexperiment,tocalculatethephaseofthetremor,thesignalfromthedominanttremoraxisoftheunfilteredtremorwasband-passfilteredonlineto±2Hzaroundthetremorfrequency.Then,thetremorcycle’sphasewasestimatedfromthetremorfrequencyandthepreviouscycle’szerocrossingoftheonline,filteredsignal.Whenthetargetphasewasdetectedfromtheonline,filteredsignal,DBSisadministeredat130Hzfor35milliseconds;thiscorrespondstothedeliveryof6pulses(Figure3).Becausethefilteredsignalwascalculatedonline,itwasshiftedintimeandresultedinaphaseshift.Thisshiftwascorrectedforinthesubsequentdataprocessingandanalysisaswellasallpresentedfigures.

0 200 400 600 800 1000 1200 1400 1600-20

0

20

Unf

ilt. T

rem

or Experimental Data from Whole Trial

0 200 400 600 800 1000 1200 1400 1600-10

0

10

Filt.

Tre

mor

0 200 400 600 800 1000 1200 1400 1600-10

0

10

Inst

Fre

q

0 200 400 600 800 1000 1200 1400 16000

200

400

Phas

es

0 200 400 600 800 1000 1200 1400 1600Time (in seconds)

0

0.5

1

Stim

ulat

ion

Page 13: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

13

Figure3:FirstsecondofanExperimentalBlockwithPhase-lockedStimulationat240°

(1st row) The unfiltered tremor signal (m/s2) was recorded by a single hand-mountedaccelerometer.(2ndrow)Theunfilteredtremorsignalwasband-passfilteredbetween3Hzand6Hz; the tremoramplitude(m/s2) is traced inorange. (3rdrow)Thephase(degrees)of thetremorwascalculatedonlinefromthefilteredtremorthroughoutthewholetrial.(4throw)A35msburstof130Hzstimulation,resultingin6pulses,wasappliedeverytimethetremoramplitudepassedphase240°.

ExperimentalDataProcessingAlldataprocessingandanalysiswasconductedusingcustomMATLABcode.Thetremorsignal,withanoriginalsamplingrate10,417Hz,wasresampledat1000Hz.Theresampledsignalwasthenband-passfilteredbetween3Hzand6Hzusingthesecond-orderButterworthfilter(Butterworth,1930).Theresampledandfilteredsignalisusedinallanalysesunlessotherwisementioned.Thetremoramplitude(Equation2)wascalculatedbytakingthecomplexmagnitudeoftheanalyticsignal(Equation1)ofthefilteredtremorsignal.

𝐴(𝑡) = 𝑓(𝑡) + 𝑖𝐻[𝑓 𝑡 ]Equation1:AnalyticSignalofFilteredTremorSignal

Theanalyticalsignalofthetremorconsistsoftheoriginalsignalofthefilteredtremor,𝑓(𝑡),andtheHilberttransformoftheoriginalsignal,𝐻[𝑓(𝑡)].

-200 0 200 400 600 800 1000-4

-2

0

2

Unf

ilt. T

rem

or

Experimental Data Block #37 with Phasic Stimulation at 240 degrees

-200 0 200 400 600 800 1000-2

0

2

Filt.

Tre

mor

-200 0 200 400 600 800 10000

200

400

Phas

e

-200 0 200 400 600 800 1000Time from stimulation onset (in ms)

0

0.5

1

Stim

ulat

ion

Page 14: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

14

𝑎(𝑡) = 𝑓(𝑡)9 + 𝐻[𝑓 𝑡 ]9

Equation2:TremorAmplitudefromAnalyticalSignal(Equation1)

Theinstantaneousfrequencywascalculatedbysmoothingthederivativeofthefilteredtremorsignal.First,thedifferencebetweeneach1millisecondtimestepofthetremoramplitudewascalculated;thisdifferencevectorwasthensmoothed.Finally,theinstantaneousfrequency,𝑓(𝑡),wascalculatedbyscalingthesmootheddifferencevector,𝑑(𝑡),bythesamplingrate,r=1000Hz,andby1/(2𝜋)toreflectthederivativeofthefilteredtremorsignal(Equation3).

𝑓(𝑡) =𝑟𝑑(𝑡)2𝜋

Equation3:InstantaneousFrequency

Thefrequencyofatimeperiodcanalsobecalculatedbycountingthenumberofzerocrossingsofthefilteredtremorsignal.Theresultsreportedinthisworkuseinstantaneousfrequency;however,someadditionalresultsincludedinAppendix1usedfrequencycalculatedviathezero-crossingsmethod.Qualitatively,resultsobtainedusingthetwodifferentmethodsforcalculatingfrequencyweresimilar.

ExperimentalDataAnalysisForeachblock,measuresofthechangeintremoramplitude,frequency,andphaserespectivelywerecalculatedinordertoanalyzetheeffectsofphase-lockedDBS.Themainmetricsaredescribedbelow;however,additionalmetricsweredevelopedandareincludedinAppendix1.

CalculatingChangeinAmplitudeandinFrequencyThesamemetricwasusedtocalculatechangeinamplitudeandchangeinfrequency(Equation4).Let𝑔> 𝑥, 𝑦 ,where𝑥, 𝑦 ∈ −1,5 seconds,denotethemedianofthetremoramplitudebetween𝑡 = 𝑥secondsand𝑡 = 𝑦secondsinablock.Correspondingly,let𝑔O 𝑥, 𝑦 denotethemedianoftheinstantaneousfrequency.Then,foragiven5secondblock,thedifferencebetweenthemedianoftheamplitude(orinstantaneousfrequency)ofthelastsecondoftheblock,𝑔P 4,5 ,andthatoftheprecedingonesecondperiodofnostimulation,𝑔P −1,0 ,wascalculated,where𝑚 ∈ 𝑎, 𝑓 denoteamplitudeorinstantaneousfrequency.

∆𝑚 =𝑔P 4,5 − 𝑔P(−1,0)Equation4:MetricforChangeinAmplitudeandinFrequency

Page 15: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

15

Figure4:EpochsUsedtoCalculateMetricforChangeinAmplitudeandFrequency

Themediansofthefilteredamplitude(1strow,inorange)andoftheinstantaneousfrequency(2ndrow)from4s-5sofablock(epochboundedinorange)andarecomparedtothatfrom-1sto 0s (epochbounded in blue), duringwhich there is no stimulation to compute change inamplitudeandinfrequency.

Forchangeinamplitudeandfrequency,thismetricwascalculatedforeachofthe107blocksandplottedinFigure10,1stand2ndrows,withthemedianofeachphaseplottedaswell.

CalculatingthePhaseResponseCurve(PRC)Let𝑔O 𝑥, 𝑦 bethemedianfunction𝑔definedintheprevioussectionforinstantaneousfrequency.Tocalculatethechangeinphase,areferencefrequency,𝑓U ,wascalculatedbytakingthemedianinstantaneousfrequencyoftheprecedingonesecondperiodofnostimulation,i.e.𝑓U = 𝑔O −1,0 .Then,for𝑡 = 0secondsto𝑡 = 5ofagivenexperimentalblock,theunwrappedphase,𝜃>(𝑡),inradians,ofthefilteredtremorsignal,𝑓(𝑡),wascalculated.

𝜃> 𝑡 = unwrap[atan2(𝐻[𝑓 𝑡 ]𝑓(𝑡) )]

Equation5:Actual,UnwrappedPhaseofExperimentalBlock

FromEquation1,𝐻[𝑓 𝑡 ]istheimaginarycomponentoftheanalyticsignal,computingusingthe Hilbert transform, of the filtered tremor signal,𝑓(𝑡) . The MATLAB unwrap functioncorrects forphase jumpsbyadding360°whenphase jumps from359° to0°.TheMATLABatan2functionwasusedinsteadofinversetanfunction,tan-1,inordertohandlediscontinuitiesat90°andat270°.

Then,accountingforthestartingphaseoftheblock,𝜃> 0 ,inradians,thereferenceunwrappedphasewascalculatedbyprojectingthereferencefrequency(Equation6).

𝜃U 𝑡 = 𝜃> 0 + 2𝜋𝑡𝑓U Equation6:Reference,UnwrappedPhaseofExperimentalBlock

Page 16: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

16

Theequationforreferencephase(Equation6)correspondstothefirst-orderTaylorapproximationaroundtheneighborhoodoft=0oftheactual,unwrappedphase(Equation7).Thisisbecausethederivativeofphaseisinstantaneousfrequencyscaledby2𝜋,asonecompleteoscillationcycleisequivalenttotravelling2𝜋or360°.Thus,𝜃>′ 0 isapproximatedby2𝜋𝑓U .

𝑃\ 𝑡 = 𝜃> 0 + 𝜃>′(0)𝑡Equation7:1st-OrderTaylorApproximationofPhaseAroundt=0

Thisfirst-orderapproximationsufficed,asthesecondderivativeofphasewasnearlyalways0;thus,furtherorderapproximations(Equation8)didnotsignificantlydifferfromthefirst-orderapproximation.

𝑃] 𝑡 = (𝜃>^ 0𝑖! 𝑡^)

]

^`a

Equation8:kth-OrderTaylorApproximationofPhaseAroundt=0

Thetime-evolutionoftheactualphasecanalsobeapproximatedusingafirst-orderTaylorexpansion,whichusesadifferentfrequency,𝑓> ,thatreflectstheactualfrequencyasaresultofthecurrentblock’sphase-lockedstimulation(Equation9).

𝜃> 𝑡 ≈ 𝜃> 0 + 2𝜋𝑡𝑓>Equation9:1st-OrderTaylorApproximationofActual,UnwrappedPhaseofExperimentalBlock

Then,aftersolvingfor𝑓>intheequationfortheapproximationof𝜃> 5 (Equation10),whichcorrespondstothefrequencyattheendofthe5-secondphase-lockedstimulationblock,themetricforchangeinphasecanbecalculatedasthedifferenceindegreesbetweentheactualfrequencyandreferencefrequency(Equation11a).Notethattheapproximationof𝑓>istheunwrappedphaseoftheblocknormalizedbytime,i.e.5seconds,andthelengthofacycle,i.e2𝜋(Equation10).

𝑓> ≈𝜃> 5 −𝜃> 0

2𝜋(5) Equation10:ApproximationofFrequencyasaResultof5-secondPhase-LockStimulation

∆𝜃 = 360°(𝑓> − 𝑓U)

∆𝜃 = 360°𝜃> 5 − 𝜃U 5

10𝜋

≈ (360°)𝜃> 0 + 2𝜋(5)𝑓> − (𝜃> 0 + 2𝜋 5 𝑓U)

10𝜋 = 360°(𝑓> − 𝑓U)Equation11a-b:MetricforChangeinPhase

Page 17: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

17

Alternatively,themetricforchangeinphasecanbecalculatedasthedifferenceindegreesbetweentheunwrappedactualphaseandunwrappedreferencephase(Equation11b,Figure5).

Figure5:UnwrappedPhaseoftheTremorAmplitudeforanExperimentalBlock

Theactualandrealunwrappedphases(θaandθrrespectively,inradians)areplottedforanexperimentalblockinwhich240°phase-lockedstimulationwasadministered.Thedifferencebetweentheactualandrealunwrappedphasesatt=5secondswasusedtocalculatethe

changeinphase(Equation11).Forchangeinphase,thismetricwascalculatedforeachofthe107blocksandplottedinFigure10,3rdrow,withthemedianofeachphaseplottedaswell.

SimilaritybetweenChangeinFrequencyandChangeinPhaseNotethatthechangeinphasemetricissimplyanotherwaytocalculatechangeinfrequency.Bothusethesamereferencefrequency,𝑓U = 𝑔O −1,0 ,thatisthemedian,instantaneousfrequencyofthesecondprecedingtheblockinwhichnoDBSwasadministered.Theonlydifferencesbetweenthemetricsaretheirunits–changeinfrequencyisgiveninHzwhilechangeinphaseisgivenindegrees–andthewaytheycomputethe“actual”frequencyasaresultofphase-lockedDBSforagivenblock.Thechangeinfrequencymetricapproximatesthe“actual”frequencyby

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5Time (in sec)

-20

0

20

40

60

80

100

120

140

160

180

Unw

rapp

ed P

hase

Unwrapped Phase for Experimental Data Block #37 at phase 240 degrees

ReferenceActual

Page 18: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

18

computingthemedian,instantaneousfrequencyofthelastsecondofagivenblock,i.e.𝑔O 4,5 (Equation4),whilethechangeinphasemetricapproximatesthe“actual”frequencyusingtheunwrappedphaseofagivenblock(Equation10).Table2showsthestrongcorrelationstrengthbetweenthechangeinfrequencyandchangeinphasemetrics.Thus,thetwometricsareapproximationsofthesamemeasure.

SignificanceTestingusingCircularStatisticsInordertotestwhethertherewasasignificanteffectinthechangeinamplitude,frequency,andphase,circularstatisticstestswereused.Inthissection,anexplanationoftherelevantstatistics–includingthepresentationofanovel,weighted,parametriccirculartest–willfirstbepresented,followedbyadescriptionofhowtheywereusedtotestsignificanceintheexperimentaldata.

RayleighStatistic

Figure6:ExamplePhasesPlottedAlongUnitCircle

TheRayleighcircularstatistic,𝑧U ,isanon-parametricmetricusedtotestwhetherasetofphasesissignificantlynon-uniform(Mardia,1975).TheRayleighstatisticcomputesthemeanvectorofallphasesplottedalongtheunitcircle(Figure6),whereRistheresultvector’smagnitudeand(X,Y)isitsCartesiancoordinate;thestatistic𝑧U isthesquareoftheradius,R,scaledbythenumberofphases,N(Equation12).Thisstatisticfailsonequallyspacedoutn-modaldata,suchasdiametricallybimodaldatawithclustersat0°and180°ortrimodaldatawithclustersat0°,120°,or240°,astheequally-spacedclusterswouldcanceleachotherout.

𝑋 =1𝑁 cos 𝜃i

j

i`\

, 𝑌 =1𝑁 sin 𝜃i

j

i`\

𝑅9 = 𝑋9 + 𝑌9𝑧U = 𝑁𝑅9

Equation12a-c:RayleighStatistic

𝜃

Page 19: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

19

AcomputedRayleighstatisticcanthenbecomparedagainstap-valuetableindexedbythenumberofelements,N(Zar,2010).Alternatively,anulldistributioncanbegeneratedbyrepeatedlyuniformlysamplingNphasestoformasetofphasesandcomputingtheRayleighstatisticonsuchrandomlygeneratedsets.Then,anempiricalcumulativedistributionfunction(CDF)canbecomputedonthenulldistributionbysimplyorderingitsRayleighstatisticsandathresholdzvaluecanbefoundforaparticularp-value.Thisistheprocedurebywhichthestandardp-valuetablefortheRayleighstatisticwasgenerated(Zar,2010).

Moore-RayleighStatisticHowever,theRayleighstatisticfailstoweightphases.Becausethephasesareplottedalongtheunitcircle,theyallassumearadiusorweightof1.Inordertotestthesignificanceofthechangeinamplitude,frequency,andphaseofexperimentaldata,aweightedcircularstatisticisrequired,wheretheradiusofeachdatapointcorrespondstooneoftheabovemetricsanditsphaseisthatdatapoint’scorrespondingphase(Figure7).

Figure7:ExamplePhaseswithDifferentRadiiorWeights

Anon-parametricextensionoftheRayleighstatistic,theMoore-Rayleighstatistic,𝑧P,weightsphasesbytherankorderoftheirradii(Moore,1980).Givenasetofpolarcoordinates, 𝜃i, 𝑟i 𝑛 = 1…𝑁},thephasesarereorderedinascendingorderbytheirradii:(𝜃(\), 𝜃(9), … , 𝜃(j)).Then,theMoore-Rayleightestusesonlytheorderedphasestoweightthembytheirrank-orderwhencalculatingtheresultantvector.ThisresultsinthephaseofthelargestradiusgettingaweightofNwhilethephaseofthesmallestradiusgetsaweightof1.Finally,theresultantvector’sradiusisthenscaledbytheinverseofthe1.5powerofthesizeoftheset,N(Equation13).

𝑋 = 𝑛 cos 𝜃(i)

j

i`\

, 𝑌 = 𝑛 sin 𝜃(i)

j

i`\

𝑅9 = 𝑋9 + 𝑌9

(𝜃, 𝑟)

Page 20: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

20

𝑍 =𝑅

𝑁r/9Equation13a-c:Moore-RayleighStatistic

SimilartotheRayleighstatistic,acomputedMoore-Rayleighstatisticcanthenbecomparedagainstastandardp-valuetableindexedbythenumberofelements,N(Moore,1980).Thestandardp-valuetablefortheMoore-RayleighstatisticwasgeneratedwithasimilarprocedureasthatfortheRayleighstatistic,byuniformlysamplingphasesandradiusestogenerateanulldistribution.Alternatively,apermutationtestcanbeusedtogeneratethenulldistributionbyrepeatedlyshufflingtheorderofthedataset’sphasesandcomputingtheMoore-Rayleighstatisticoneachpermutation.Then,anempiricalCDFofthenulldistributioncanbeusedtofindthresholdzvaluesforp-values.

ScaledRayleighStatisticIntheprocessofconductingtheresearchdescribedinthiswork,aparametric,scaledRayleighstatistic,𝑧t,wasderived.Tothebestoftheauthor’sknowledge,thisisthefirstparametric,weightedcirculartestbasedontheRayleighstatistic.ThescaledRayleightestweightseachphase𝜃ibyacorrespondingradius𝑟iwhencalculatingtheresultantvector;thesquareoftheresultvector’sradiusisthenscaledbytheinverseofthesizeoftheset,N(Equation14).

𝑋 = 𝑟i cos 𝜃i

j

i`\

, 𝑌 = 𝑟i sin 𝜃i

j

i`\

𝑅9 = 𝑋9 + 𝑌9

𝑧t =𝑅9

𝑁 Equation14a-c:ScaledRayleighStatistic

Becausethesetofphasesisparameterizedbycorrespondingradii,apermutationtestisthemostappropriatetesttocomputep-values.AnulldistributioncanbegeneratedbyrepeatedlyshufflingthesetofNphases,randomlypairingthemwithashuffledsetoftheNradii,andcomputingthescaledRayleighstatisticonshuffledsets.Then,thresholdzvaluescanbefoundforp-valuesfromtheempiricalCDFofthescaledRayleighstatisticsofthenulldistribution.Alternatively,anulldistributioncouldbegeneratedbysamplingfromwell-knownstatisticaldistributions,suchastheuniformdistributionforphasesandtheNormaldistributionforradii,butmomentparameterssuchasmeanandvariancewouldneedtobefittothedataset’sradiiinorderforthenulldistribution’ssampledradiitobereasonable.ThisdependencyonthedatasetmakesthescaledRayleighstatisticparametric.

Page 21: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

21

ComparisonofWeighted,CircularStatisticsHistorically,non-parametrictestswerepreferablebecauseastandardp-valuetablecouldbecomputedandusedwithoutregardtothespecificdatasetbeingtested.Giventhatcomputingpowerwasmuchmorelimitedjustafewdecadesago,eliminatingtheneedtogenerateanulldistributionwashighlyappealing.Thiswasthemotivationbehindthedevelopmentofthenon-parametricMoore-Raleightest.However,generatinganulldistributiontodayisnowanegligibleconcernonmostmoderncomputers.Thus,morepreciseandpowerfultestsarenowmorepreferablethanonesthathistoricallyrequiredlesscomputationalpower.IncontrasttotheMoore-Rayleightest,thescaledRayleightestproportionallyweightsdatapointsbythemagnitudeoftheirradii.TheMoore-Rayleightestcaninaccuratelysuggestasignificanteffectinadataset,whenthedifferencesamongthedataset’sradiiarenegligiblysmallyetarenotcapturedinthenon-parametricstatistic.Inthiscase,thedataset’sphasesarescaledbytherankorderoftheircorrespondingradii,whichdonotaccuratelyreflectthemagnitudeoftheradiiandthusarguablyleadstoaninaccurateweighting.Dependingonthedataset,exactlywhatkindofeffectisbeingtested,andwhetherdiametricphasesarerelatedtoeachother,radiimayormaynotwanttoberestrictedtothesetofpositiverealnumbersforthescaledRayleightest.FurtheranalysisonthestrengthsandlimitationsoftheproposedscaledRayleightestwasoutsidethescopeofthisprojectbutmaybeaninterestingandpromisingdirectionforfuturework.TheprimaryMATLABresourceforcircularstatisticsdidnotincludeweightedcircularstatisticstests(Berens,2012).TheMATLABimplementationsoftheMoore-RayleighstatisticandthescaledRayleighstatisticusedinthisworkwereoptimizedandmadeavailableforpublicuse(Fong,2016a).

SignificanceTestinginChangeofAmplitude,Frequency,andPhaseFor𝑛 ∈ 1,… ,𝑁 ,whereN=107blocks,let𝜃idenotethephaseatwhichphase-lockedstimulationwasadministeredduringthen-thexperimentalblockandlet∆𝑎i, ∆𝑓i,and∆𝜃idenotetherespectivechangeinamplitude,infrequency,andinphasemetricsforthen-thblock.Then,foreachmetric,boththeMoore-RayleighstatisticandthescaledRayleighstatisticwerecomputed,wherez-scores(Equation15)ofthemetricvalues,i.e.{∆𝑚i|𝑛 = 1,… ,𝑁},where𝑚 ∈ {𝑎, 𝑓, 𝜃},wereusedasradiifortheweightedtests.Permutationtestsasdescribedabovewereusedtogeneratenulldistributionsagainstwhichthresholdzvaluesandp-valuescouldbeevaluated.

𝑧 =𝑥 − 𝜇𝜎

Equation15:Z-Score

Page 22: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

22

ForthescaledRayleightest,bothradiithatincludenegativevaluesandradiishiftedsothatallradiiarepositivewereused.Therewasnopalpabledifferenceinresults,sothesignificancetestsreportedintheResultssection(Figure11,Table1)andinAppendix1directlyusemetricvalues,someofwhicharenegative,asradii.

KuramotoModelApopulationofneuronscanberepresentedasasetofoscillators.TheKuramotomodel(Kuramoto,1984)isonesuchneuronaloscillatormodelandhasbeenextendedtocapturetheeffectsofdeepbrainstimulationonhighlysynchronizedthalamicneuronalpopulations,likethoseofessentialtremorandParkinson’sdiseasepatients(Tass,2003).Inthissection,themodelwillfirstbeexplained;subsequently,theuseofthemodelinthisprojectwillbeoutlined.Tass’Kuramotomodelcapturesfourneuronalqualities–thattheyfire1.regularly,2.synchronously,3.noisily,and4.responsibly(toDBS).Let𝜃^ denotethephaseofthei-thoscillatorinasimulationofthemodel.Then,Equation16showstheupdateruleforthephaseofasingleoscillator,withthelastfourtermscorrespondingtothefouraforementionedqualities.

𝜃^ ← 𝜃^ + 𝑑𝑡 𝜔^ + 𝐾𝑟 sin 𝜓 − 𝜃^ + 𝛼𝒩 0, 𝑑𝑡 + 𝛽𝑧 𝜃^ 𝑢^ 𝑡

Equation16:UpdateRuleforExtendedKuramotoModel

Withsuchaframework,aneuronisassumedtospikeregularlyatagivenfrequency,𝜔^;aspikeisthenmodelledasthecompletionofacyclebyanoscillator,wherethetimetheoscillatortakestocompleteeachcycleisgivenbytheinverseofitsfrequency,i.e.itsperiod.Figure8visualizesapopulationof10oscillatorsorbitingclockwise;inthisvisualization,onecanassumethatanoscillatorspikeswhenitcrossesthe0°mark.

Figure8:VisualizationofNeuronalOscillators

AnotherfeatureoftheKuramotomodelisthatitmodelsthesynchronyofapopulationofneurons.Thestrengthofsynchronyismodulatedbythecoupling

Page 23: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

23

factor,K.InEquation16,thecouplingterm,𝐾𝑟 sin 𝜓 − 𝜃^ ,includestwoorderparametersthatarecalculatedateachtimestep:𝜓,whichisthepopulation’smeanphase,and𝑟 ∈ [0,1],whichisthemagnitudeofthemeanvectorofthephasesplottedontheunitcircleandrepresentsthecoherenceofthepopulation’sphases.rcloseto1meansthepopulationishighlysynchronized(Equation17).

𝜓 =1𝑁 𝜃^

j

^`\

𝑋 =1𝑁 cos 𝜃^

j

^`\

, 𝑌 =1𝑁 sin 𝜃^

j

^`\

𝑟 = 𝑋9 + 𝑌9Equation17a-c:OrderParametersforKuramotoModel

Intuitively,thecouplingterm“speedsup”oscillatorsthatare“behind”themeanphase,𝜓,and“slowsdown”thosethatareaheadofthemeanphase.Forinstance,ifthei-thoscillatoris“behind”themeanphase,then𝜓 − 𝜃^ > 0,makingthesintermpositiveandthusthewholecouplingtermcontributesanincreasetothephase𝜃^ intheupdaterule(Equation16).ThemodelalsocapturesthenoisinessofneuronalspikingbyaddingGaussiannoisewithameanof0andastandarddeviationof 𝑑𝑡,whichensuresthattheeffectofthenoisedoesnotdependonthesizeofthetimestep,andthenscalingtheGaussiannoisebythenoiseconstant,𝛼.Finally,theextendedmodelincorporatesDBSinthelasttermoftheupdaterule.Thefunction,𝑧 𝜃^ : 0,2𝜋 → [0,1],representsthephaseresponsefunctionofanindividualneuron,aspreviousworkhasdemonstratedthataneuron’sresponsetostimulationisphase-dependent(Best,1979;Guttmanetal.,1980).Typically,intheliterature,thephaseresponsefunctiontakesonasinusoidfunction,i.e.𝑧 𝜃^ =cos 𝜃^ (Tass,2003).Notethatthisissimilaryetnotthesameasthechangeinphaseofanaggregatepopulationofneuronsorthatofabehavioraloutputlikeahandtremor.Beingabletoderiveanappropriatephaseresponsefunctionofanindividualneuronfromaggregatepopulationsremainsanareaofactiveresearch(Netoffetal.,2012;WilsonandMoehlis,2015).Next,thestimulationfunction𝑢^(𝑡)denoteswhetherthei-thoscillatorisstimulatedattimet(Equation18).Theparameterizationof𝑢^ 𝑡 byoscillatorallowsforDBStoeffectonlyasub-populationofoscillators.Lastly,theDBSstrengthparameter,𝛽,scalesthephase-dependentandoscillator-specificeffectofDBS.

𝑢^ 𝑡 = 1, ifoscillator𝑖isstimulatedattime𝑡0, otherwise

Equation18:Tass,2003’sStimulationFunction

Page 24: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

24

ThisextendedKuramotomodelcanbeusedtomodeltremoramplitudebyaveragingthecosinepartsofthephases(Equation19).

𝑎 𝑡 =1𝑁 cos[𝜃^(𝑡)]

j

^`\

Equation19:ModelingTremorAmplitude

Insummary,thefreemodelparametersareoscillatorfrequencies,{𝜔^|𝑖 = 1,… ,𝑁},thecouplingconstant,K,thenoiseconstant,𝛼,andtheDBSstrengthconstant,𝛽.Additionally,thenumberofoscillators,N,andthesizeofthetimestep,dt,mustbechosen.With𝛽 = 0,theupdateruleisreducedtothetypicalformulationoftheKuramotomodel;thus,theDBStermwastheprimarytheoreticalextensionfromTass’work.

StimulationFunctionExtensiononTass,2003First,forthisproject,theassumptionismadethatstimulationinstantaneouslyaffectsoscillatorsatthesametime;thebinaryindicatorfunction,𝑖 𝑡 ,indicatesifwhenstimulationisbeinggivenattimet(Equation20).Furtherworkcouldbedonetoexploreusingdifferenttimedelaysfordifferentoscillators,simulatingthetimeittakesforapulsetotraveltoaneuron.

𝑖 𝑡 = 1, ifstimulationisgivenattime𝑡0, otherwise

Equation20:IndicatorFunctionforStimulation

Forthisproject,fourdifferentstimulationfunctions𝑢^ 𝑡 weretestedtoinvestigatemorebiologicallyplausiblemodelsofDBS.Unlessotherwisespecified,throughouttherestofthedissertation,𝑢^ 𝑡 intheupdaterule(Equation16)willbedenoted𝑢∗ 𝑖, 𝑡 wheretheasteriskindicateswhichstimulationeffectfunctionisbeingused.Astimulationfunction𝑢∗ 𝑖, 𝑡 (Equation21)capturesifstimulationisbeinggivenattimetwiththeindicatorfunction𝑖 𝑡 aswellaswhatkindofeffectstimulationhasonapopulationofneuronswithastimulationeffectfunction𝑠∗(𝑖).

𝑢∗ 𝑖, 𝑡 = 𝑖 𝑡 ×𝑠∗(𝑖)Equation21:GeneralformforStimulationFunction

First,auniformstimulationeffectfunction,𝑠� 𝑖 ,thatdecoupledDBSstrengthfromthenumberofoscillators,wasdeveloped(Equation22).Using𝑠� 𝑖 ,theuniformstimulationfunction𝑢t 𝑖, 𝑡 ismostsimilartotheoneusedinTass,2003,exceptthatitassumesthatstimulationaffectsalloscillatorsinstantaneously.

𝑠� 𝑖 =1𝑁

Page 25: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

25

Equation22:UniformStimulationEffectFunction

Next,arandomstimulationeffectfunction,𝑠U 𝑖 ,wasdevelopedinanattempttocapturetheeffectthatathalamicneuron’sresponsetoDBSislikelyproportionaltoitsdistancefromtheDBSelectrode.ThisfunctionfirstdrawsNsamplesfromthestandarduniformdistributionandthennormalizesthem(Equation23).TheweightsofDBSstimulationeffectarefixedafterthesimulationisinitialized,whentheNuniformsamplesaredrawnandnormalized.

𝑥^ ← 𝒰 0,1 𝑠U 𝑖 =

𝑥^𝑥�j

�`\

Equation23a-b:RandomStimulationEffectFunction

Additionally,a“half”stimulationeffectfunction,𝑠� 𝑖 ,ispresentedinordertonaivelymodelthephenomenonthattwoneuronalpopulations,oneinthemotorcortexandoneinthethalamus,mightcontributetoParkinsonian-liketremor;however,onlythethalamusisstimulated;thus,DBSshouldonlyeffectonepopulation(Equation24).

𝑠� 𝑖 = 2𝑁 , if𝑖 ≤

𝑁2

0, otherwise

Equation24:HalfStimulationEffectFunction

Lastly,a“mixture”stimulationfunction,𝑠� 𝑖 ,attemptstocapturebothqualitiesoftherandomand“half”stimulationfunctions(Equation25).

𝑦^ ← 𝒰 0,1 , if𝑖 ≤ 𝑁2

0, otherwise

𝑠� 𝑖 =𝑦^𝑦�j

�`\

Equation25:MixtureStimulationEffectFunction

Notethatforallfunctions,, 𝑠∗ 𝑖 = 1j

^`\ .ThisnormalizationwasaddedtomakeDBSstrengthindependentfromNandtomakethestimulationeffectfunctionscomparabletooneanother,asthesameamountofDBSisdistributedtoalloscillators.

OptimizedModelParametersIncollaborationwithlabmemberDr.GihanWeerasinghe,modelparametersparameterswerefoundviaanon-linearoptimizationthatminimizedtheleast

Page 26: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

26

squareerrorbetweenqualitiesofthemodel-generateddataandthoseofonepatientwhosehandtremorwasrecordedintheabsenceofDBS(thepatientwasincludedintheCagnanetal.,2013study).Theoptimizationfittedthemodelbasedonthefollowingtwoqualities:1.thepowerspectrumofthedata,and2.theprobabilityofobtainingaparticulartremoramplitude.WhenusingN=10oscillators,theseoptimizedmodelparameterswerefound:𝜔^ ← 𝒩(𝜇 = 32.3319, 𝜎 = 2.5804),𝐾 =1.89753,and𝛼 = 2.66466.Giveninradianspersecond,themeanangularfrequencyfromwhichoscillatorfrequenciesweredrawncorrespondsroughlytoabitmorethan5Hz,whichisclosetothenatural4-6HzfrequencyatwhichParkinsonianandessentialtremorsoccur.Unlessotherwisenoted,theaboveparameterswereusedinsimulationsreportedintheResultssection.

SimulatingPhase-LockedDBSUnlessotherwisespecified,modelsimulationsexplainedintheResultssectionusedtheaforementionedoptimizedparametersaswellasthefollowingparameterschosenapriori:𝛽 = 0.5,𝑑𝑡 = 1/2048,𝑁 = 10.Additionally,unlessotherwisenoted,modelsimulationsweredesignedtomimictheexperimentalset-up,withasimulationblockconsistingof1secondofnostimulationfollowedby5-secondsofphase-locked130Hz,6-pulsestimulationat12phases,i.e. 0°, 30°, … ,330° .ThephaseatwhichDBSwaslockedtowassimplythemeanphaseoftheoscillatorpopulation,whichwascalculatedateachtimestep(Figure9,3rdrow).Atthestartofeachblock,phaseswereuniformlydrawnfromtheinterval 0,2𝜋 .Similartotheexperimentaldesign,9blocksweresimulatedforeachofthe12phases.Similarpreprocessingwasconductedonthesimulateddata:whilethesimulateddatawasnotresampledto1000Hzliketheexperimentaldata,itwasband-passfilteredbetween3-6Hzinthesameway(Figure9,2ndrow).Theamplitudeandinstantaneousfrequencywerealsocalculatedinthesamefashionandthesamechangesinamplitude,frequency,andphasemetricswerecalculatedonthesimulatedblocksaswellasthesamestatisticalanalysis.Theprincipalaimofthesimulationswastoreproducethesameeffectsobservedintheexperimentaldatabyprimarilyinvestigatingwhatphaseresponsecurveyieldedthemostexperimentally-consistentresults.AdditionalanalysiswasconductedtoexplorethelimitsofthemodelinexplainingtheexperimentaldataandisdescribedintheResultssection.

Page 27: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

27

Figure9:SimulatedBlockwithPhasicStimulationat240°usingDefaultParameters

(1strow)Simulated,unfilteredtremoraccelerationsignal,calculatedusingEqn19.(2ndrow)Filtered tremorsignalandamplitude(orange line).The tremorsignal fromthe1st rowwasband-passed filtered between 3Hz and 6Hz; the tremor amplitude was derived via theanalyticalsignal. (3rd row).35msof130HzDBSwasadministeredwhenthe filtered tremorsignalpassedthe240°phase,astrackedinthe4throw.(4throw)Meanphaseoftheoscillatorpopulation. (5th row) Coherence metric. r connotes how synchronized the population ofoscillatorsis.

Page 28: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

28

ExtendedKuramotoModelOnlineSimulationTool&TutorialAspartofapublicengagementeventwithlocalOxfordshirehighschoolstudents,anonlinesimulationofthemodelusedinthisprojectwasbuilt(Fong,2016b).Itwasalsousedforresearchtoqualitativelyunderstandthemodelandobservehowcertainparameterchangesaffectedthemodel.Additionally,anintuitiveonlinetutorialofthemodelwasdeveloped(Fong,2016c).Appendix4providesmoredetailsaboutthetool.

Page 29: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

29

Results

AnalysisofExperimentalDataAnanalysisofthechangeinamplitude,frequency,andphaseforall107experimentalblocksdemonstratedastatisticallysignificantphase-dependentsuppressionoftremorwhenphase-lockedDBSisadministeredaround210°-240°.Thechangeinamplitude,frequency,andphasewerecalculatedaccordingtothemetricsdescribedintheMethodssection.

ChangeinAmplitude,Frequency,andPhaseCurvesWhenthechangeintremoramplitudeforallblocksareplotted(Figure10,1strow),thereappearstobeasuppressiveeffectat120°and240°andanamplifyingeffectat30°,whichdiametricallyopposes210°.Notethatallbuttwo240°blocksyieldedatremor-suppressiveeffect,andallbutthree210°blocksdidthesame.Whenthechangeininstantaneousfrequencyofthefilteredtremoramplitudeforallblocksareplotted(Figure10,2ndrow),thereappearstobeamaximumpeakat240°andaminimumpeakat60°,whichdiametricallyopposes240°.Whenthechangeinphaseforallblocksareplotted(Figure10,3rdrow),thereisaglobal,maximumpeak240°andglobal,minimumpeakat60°,whichdiametricallyopposes240°.Therealsoisalocal,maximumpeakat150°andalocal,minimumpeakat180°.Mostnotably,at240°,themosttremor-suppressingphaseatwhichtophase-lockDBSto,thetremor-suppressingeffectcapturedinthechangeinamplitudecurveiscorrelatedwithamaximalspeed-upinfrequencyandphase.

Page 30: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

30

Figure10:ChangeinAmplitude,Frequency,andPhaseofExperimentalData

Thechangeinamplitude(inm/s2),∆𝑎(1strow),frequency(inHz),∆𝑓(2ndrow),andphase(indegrees),∆𝜃(3rdrow),werecalculatedforall107experimentalblocksandplottedabove(bluecircles).Linearinterpolationsofthemedian∆𝑎, ∆𝑓,and∆𝜃foreachphaseofstimulationwereplotted(orangelines)alongwithstandarderror.

Page 31: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

31

SignificanceTestingTotestwhetherthepalpablesuppressiveeffectsinthechangeintremoramplitudeaswellastheseemingly-phasedependentchangeinfrequencyandphasemetricsarestatisticallysignificant,theweightedMoore-RayleighandScaledRayleighpermutationtestswereused.Foreachtestrun,100,000sampleswithasamplesizeof100–comparableinsizetothe107experimentalblocks–wereusedtogeneratethenulldistributionwithwhichtocomparethecriticalzscoreoftherelevanttestto. p-value Phaseofresultantvector Moore-

RayleighScaledRayleigh

Moore-Rayleigh

ScaledRayleigh

∆𝒂 0.0056 0.0067 31.7° 30.9°−∆𝒂 0.0190 0.0065 216.6° 210.9°∆𝒇 0.0470 0.0422 241.3° 240.6°∆𝜽 0.0104 0.0130 232.6° 222.7°

Table1:p-valuesandResultPhasesfromMoore-RayleighandScaledRayleighSignificanceTestingofChangeinAmplitude,Frequency,andPhaseofExperimentalData

Accordingtothesetests,therewassignificantnon-uniformity(p<0.05)forallmetrics(Table1).Testswereconductedforthenegativechangeinamplitude,−∆𝑎,totestsignificantdepression,asopposedtosignificantamplification(Figure11,topplot).Thetestforchangeinamplitude,∆𝑎,stillprovidessomeinformationastothedirectionofthenon-uniformity.Thediametricallyoppositephasesofthosetest’sphasesoftheresultantvector,31.7°and30.9°fortheMoore-RayleighandScaledRayleightests,are211.7°and210.9°respectively.Thephasesofthetests’resultantvectorsareallwithintherange210°-242°.Notethatthesephasesarenotthemselvesstatisticallysignificantmetricsbutsimplyshowthemeandirectionofweightednon-uniformity.Theyarelikelyskewedtobelessthan240°becausethereisasmalltremorsuppressingeffectfor120°phase-lockedDBS.Figure11visualizesthetremorsuppressiveeffect,aswellasthecorrelatedamplificationofchangeinfrequencyandphase,whenDBSisphase-lockedaround210°-240°,astherearemanymoredatapointswithgreatermagnitudesinthethirdquadrant(correspondingto180°-270°)thanintheotherquadrants.

Page 32: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

32

Figure11:VisualizationsofMoore-RayleighTestforNegativeChangeinAmplitude,Changein

Frequency,andChangeinPhase

Page 33: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

33

The z-score normalized values of the negative change in amplitude (top plot), change infrequency(middleplot),andchangeinphase(bottomplot)metricsforall107experimentalblocksareplottedbytheirphasesontheunitcircleaspolarcoordinates,i.e. 𝜃^, −∆𝑎^ , (𝜃^, ∆𝑓 ),and(𝜃^, ∆𝜃^)respectively.Themetricsforthe8-9blocksassociatedtoasamephasearecoloredby the same color. “+”markers denote a positivemetric valuewhile “o”markers denote anegativemetricvalue;negativevaluesareplottedinthedirectionofthediametrically-oppositephase. The p < 0.05 threshold from theMoore-Rayleigh permutation test is plotted as thedottedredcircle,andtheMoore-Rayleighcriticalz-scoreoftheexperimentaldataisplottedasthemagnitudeoftheblackvector,whosephasedenotesthephaseoftheresultantvector.Forspaceefficacy,thevisualizationisrestrictedtoplotpointswithmagnitudeslessthan1.5.

CorrelationamongChangeinAmplitude,Frequency,andPhaseChangeinamplitudeisnegativelyrelatedtochangeinfrequencyandchangeinphase;whilechangeinfrequencyandchangeinphasearestronglypositivelycorrelated.Thecorrelationcoefficientsandcorrespondingp-valueswerecomputedbetweenthe107changeinamplitudevaluesandthoseofthechangeinfrequencymetric;thesamecomparisonwasdonefortheotherpairingsofthethreemetrics(Table2).Thestrong,positivecorrelationbetweenchangeinfrequencyandchangeinphaseistobeexpected,asthechangeinphasemetricissimplyadifferentmethodforcalculatingfrequency(byunwrappingtheactualphaseofthefilteredtremorsignal). R(correlation

coefficient)p-value

∆𝒂vs.∆𝒇 -0.4077 1.3052×10�a�∆𝒂vs.∆𝜽 -0.4021 1.7618×10�a�∆𝒇vs.∆𝜽 0.6735 1.8956×10�\�

Table2:CorrelationbetweenChangeinAmplitude,Frequency,andPhaseofIndividualExperimentalBlocks

Thecorrelationcoefficientsandp-valuesofcorrelationwerecomputedonthe107valuesofthechangeinamplitude,frequency,andphasemetrics.

Fromtheanalysisofexperimentaldata,phase-lockedDBSaround240°bestsuppressestremor(Figure10,1strow).Furthermore,tremorsuppressionaround240°correspondstomaximalincreasesinfrequencyandphaseacrossallphases(Figure10,2ndand3rdrows).

AnalysisofModelledData

PredictingaConsistentTremorSuppressiveModelAssumethatallthalamicneuronsrespondtoDBSinexactlythesamephase-dependentfashion,thatis,thattheeffectofDBSononeneuronataparticulartimeisidenticaltothatonanotherneuron.Then,basedonTass,2003extensionoftheKuramotomodel,assumingthatDBSaffectsalloscillatorsindiscriminatelyandinstantaneously,themostoptimalphaseatwhichtostimulateshouldbethephase

Page 34: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

34

atwhichthephaseresponsecurve(PRC)functionofanindividualneuron,𝑧 𝜃^ ,hasthesteepest,positiveslope(WilsonandMoehlis,2014).

Figure12:CosineCurveasIndividualNeuron’sPhaseResponseCurve(PRC)

SupposethatthePRCforalloscillatorswas𝑧 𝜃^ = cos(𝜃^)(Figure12).Then,theslopeofthePRCismoststeeplypositive,i.e.𝑧′ 𝜃^ ,thederivativeofthePRC,hasamaximumpoint,atphase270°.IfapopulationofKuramotooscillatorswiththecosinefunctionasitsPRCis“stimulated”whenthepopulation’smeanphaseis270°,theoscillatorswillbecomemoredesynchronized.Thisisbecausetheoscillatorswithphasesgreaterthan270°willspeedup,because𝑧 270° + 𝜀 > 0,whiletheoscillatorswithphaseslessthan270°willslow,because𝑧 270 − 𝜀 < 0(Figure13).

Page 35: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

35

Figure13:DiagramoftheOptimalStimulationStrategyfortheKuramotoModel

Kuramotooscillators(orangecircles)areoscillatingcounter-clockwise(indicatedbythegrayarrow).Iftheoscillators’PRCfunctionis𝑧 𝜃^ = cos(𝜃^),thentheoptimalphaseofstimulationiswhenthemeanphaseoftheoscillatorsisequalto270°.Thisisbecausetheoscillatorswhosephasesaregreaterthan270°willspeedupwhilethosewhosephasesarelessthan270°willslowdown,therebydesynchronizingthepopulation.

BasedonthisinterpretationoftheextendedKuramotomodel,tomodelmaximaltremorsuppressionat240°aswasobservedintheexperimentaldata,aPRCsuchas𝑧 𝜃^ = cos(𝜃^ +

��)shouldbeused,becausethecurveismostpositivelyslopedand

crossesthey-axisat240°(Figure14).

Figure14:DefaultPRCfunction,𝒛 𝜽𝒊 = 𝐜𝐨𝐬(𝜽𝒊 +

𝝅𝟔),forExtendedKuramotoModel

Page 36: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

36

DefaultParametersforExtendedKuramotoModelUnlessotherwisementioned,thefollowingdefaultparametersareusedtosimulatetheKuramotomodel(Equation16).TheseparameterswerefoundviaanoptimizationthatchosetheparametersthatbestsimulatedtremorsignalofanessentialtremorpatientintheabsenceofDBS:

• Initialphasesofoscillators=𝜃^ ← 𝒰( 0,2𝜋 )• Angularfrequencyofoscillators:𝜔^ ← 𝒩(𝜇 = 32.3319, 𝜎 = 2.5804),• Couplingconstant:𝐾 = 1.89753,• Noiseconstant:𝛼 = 2.66466,

Theseparameterswerefixedapriori:

• Numberofoscillators:𝑁 = 10,• Timestep:𝑑𝑡 = 1/2048,• DBSstrengthconstant:𝛽 = 0.5,• PRCfunction:𝑧 𝜃^ = cos(𝜃^ +

��),

• Stimulationfunction:𝑢� 𝑖, 𝑡 = 𝑖 𝑡 × \j

Tosimulatetheexperimentaltrial,6-secondblocksoftheKuramotomodelweresimulated,inwhich1secondofnostimulationwasfollowedby5secondsof130Hz,6-pulsestimulationlockedtoaspecificphase.108blocksweresimulated,9blocksforeachofthe12phases,i.e. 0°, 30°, … ,330° .9,6-secondreferenceblocks,inwhichnoDBSwasadministered,werealsosimulatedandusedasabaselinetocomparewithwhichtocomparethephase-locked-DBSsimulatedblocks.SeetheMethodssectionformoredetailsonhowparameterswerechosenandthesimulationswereexecuted.

ResultsusingDefaultParametersWhensimulatingtheexperimentalset-upusingtheextendedKuramotowiththeaforementioneddefaultparameters,statisticallysignificanttremorsuppressionwasobserved(Table3).However,themodelfailedtoprovideanexplanationforthesimulatedsuppressionthatwasconsistentwiththeexperimentaldatafortremorsuppression.ChangeinAmplitude,Frequency,andPhaseThesamechangeinamplitude,frequency,andphasemetricswerecomputedonthesimulatedaswasdoneontheexperimentaldata.Fromthechangeinamplitudecurve,tremorsuppressionappearedstrongestinsimulatedblocksinwhichDBSwasphase-lockedto180°-270°(Figure15,1strow).Thisbroadsuppressioneffectforphases180°-270°differsfromthatobservedinthe

Page 37: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

37

experimentaldata(Figure10,1strow),whichhadasmallsuppressiveeffectatphase150°andanotherat240°.Whiletherelationshipbetweenthechangeinamplitude(Figure15,1strow)andchangeinfrequencycurves(Figure15,2ndrow)isnotapparentwithoutfurtheranalysis,tremorsuppressionforphase-lockedstimulationat180°-270°(Figure15,1strow)appearscorrelatedtothepositiveslopeandzero-crossinginthechangeinphasecurveat180°-270°(Figure15,3rdrow).Quantitatively,Table6confirmsthisrelationshipandshowsthatthechangeinamplitude,∆𝑎,isnegativelycorrelatedtothederivativeapproximationofthechangeinfrequency, �

��(∆𝑓),(𝑅 = −0.64, 𝑝 =

0.02)aswellastothederivativeapproximationofthechangeinphase, ���(∆𝜃)

(𝑅 = −0.76, 𝑝 = 0.004).

Page 38: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

38

Figure15:ChangeinAmplitude,Frequency,andPhaseofSimulatedDatausingDefaultParameters

The change in amplitude (m/s2), ∆𝑎 (1st row), frequency (Hz), ∆𝑓 (2nd row), and phase(degrees),∆𝜃(3rdrow),werecalculatedforall108simulatedblocksandplottedabove(redcircles).Linearinterpolationsofthemedian∆𝑎, ∆𝑓,and∆𝜃foreachphaseofstimulationwereplotted(bluelines)alongwiththestandarderror.Themedianchangeinamplitude,frequency,andphaseforthe9referenceblocksofnostimulationwerealsoplotted(orangelines).

SignificantTestingThesameweightedRayleightestswereusedtodeterminewhethertherewassignificantnon-uniformityinthechangeinamplitude,frequency,andphasecurvesforthesimulateddata.Thesetestsreportquitehighconfidenceinanon-uniform

Page 39: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

39

effectforallcurves(Table3).Whilenotarigorousstatistic,thephasesoftheresultantvectorsfromthesetestsforchangeinamplitude(Table3)comparedtothoseoftheexperimentaldata(Table1)suggestthatthemodelmayroughlyhaveasimilartremorsuppressioneffectaround210°-240°.However,thephasesoftheresultantvectorsforchangeinfrequencyandphasetestsonthesimulateddata,i.e.320°-330°,arenearlyperpendiculartothoseforthecorrespondingexperimentaltests,i.e.220-240°.Thissuggeststhatthemodelmaynotexplainthephase-dependenttremorsuppressionofthisparticularpatient.VisualizationsoftheMoore-Rayleightestforthenegativechangeinamplitude,changeinfrequency,andchangeinphaseareprovidedinFigure16. p-value Phaseofresultantvector Moore-Rayleigh ScaledRayleigh Moore-Rayleigh ScaledRayleigh∆𝒂 < 10�� < 10�� 34.8° 36.4°−∆𝒂 < 10�� < 10�� 214.8° 216.4°∆𝒇 10�� 10�� 323.8° 328.5°∆𝜽 < 10�� < 10�� 323.0° 321.7°

Table3:p-valuesandResultPhasesfromMoore-RayleighandScaledRayleighSignificanceTestingofChangeinAmplitude,Frequency,andPhaseofSimulatedDatausingDefaultParameters

Page 40: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

40

Figure16:VisualizationsofMoore-RayleighTestforNegativeChangeinAmplitude,Changein

Frequency,andChangeinPhaseofSimulatedDatausingDefaultParameters

Page 41: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

41

The z-score normalized values of the negative change in amplitude (top plot), change infrequency(middleplot),andchangeinphase(bottomplot)metricsforall108simulatedblocksareplottedbytheirphasesontheunitcircleaspolarcoordinates,i.e. 𝜃^, −∆𝑎^ , (𝜃^, ∆𝑓 ),and(𝜃^, ∆𝜃^)respectively.Themetricsforthe8-9blocksassociatedtoasamephasearecoloredbythesamecolor.“+”markersdenoteapositivemetricvaluewhile“o”markersdenoteanegativemetricvalue;negativevaluesareplottedinthedirectionofthediametrically-oppositephase.Thep<0.05thresholdfromtheMoore-Rayleighpermutationtestisplottedasthedottedredcircle, and the Moore-Rayleigh critical z-score of the experimental data is plotted as themagnitudeoftheblackvector,whosephasedenotesthephaseoftheresultantvector.Forspaceefficacy,thevisualizationisrestrictedtoplotpointswithmagnitudeslessthan1.5.

ComparisontoExperimentalDataToquantifythedifferencebetweenthesimulatedandexperimentaldata,thePearson’scorrelationcoefficientswerecomputedbetweenthecorrespondingchangeinamplitude,frequency,andphasecurvesofthesimulatedandexperimentaldata(Table4).Thereisasignificantlinearcorrelationbetweenthechangeinamplitudeeffectsinthesimulatedandexperimentaldata,butnosuchrelationshipbetweenthechangeinfrequencyorphase.

R(correlationcoefficient) p-value∆𝒂𝒆𝒙𝒑vs.∆𝒂𝒔𝒊𝒎 0.6437 0.0239∆𝒇𝒆𝒙𝒑vs.∆𝒇𝒔𝒊𝒎 0.0226 0.9445∆𝜽𝒆𝒙𝒑vs.∆𝜽𝒔𝒊𝒎 -0.0093 0.9770

Table4:CorrelationsbetweenMedianChangeinAmplitude,Frequency,andPhaseofExperimentalDataandthoseofSimulatedDatausingDefaultParameters

Thecorrelationcoefficientsandp-valuesofcorrelationwerecomputedbetweenthe12medianvaluesofthechangeinamplitude,frequency,andphasemetricsoftheexperimentaldataandthe12medianvaluesofthesamemetricsofthesimulateddatausingdefaultparameters.

Withinboththesetofexperimentalblocksandthesetofsimulatedblocks,thecorrelationcoefficientsamongthedifferentmetricswerealsocomputed(Table5).Whilethereweresignificant,inversecorrelationsbetweenchangeinamplitudeandchangeinfrequency(∆𝑎vs.∆𝑓)aswellaschangeinamplitudeandchangeinphase(∆𝑎vs.∆𝜃)amongexperimentalblocks,therewereonlyweak,positivecorrelationsamongthesamepairsofmetricsamongsimulatedblocks. R(correlationcoefficient) p-value Experimental Simulated Experimental Simulated∆𝒂vs.∆𝒇 -0.4077 0.1567 1.31×10�a� 0.1053∆𝒂vs.∆𝜽 -0.4021 0.0265 1.76×10�a� 0.7857∆𝒇vs.∆𝜽 0.6735 0.6955 1.90×10�\� 6.69×10�\¦

Table5:CorrelationbetweenChangeinAmplitude,Frequency,andPhaseofIndividualExperimentalBlocksandIndividualSimulatedBlocksusingDefaultParameters

Thecorrelationcoefficientsandp-valuesofcorrelationwerecomputedonthe107valuesofthechangeinamplitude,frequency,andphasemetricsoftheexperimentaldata(Table2)andonthe108correspondingvaluesofthemodelleddatausingdefaultparameters.

Page 42: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

42

Lastly,forbothexperimentalandsimulateddata,the12medianvaluesofeachcurve,correspondingtothe12phasesDBSwaslockedto,werecorrelatedwitheachother(Table6).Additionally,themedianvaluesofthechangeinamplitudecurvewascorrelatedwithapproximationsofthederivativesofthechangeinfrequencyandinphase.Thederivativeapproximationforamedianvalueatphase𝜃wascomputedbytakingthedifferencebetweenthemedianvalueatphase𝜃 + 30°andthatatphase𝜃 − 30°.Intheexperimentaldata,changeinamplitudeisstrongly,negativelycorrelatedwithchangeinfrequencyandphase.Incontrast,inthesimulationdata,changeinamplitudeisstrongly,negativelycorrelatedwiththederivativeapproximationsofchangeinfrequencyandphase.ThisisexpectedbyWilsonandMoehlis,2014,whichexplainsthattheoptimalphasicDBSstrategyshouldbetostimulateatthephaseatwhichthePRChasapositivezero-crossing,thatis,whereitsderivativeismostpositive.Whilelatersimulationsdemonstratethepopulation’schangeinphasecurveisanon-lineartransformationoftheindividualPRCfunction,thechangeinfrequencyandphasecurvesaresimplypopulationmetricsofthesameconceptthatthePRCfunctionisanindividualoscillator’smetricfor.

R(correlationcoefficient) p-value Experimental Simulated Experimental Simulated∆𝒂vs.∆𝒇 -0.7427 -0.0842 0.0057 0.7947

∆𝒂vs. 𝒅𝒅𝜽(∆𝒇) -0.4774 -0.6447 0.1166 0.0236

∆𝒂vs.∆𝜽 -0.6869 0.0364 0.0136 0.9106∆𝒂vs. 𝒅

𝒅𝜽(∆𝜽) -0.4367 -0.7602 0.1558 0.0041

∆𝒇vs.∆𝜽 0.8246 0.7752 0.000967 0.0031Table6:CorrelationsamongMedianChangeinAmplitude,Frequency,andPhaseaswellasSelectDerivativeApproximationsofExperimentalandSimulatedBlocksusingDefaultParameters

For both experimental and simulated data, the correlation coefficients and p-values ofcorrelationwere computedon the12medianvaluesof the followingpairings:1. change inamplitudeandchangeinfrequency,2.changeinamplitudeandthederivativeapproximationofchangeinfrequency,3.changeinamplitudeandchangeinphase,4.changeinamplitudeandthederivativeapproximationof change inphase,and5. change in frequencyandchange inphase.

Thesequantifiabledifferencesbetweentheexperimentalandsimulateddatasuggestthatthemodeldoesnotexplainphase-dependentsuppressionforthepatientfromwhichtheexperimentaldatawasrecorded.Whileitcapturesphase-dependentsuppression,theextendedKuramotomodelproposestheoptimalphaseatwhichtostimulateistheoneatwhichthereisapositive,zero-crossinginitschangeinfrequencyorphase.Incontrast,intheessentialtremorpatientwithwhomthephase-lockedDBStrialwasconducted,theoptimalstrategyappearstobestimulatingatthephaseatwhichchangeinfrequencyorphaseismostpositive.

Page 43: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

43

ResultsusingDifferentStimulationFunctionsFromtheexperimentaldata,tremorsuppressionseemscorrelatedtothegreatest,positiveshiftinfrequencyorphase.ItwashypothesizedthatthegreatestphaseshifteffectyieldedthemosttremorsuppressionbecauseDBSdesynchronizedtwosub-populations,speedinguponlyaportionofneurons.Underthishypothesis,tremorwouldbemostsuppressedwhenasub-populationwasmostspeedupbyDBS.TotestthishypothesisandextendtheKuramotomodeltobettercapturethisrelationshipbetweentremorsuppressionandchangeinphase,afewmorebiologically-plausiblestimulationfunctionswereproposed.The“half”stimulationfunctionlimitstheeffectofDBStohalfoftheoscillatorpopulation;thiscapturesthefactthatboththethalamusandcortexcoordinatemotormovementsyetDBSonlyaffectsapopulationofthalamicneurons.The“random”stimulationfunctionrandomlyweightedtheeffectofDBSonindividualoscillators,simulatingthevaryingdistancesneuronsarefromtheDBSprobe.The“mixture”stimulationfunctionscombinesbothfeaturesfromthe“half”and“random”functions.Inthe“random”setting,desynchronizationwashypothesizedtooccurbetweenweaklyandstronglyDBS-affectedoscillators,whileinthe“half”setting,desynchronizationwasthoughttooccurbetweenthehalfsub-populationrepresentingDBS-affectedthalamicneuronsandtheotherhalf,representingunaffected,corticalneurons.SeetheStimulationFunctionExtensiononTass,2003sectionformoredetailsaboutthedifferentstimulationfunctions.Simulationsmodellingtheexperimentalset-upwereconductedusingeachoftheabovestimulationfunctions.TheMoore-Rayleightestdemonstratedsignificantnon-uniformeffects(𝑝 < 10��)forthechangeinamplitude,frequency,andphasecurvesofallsimulations.Oneconfirmationthatthesimulationswerebetterdescribingtheexperimentaldatawouldbeifthephasesoftheresultantvectorsofthedifferentmetricswereroughlyaround240°.However,whilethephasesoftheMoore-Rayleighresultantvectorsforthenegativechangeinamplitudecurveswereintherangeof213°-227.5°,thephasesoftheresultantvectorsforthechangeinfrequencyandphasecurveswereintherangeof315°-330°,a70°-90°shiftfrom240°.Likethesimulationusingdefaultparametersandtheuniformstimulationfunction,therewassignificantcorrelationbetweentheexperimentalandsimulatedchangeinamplitudecurvesyetnonebetweenthechangeinfrequencyandphasecurves(Table7).

R p-valueExpvs.Sim Uni Half Rand Mix Uni Half Rand Mix∆𝒂𝒆vs.∆𝒂𝒔 0.644 0.770 0.811 0.706 0.024 0.003 0.001 0.010∆𝒇𝒆vs.∆𝒇𝒔 0.023 -0.073 -0.080 0.071 0.944 0.821 0.804 0.825∆𝜽𝒆vs.∆𝜽𝒔 -0.010 0.180 0.119 0.022 0.977 0.576 0.713 0.945

Table7:CorrelationsbetweenMedianChangeinAmplitude,Frequency,andPhaseofExperimentalDataandthoseofSimulatedDatausingDifferentStimulationFunctions

Page 44: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

44

Thecorrelationcoefficientsandp-valuesofcorrelationwerecomputedbetweenthe12medianvaluesofthechangeinamplitude,frequency,andphasemetricsoftheexperimentaldataandthe12medianvaluesofthesamemetricsofthesimulateddatausingtheuniform(Uni),half(Half),random(Rand),andmixture(Mix)stimulationfunctions.

Similarly,unliketheexperimentaldata,whosechangeinamplitudeandchangeinfrequencyandphasecurveswerestrongly,negativelycorrelated,theonlystrongcorrelationswithinthesimulateddataforeachstimulationfunctionwasbetweenchangeinamplitudeandthederivativeapproximationofchangeinfrequencyandphase(Table8).

R p-value Uni Half Rand Mix Uni Half Rand Mix

∆𝒂vs.∆𝒇 -0.084 0.477 0.197 0.341 0.795 0.117 0.539 0.279∆𝒂vs. 𝒅

𝒅𝜽(∆𝒇) -0.645 -0.767 -0.682 -0.596 0.024 0.004 0.015 0.041

∆𝒂vs.∆𝜽 0.036 0.293 0.047 0.022 0.911 0.355 0.884 0.946∆𝒂vs. 𝒅

𝒅𝜽(∆𝜽) -0.760 -0.670 -0.878 -0.700 0.004 0.017 < 10�r 0.011

∆𝒇vs.∆𝜽 0.775 0.915 0.883 0.794 0.003 < 10�� < 10�� 0.002Table8:CorrelationsamongMedianChangeinAmplitude,Frequency,andPhaseaswellasSelectDerivativeApproximationsofExperimentalandSimulatedBlocksusingDefaultParameters

For simulated data using the four stimulation functions, the correlation coefficients and p-values of correlationwere computed on the 12median values of the following pairings: 1.change in amplitude and change in frequency, 2. change in amplitude and the derivativeapproximationofchangeinfrequency,3.changeinamplitudeandchangeinphase,4.changeinamplitudeandthederivativeapproximationofchangeinphase,and5.changeinfrequencyandchangeinphase.

Fromtheselimitedsimulations,thesestimulationfunctionsmaynotbeabletocapturethephase-dependentcorrelationbetweentremorsuppressionandpositivephaseshiftoftheexperimentalpatient.ChangeinAmplitudeCurvesWhenusingthe“half”stimulationfunction,thereappearstobeabroadtremor-suppressingeffectat180°-270°(Figure17,1strow).Incontrast,whenusingthe“random”stimulationfunction,thereappearstobeasharper,narrower,tremor-suppressingeffectat240°-270°(Figure17,2ndrow).Thisisalsomoresimilartotheclear,narroweffectobservedintheexperimentaldataat240°(Figure10,1strow);thechangeinamplitudecurveforthe“random”simulationisalsothemostcorrelatedwiththatoftheexperimentaldata(Table7).Lastly,thereisaweak,broadtremor-suppressingeffectinthe“mixture”simulation(Figure17,3rdrow).Morerepeatedsimulationswouldneedtobeconductedtorigorouslyanalyzewhichstimulationfunctionproducesachangeinamplitudecurvemostsimilartothatoftheexperimentaldata.Interestingly,thethreecurvesbelow(Figure17)showasmall,localminimumaround60°-90°similartothatintheexperimentaldataat120°(Figure10,1strow);

Page 45: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

45

however,unliketheexperimentaldata,thesedipsinthesimulateddataarestillweaktremor-amplifyingeffects,astheyareabovethereferencechangeinamplitudebaseline.

Page 46: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

46

Page 47: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

47

Figure17:ChangeinAmplitudeCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”Stimulationfunctions

Thechange inamplitude,∆𝑎,wascalculated forall108simulatedblocksgenerated ineachsimulationusingthe“Half”(1strow),“Random”(2ndrow),and“Mixture”(3rdrow)stimulationfunctionandplottedabove(redcircles).Whenusingeachofthesestimulationfunctions,linearinterpolationsof themedian∆𝑎foreachphaseof stimulationareplotted (blue lines)alongwiththestandarderror.Themedianchangeinamplitudevaluesforthe9referenceblocksofnostimulationarealsoplotted(orangelines).

Non-LinearTransformationfromIndividualPRCtoChangeinMeanPhaseofOscillatorPopulationTherewasapalpabledifferencebetweentheindividualPRCfunction(Figure14)usedbydefault,𝑧 𝜃^ = cos(𝜃^ +

��),whichrepresentsthephase-dependentshiftin

phaseofasingleoscillatorinresponsetoDBS,andthechangeinphasecurve(Figure15,3rdrow),whichcapturesthemeanphaseshiftoftheoscillatorpopulation.Theweaklycoupledinteractionsamongoscillatorswashypothesizedasthereasonforthisnon-linearrelationshipbetweentheindividualneuron’sPRCandthepopulation’schangeinphasecurve.Totestthishypothesis,simulationswereconductedthatvariedthenumberofoscillatorsfrom2to20andotherwiseusedthedefaultmodelparameters.Foreachsimulation,themeansquarederror(MSE)wascomputedbetweentheindividualPRCandthepopulation’smedianchangeinphasecurve(Figure18).Thereisastrong,positivecorrelationbetweenthenumberofoscillatorsusedandtheoscillatorpopulation’sdivergencefromtheindividualPRC.

Figure18:MeanSquaredErrorbetweenDefaultPRCFunctionandMedianChangeinPhaseinSimulated

DataasNumberofOscillatorsIncreases

Page 48: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

48

Using the default model parameters and only varying the number of oscillators used, theexperimental set-upwas simulated once for each𝑁 ∈ {2, … , 20} . Themean squared error(MSE)wascalculatedbetweenthedefaultPRCfunction,𝑧 𝜃^ = cos(𝜃^ +

��),whichrepresents

anindividualneuron’sphase-dependentresponsetoDBS,andthechangeinphasecurve,likethatinFigure15,3rdrow,fromthatsimulation.Thecorrelationcoefficientandcorrespondingp-valuewerecomputedbetweenthenumberofoscillators,𝑁,andtheplotted,correspondingMSE.

MedianchangeinphasecurvesforsimulationsusingN=2,5,and8oscillatorsareincludedinAppendix2:SimulatedChangeinPhaseCurveswithDifferentNumbersofOscillators,wherethedivergencecanbevisuallyobserved.Itisreasonablethatweakcouplingamongoscillatorswouldintroduceanon-lineartransformationbetweentheindividualPRCandthepopulationchangeinphase(WilsonandMoehlis,2015).ThiseffectaddsanotherlayerofcomplexitytousingtheextendedKuramotomodel,asatbest,onlyalargepopulationofneuronscanberecordedinthethalamusorcortex.Notethattheexperimentaldataisrecordingtremoramplitudeandphaseshiftsthere,notinthethalamusorcortex;thus,therelikelyisanothertransformationfromthethalamicand/orcorticalpopulationphaseshiftandthatobservedintremor.

ResultsusingExperimentalChangeinFrequencyandChangeinPhaseCurvesasPRCFunctionDespitethenon-lineartransformationdiscoveredabove,itwashypothesizedthatthemodelmaybeabletomodelthechangeinfrequencyandphasecurvesoftheexperimentaldataiftheywereusedasthePRCfunction.However,thesimulationsdescribedbelowshowthatwhileusingthesecurvesasPRCfunctionsproducedsomewhatqualitativelysimilarchangeinfrequencyandphasecurvestothoseoftheexperimentaldata,theywereunabletoreproducechangeinamplitudecurvesthatweresimilartothatoftheexperimentaldata.ThislastsetofsimulationsdemonstratesthelimitationoftheKuramotomodeltocapturetheoptimalphasicstrategythatworkedintheessentialtremorpatient;theKuramotosimulationscanonlymatchthechangeinamplitudecurveorthechangeinfrequencyorphasecurvesoftheexperimentaldata,butnotallthecurves.DirectlyUsingScaled,ExperimentalChangeinFrequencyCurveUsingallotherdefaultparameters,alinearinterpolationoftheexperimentalchangeinfrequencycurve(Figure10,2ndrow)wasscaledtorangefrom[−1,+1]andusedinamodelsimulationasthePRCfunction,𝑧(𝜃^)(Figure19).

Page 49: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

49

Figure19:Scaled,ExperimentalChangeinFrequencyCurveasPRCFunction𝒛(𝜽𝒊)forExtended

KuramotoModel

Thelinearinterpolationofthechangeinfrequencycurvefromtheexperimentaldata(Figure10, 2nd row) was scaled to range from −1,+1 and used as the PRC function𝑧(𝜃^) for asimulationoftheextendedKuramotomodel.

Qualitatively,thereappearedtobeabroadtremor-suppressingeffectat120°-210°(Figure20,1strow),whichisroughlya60°phaseshiftfromthetremor-suppressingeffectobservedintheexperimentaldataat240°(Figure10,1strow).However,similartotheexperimentaldata,thereisabroadpeakinthechangeinfrequencyandphasecurvesthatincludes210°-270°(Figure20,2ndand3rdrows).TheMoore-Rayleightestwasusedonthechangeinamplitude,frequency,andphasecurvesandshowedsignificantnon-uniformityinallcurves(𝑝 < 10�r).ThephasesMoore-Rayleighresultantvectorsforthenegativechangeinamplitude,changeinfrequency,andchangeinphasecurveswas156.1°,258.1°,and255.5°respectively.Thisfurthercorroboratesthequalitativeobservationsthat,whilethechangeinfrequencyandphasecurves,whenusingthescaled,changeinfrequencycurveasthePRCfunction,aremoresimilartothatoftheexperimentaldata,thetremor-suppressingeffectisnownolongerconsistentbetweenexperimentalandsimulateddata.

Page 50: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

50

Figure20:ChangeinAmplitude,Frequency,andPhaseCurvesofSimulatedDatausingScaled,

ExperimentalChangeinFrequencyCurve(Figure19)asPRCFunction

Thechangeinamplitude(inm/s2),∆𝑎(1strow),frequency(inHz),∆𝑓(2ndrow),andphase(indegrees),∆𝜃(3rd row),werecalculated forall108simulatedblocksandplottedabove (redcircles).Linearinterpolationsofthemedian∆𝑎, ∆𝑓,and∆𝜃foreachphaseofstimulationwereplotted(bluelines)alongwiththestandarderror.Themedianchangeinamplitude,frequency,andphaseforthe9referenceblocksofnostimulationwerealsoplotted(orangelines).

Fromcorrelationcoefficientscomputedbetweenmedianchangeinamplitudeandthederivativeapproximationsofthemedianchangeinfrequencyandphaseaswellasthosecomputedamongallthemedianmetrics,highcorrelativeeffectsareonlyobservedbetweenchangeinamplitudeandthederivativeapproximations.Thus,themodelstillpreservestherelationshipsamongthethreecurvesasshownearlier.

Page 51: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

51

Lastly,whileusingthisPRCfunctionappearedtoalignthechangeinfrequencyandphasecurvesmorewiththoseoftheexperimentaldata,therewasnosignificantcorrelationbetweenanyoftheexperimentalandsimulatedcurvesusingthisPRCfunction.DirectlyUsingScaled,ExperimentalChangeinPhaseCurveThescaledlinearinterpolationoftheexperimentalchangeinphasecurve(Figure10,3rdrow)wasalsousedinasimulation(Figure21).

Figure21:Scaled,ExperimentalChangeinPhaseCurveasPRCFunction𝒛(𝜽𝒊)forExtendedKuramoto

Model

Thelinearinterpolationofthechangeinphasecurvefromtheexperimentaldata(Figure10,3rdrow)wasscaledtorangefrom −1,+1 andusedasthePRCfunction𝑧(𝜃^)forasimulationoftheextendedKuramotomodel.

Thissimulationinducedatremor-suppressingeffectat120°(Figure22,1strow),incontrasttothetremor-suppressiveeffectat240°observedintheexperimentaldata(Figure10,1strow).Furthermore,itschangeinfrequencyandphasecurves(Figure22,2ndand3rdrows)arequitenoisyandflat.Yet,thechangeinfrequencycurveat120°(Figure22,2ndrow)appearstoadheretothetraditionalKuramotomodelexplanationofoptimaltremorsuppressionatthepositive,zero-crossinginchangeinphase.

Page 52: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

52

Moore-Rayleightestsdemonstratesignificantnon-uniformityinallcurves(𝑝 <0.05),withthephasesoftheresultantvectorsfor−∆𝑎,∆𝑓,and∆𝜃are137.7°,226.2°,and215.9°respectively.Thelattertophasesarewithin10°-15°tothephasesoftheresultantvectorsforstatisticaltestsontheexperimentalchangeinfrequencyandphasecurves(Table1).

Figure22:ChangeinAmplitude,Frequency,andPhaseofSimulatedDatausingScaled,Experimental

ChangeinPhaseCurve(Figure21)asPRCFunction

Thechangeinamplitude(inm/s2),∆𝑎(1strow),frequency(inHz),∆𝑓(2ndrow),andphase(indegrees),∆𝜃(3rd row),werecalculated forall108simulatedblocksandplottedabove (redcircles).Linearinterpolationsofthemedian∆𝑎, ∆𝑓,and∆𝜃foreachphaseofstimulationwere

Page 53: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

53

plotted(bluelines)alongwiththestandarderror.Themedianchangeinamplitude,frequency,andphaseforthe9referenceblocksofnostimulationwerealsoplotted(orangelines).

Forthissimulation,therewerenosignificant(𝑝 < 0.05)correlationsbetweentheexperimentalandsimulateddata.Therewerealsonosignificantcorrelationsbetweenthemedianchangeinamplitudecurveandthemedianchangeinfrequencyandphasecurvesorwiththederivativeapproximationsofthosecurves.

Page 54: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

54

DiscussionThisresearchdemonstratesclinicallyhowtofindanoptimalphaseatwhichphase-lockedDBSwouldbestdampentremorandshowscomputationallyhowaclassicneuraloscillatormodelfailstosufficientlyexplaintheoptimalstrategyinanessentialtremorpatient.Asclinicalresearchprogressestodemonstratetheeffectivenessofaphase-dependentDBSstrategyinavarietyofpatientswithdifferenttremor-relatedmovementdisorders,acorrespondingtheorywouldideallybedevelopedinordertodescribewhyphase-specificDBSeffectivelydampenstremor.Thissectionfirstsummarizesthiswork’scontributionstosuchanunderstandingandthenproposesfurtherintegrated,experimentalandcomputationalworktobetterinvestigatetheunderlyingmechanismsofphasicstimulation.

SummaryofResultsInsummary,thereareafewkeyfindingsfromthiswork:

- Anovelparadigmfordetectingandanalyzingphase-dependenttremor-suppressioninbothexperimentalandsimulateddatawaspresented.

- Anew,weightedcirculartest,theScaledRayleighstatistic,wasoutlined.- Intheessentialtremorpatientinwhichtheexperimentaltrialwas

conducted,significantphase-dependenttremorsuppressionaround240°-270°significantlycorrelatedwithlargeincreasesinfrequencyandphase,whicharethesamemeasurecalculatedusingdifferentmethodsandunits.

- FromWilsonandMoehlis,2014,tremorsuppressionshouldcorrelatewiththederivativeofthechangeinfrequencyorphase.Inthisexplanation,optimalstimulationwoulddesynchronizetwooscillatorsub-populationsatthemeanpopulationphaseatwhichchangeinfrequencyorphasechangesfromnegativetopositive,therebycausingonesub-populationtoslowdownandtheothertospeedup.However,thisexplanationfailedtoexplainthedirect,correlationbetweenchangeintremoramplitudeandfrequency/phasewithintheessentialtremorpatient.

- Thereisevidenceofanon-lineartransformbetweentheindividualoscillatorPRCfunctionusedintheKuramotomodelandtheoscillatorpopulation’smeanchangeinfrequencyorphase.Thisislikelybecauseofweaklycoupledinteractionsamongtheoscillatorpopulation.

ThisresearchisthefirstknownworktoanalyzetheKuramotomodel’sabilitytosimulatephase-dependenttremorsuppressionincomparisonwithclinicaltremordata.

Page 55: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

55

FutureWork

QuantifySignificant,Phase-SpecificTremorModulationInthesingleessentialtremorpatientinwhichthephasicDBSexperimentwasconducted,thereappearedtobesmalldampeningeffectat120°,alargersuppressiveeffectat240°,andanamplificationat30°(Figure10,1strow).Yet,withoutreferenceblocksinwhichnoDBSand/orconstant130HzDBSwasadministered,thesignificanceoftheseobservedeffectscouldnotbetested.Providedsaidreferenceblocks,apairedt-testcanbeusedtoquantifythesignificanceofsucheffects,withBonferronicorrectiontocorrectformultiplecomparisonsamong12phases.TheMoore-RayleighandScaledRayleighstatisticstestednon-uniformityofexperimentalandsimulatedchangeinamplitude,frequency,andphasecurves.However,theycouldnotrigorouslyidentifythephasesatwhichtherewassignificanttremormodulationorchangeinfrequency/phase;thephaseoftheresultantvectorissimplyaweighted,meanphaseofthedatapoints.

ModelNegativeCorrelationbetweenChangeinTremorAmplitudeandFrequency/PhaseWhilethisworkprovidedevidencethattheKuramotomodelfailstoexplaintherelationshipbetweenchangeintremoramplitudeandfrequency/phaseforasingleessentialtremorpatient,afewfurthercomputationalexperimentsandextensionscouldpotentiallyshowthatthemodelcandescribethisphenomenon.SearchModelParameterSpaceWhilesomemodelparameterswereoptimizedtobestmatchtremorcharacteristicsintheabsenceofDBS,othersparameters,i.e.numberofoscillators(𝑁)andDBSstrength(𝛽),werechosenapriori.Usingthefourproposedstimulationfunctions,theseparameters,andpossiblythepreviouslyoptimizedparametersaswell,shouldbeoptimizedtobestmatchtremorcharacteristicsofphasicDBS.Thiscouldbedonebyfindingparametersthatyieldthebestfittotheexperimentalchangeinamplitude,frequency,andphasecurves.Suchanoptimizationmayfindasetofparametersthat,whencoupledwithoneormorebiologically-plausiblestimulationfunctions,candescribethedirect,negativecorrelationbetweentremorsuppressionandfrequencyamplification.ModelandUnderstandMultipleTremor-InducingNeuralPopulationsOneofthemotivationsbehindthepresented,biologically-plausiblestimulationfunctionswastoincorporatetheunderstandingthatboththesub-thalamicnucleus(STN)andtheglobalpallidusinterna(GPi),asub-corticalregion,contributetotremor.Typically,DBSelectrodesareonlyimplantedinoneoftheseregions.Yet,withrespecttophasicDBS,therelationshipbetweenthesetworegionsandtheireffectontremorhasnotbeenthoroughlyresearched.AphasicDBSprimatestudycanbeusedtoinvestigatetheirinteractions.DBSelectrodescanbeimplantedin

Page 56: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

56

eithertheSPNorGPiwhilerecordingelectrodesareinsertedintobothregions.Then,localfieldpotentials(LFPs)inbothregionscanberecordedasphasicDBSisadministeredinasimilarset-uptotheoneusedinthiswork(Cagnanetal.,2016).DBSwouldlikelyinterferewithLFPrecordings;thus,recordingsfromshortnon-stimulatedperiods(i.e.afterashortburstofphasicDBShasbeenadministered)canbeprocessedandused.FromLFPrecordings,themeanphaseofbothneuralpopulationscanbecalculatedandcomparedtoeachotheraswellasthetremorphaserecordedbyahand-mountedaccelerometer.Thesemulti-regionandmulti-modalphaserecordingscanalsobeusedtooptimizeandbetterunderstandtheKuramotomodel,byseekingtoreplicatethenon-lineartransformationfromthePRCfunction,whichcanbeestimatedbyLFPsfromtheregioninwhichDBSelectrodeswereimplanted,tothechangeintremorphasecurve.Specificresearchshouldbefocusedonhowchangeinphasecurvesbetweenaneuralpopulationandhandtremorrelate–aretheydirectlycorrelatedorisonecorrelatedtothederivativeapproximationofanother?–andhowtheKuramotomodelcansimulatetherelationshipbetweenaneuralpopulationandadownstreambehaviorliketremor.IdeallygroundedinclinicalresearchontheeffectofphasicDBSontherelationshipsamongSPN,GPi,andhandtremor,theKuramotomodelcanbeextendedinafewwaystobettercapturetheinteractionsbetweenSPNandGPi.First,thecouplingconstant,𝐾,canbeparameterizedandmadetovaryamongoscillatorsinanefforttomodelhowaneuralpopulation’sinternalcoupling(i.e.neuronswithinSPN)maydifferfromitsexternalcoupling(i.e.couplingbetweenSPNandGPineurons).Second,thedistributionfromwhichoscillatorfrequenciesaresampledcanbechangedtoabi-modaldistribution,toreflectthattheneuralactivityofdifferentregionsmayhavedifferentfrequencies.ThefrequencycharacteristicsofneuralactivityinSTNandGPicanbeextractedfortheirLFPrecordingsandeitheruseddirectlyinthemodelorusedtoinitializeaparametersearchoptimization.Finally,therelationshipsamongSTN,GPi,andtremorcanbeexplicitlydescribedbydesigningdifferentarchitecturesofKuramotooscillatorpopulationsinteractingwithoneanother.ExtendtheModeltoExplicitlyIncorporateChangeinFrequencyTheTass,2003formulationoftheKuramotomodelthatincorporatesDBShasfourtermsthatdescribeanoscillator’s1.meanfrequency,2.coupledrelationshipwithotheroscillators,3.noisiness,and4.phase-dependentresponsetoDBS(Equation16).Anotherterm,ℎ(𝜃^),couldbeaddedtoexplicitlycapturethedirectlyinverserelationshipbetweenchangeintremoramplitudeandfrequency/phase.Thistermmayneedtobeparameterizedbynotonlytheoscillator’scurrentphasebutalsoarecenthistoryofitspreviousphasesinordertoapproximateitschangeinphase.Then,aregularizing,mixtureparameter,𝛾,canalsobeadded(Equation26)toweighthowmuchthemodelexplainstremorsuppressionusingthe“slope”explanation–thattheoptimalphaseatwhichtostimulateistheoneinwhichthereisapositive-slope,zero-crossingchangeinanindividualoscillator’sPRC(Wilson

Page 57: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

57

andMoehlis,2014)–versusthe“peak”explanation–thattheoptimalphaseistheoneinwhichthereisamaximumpeakinanindividualoscillator’sPRC.Theseexplanationsassumethatachangeinhandtremorfrequencycurveissimilartoanindividualoscillator’sPRC,asimplificationthatthisworkshowsisproblematicandthatneedstobefurtherinvestigatedaswell(see“Non-LinearTransformationfromIndividualPRCtoChangeinMeanPhaseofOscillatorPopulationNon-LinearTransformationfromIndividualPRCtoChangeinMeanPhaseofOscillatorPopulation”). 𝜃^ ← 𝜃^ + 𝑑𝑡 𝜔^ + 𝐾𝑟 sin 𝜓 − 𝜃^ + 𝛼𝒩 0, 𝑑𝑡 + 𝛾𝛽𝑧 𝜃^ 𝑢^ 𝑡 + (1 − 𝛾)ℎ(𝜃^)

Equation26:ProposedExtensiontoKuramotoModel’sUpdateRule

DevelopAnotherModelthatIncorporatesExcitatory-InhibitoryDynamicsTheKuramotomodelmakesseveralstrongassumptionsthatmaycontributetoitsinabilitytodescribetheexperimentalresultsobserved.Forinstance,itassumesthatspikingisrelativelyconstantwithitsfixedangularfrequencyterm,therebyeliminatingthepossibilityofburstingneuronsorneuronsmodulatedbyinhibition.IftheaboveresearchdirectionsusingtheKuramotomodelprovefutile,another,morecomplexmodel,suchasonethatcaptureexcitatory-inhibitorydynamics,mayneedtobedeveloped.

DescribePhase-dependentDBSStrategyforDifferentTremulousPathologiesandPatientsAmajorlimitationofthisworkisthesamplesizeofoneessentialtremorpatient.Theexperimentaltrialwasconductedinseveralessentialanddystonictremorpatients(Cagnanetal.,2016).ApreliminaryanalysisoftheexperimentaldatafromotherpatientssuggeststhatdifferentpatientsmayhavedifferentoptimalphasicDBSstrategies:thechangeinfrequency/phasecurvesofafewpatientsseemtofitthe“slope”explanationwhilethoseofotherpatientsseemtobemoreconsistentwiththe“peak”explanationobservedinthiswork’sanalysisoftremorsfromasingleessentialtremorpatient.Duetotimeconstraints,multi-patientanalysiswasnotabletobeadequatelyconductedandincludedinthiswork.Furtherclinicalresearchshouldincludemultiplepatientswithavarietyoftremor-inducingdisorders,whilefuturecomputationalworkshouldbedoneinclosecollaborationwithexperimentalworksoastobeabletomodeldifferentkindsofphase-dependent,tremor-suppressingeffectsthatmayvarybypatientand/orpathology.Ifsuchabiologically-consistentmodelweretobedeveloped,ifevenforonespecificmovementdisorder,itcouldthenbeusedtoidentifynewoptimalphase-dependentDBSstrategies.Forexample,aparametersearchcouldbeconductedtofindthesmallestDBSstrengthparameter,lowestDBSfrequency,and/ortheshortestdurationofphasicDBSadministrationthatcouldstillyieldeffectivetremorsuppression.Inthiswork,theseparametersweresetaprioriasfollows:DBS

Page 58: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

58

strength(𝛽 = 0.05),DBSfrequency(130Hz),durationofBDS(35ms–thiscorrespondedto6pulsesat130Hz).

Page 59: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

59

ConclusionThisresearchwasthefirstknownworkofitskindinitsdual,interdisciplinarymissiontoidentifyanexperimentallyoptimaltremorphase-lockedDBSstrategyinasingleessentialtremorpatientaswellastoexplaincomputationallyhowphasicDBSmightdesynchronizeaneuralpopulationandthusdampentremor.Whileacoherent,underlyingmechanismthatcancomprehensivelyexplainthetremor-suppressingeffectsofphasicDBSinthetestedessentialtremorpatientisstillunknown,thisworknonethelessmadecontributionstothisgoalaswellastothefieldsofstatisticsandcomputationalneuroscience,bypresentinganew,weightedcircularstatistic,thescaledRayleightest,implementingmorebiologically-plausiblestimulationfunctionstobeusedintheKuramotomodel,andhighlightingseveralshortcomingsofthemodel.Finally,thisdissertationproposesfuturedirectionsofresearchthatcontributetothegrowingbodyofworktodevelopenergy-efficientyeteffectiveclosed-loopDBStherapies.ThisworkwouldnothavebeenpossiblewithoutthesupportandcollaborationofProfessorRafalBogacz,Dr.HayriyeCagnan,andDr.GihanWeerasinghe.

Page 60: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

60

ReferencesFong,R(2016a)FamilyofRayleighStatisticsToolbox.Availableat:

http://uk.mathworks.com/matlabcentral/fileexchange/56485-family-of-rayleigh-statistics-toolbox.

Fong,R(2016b)KuramotoModelSimulation.Availableat:http://ruthcfong.github.io/kuramoto[AccessedMarch31,2016].

Fong,R(2016c)ModellingNeuronsasKuramotoOscillators.Availableat:http://ruthcfong.github.io/kuramoto/tutorial.html[AccessedMarch31,2016].

Azodi-AvvalR,GharabaghiA(2015)Phase-dependentmodulationasanovelapproachfortherapeuticbrainstimulation.FrontComputNeurosci9:26Availableat:http://journal.frontiersin.org/article/10.3389/fncom.2015.00026/abstract.

Baizabal-CarvalloJF,KagnoffMN,Jimenez-ShahedJ,FeketeR,JankovicJ(2014)Thesafetyandefficacyofthalamicdeepbrainstimulationinessentialtremor:10yearsandbeyond.JNeurolNeurosurgPsychiatry85:567–572Availableat:http://jnnp.bmj.com.libproxy.ucl.ac.uk/content/85/5/567.

BenabidAL,PollakP,HoffmannD,GervasonC,HommelM,PerretJE,deRougemontJ,GaoDM(1991)Long-termsuppressionoftremorbychronicstimulationoftheventralintermediatethalamicnucleus.Lancet337:403–406.

BerensP(2012)CircularStatisticsToolbox(DirectionalStatistics).Availableat:http://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics-[AccessedMarch31,2016].

BestEN(1979)NullspaceintheHodgkin-HuxleyEquations.Acriticaltest.BiophysJ27:87–104.

BeudelM,BrownP(2015)AdaptivedeepbrainstimulationinParkinson’sdisease.ParkinsonismRelatDisord22:1–4Availableat:http://dx.doi.org/10.1016/j.parkreldis.2015.09.028.

ButterworthS(1930)Onthetheoryoffilteramplifiers.ExpWirelWirelEng7:536–541.

CagnanH,BrittainJ,LittleS,FoltynieT,LimousinP,ZrinzoL,HarizM,JointC,FitzgeraldJ,GreenAL,AzizT,BrownP(2013)Phasedependentmodulationoftremoramplitudeinessentialtremorthroughthalamicstimulation.Brain136(10):3062-75.

CagnanH,PedrosaD,LittleS,PogosyanA,CheeranB,AzizT,GreenA,FitzgeraldJ,FoltynieT,LimousinP,ZrinzoL,HarizM,FrizonK,DenisionT,BrownP(2016)Stimulatingattherighttime:phase-specificdeepbrainstimulation.Brain140(1):132-45.

ChenCC,BruckeC,KempfF,KupschA,LuCS,LeeST,TischS,LimousinP,HarizM,BrownP(2006)Deepbrainstimulationofthesubthalamicnucleus:atwo-

Page 61: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

61

edgedsword.CurrBiol16:R952–R953Availableat:http://www.sciencedirect.com/science/article/pii/S0960982206023487.

GuttmanR,LewisS,RinzelJ(1980)Controlofrepetitivefiringinsquidaxonmembraneasamodelforaneuroneoscillator.JPhysiol305:377–395Availableat:http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Control+of+repetitive+firing+in+squid+axon+membrane+as+a+model+for+a+neuron+oscillator#0\nhttp://jp.physoc.org/content/305/1/377.short\nhttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid.

HammondC,BergmanH,BrownP(2007)PathologicalsynchronizationinParkinson’sdisease:networks,modelsandtreatments.TrendsNeurosci30:357–364.

HirschmannJ,ÖzkurtTE,ButzM,HomburgerM,ElbenS,HartmannCJ,VesperJ,WojteckiL,SchnitzlerA(2013)DifferentialmodulationofSTN-corticalandcortico-muscularcoherencebymovementandlevodopainParkinson’sdisease.Neuroimage68:203–213Availableat:http://dx.doi.org/10.1016/j.neuroimage.2012.11.036.

HuaSE(2004)Posture-RelatedOscillationsinHumanCerebellarThalamusinEssentialTremorAreEnabledbyVoluntaryMotorCircuits.JNeurophysiol93:117–127Availableat:http://jn.physiology.org/cgi/doi/10.1152/jn.00527.2004.

KuramotoY(1984)Chemicaloscillations,wavesandturbulence.

LittleS,BeudelM,ZrinzoL,FoltynieT,LimousinP,HarizM,NealS,CheeranB,CagnanH,GratwickeJ,AzizTZ,PogosyanA,BrownP(2015)BilateraladaptivedeepbrainstimulationiseffectiveinParkinson’sdisease.JNeurolNeurosurgPsychiatry:jnnp–2015–310972Availableat:http://jnnp.bmj.com/lookup/doi/10.1136/jnnp-2015-310972.

LittleS,BrownP(2012)WhatbrainsignalsaresuitableforfeedbackcontrozlofdeepbrainstimulationinParkinson’sdisease?AnnNYAcadSci1265:9–24.

LittleS,PogosyanA,NealS,ZavalaB,ZrinzoL,HarizM,FoltynieT,LimousinP,AshkanK,FitzgeraldJ,GreenAL,AzizTZ,BrownP(2013)AdaptivedeepbrainstimulationinadvancedParkinsondisease.AnnNeurol:449–457.

MardiaK(1975)StatisticsofDirectionalData.JRStatSocSerB-Methodological37:349–393Availableat:http://www.jstor.org/stable/2984782\npapers2://publication/uuid/996E21B4-6B48-4666-B2C5-5D89C94577C3.

MooreBYBR(1980)AmodificationoftheRayleightestforvector.67:175–180.

NetoffT,SchwemmerMA,LewisTJ(2012)ExperimentallyEstimatingPhaseResponseCurvesofNeurons :TheoreticalandPracticalIssues.In:PRCsinNeuroscience;Theory,ExperimentandAnalysis,pp95–130.

Page 62: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

62

RayNJ,JenkinsonN,BrittainJ,HollandP,JointC,NandiD,BainPG,YousifN,GreenA,SteinJS,AzizTZ(2009)Theroleofthesubthalamicnucleusinresponseinhibition:EvidencefromdeepbrainstimulationforParkinson’sdisease.Neuropsychologia47:2828–2834.

RosaM,ArlottiM,ArdolinoG,CogiamanianF,MarcegliaS,DiFonzoA,CorteseF,RampiniPM,PrioriA(2015)Adaptivedeepbrainstimulationinafreelymovingparkinsonianpatient.MovDisord30:2014–2016.

TassPA(2003)Amodelofdesynchronizingdeepbrainstimulationwithademand-controlledcoordinatedresetofneuralsubpopulations.88:81–88.

WilsonD,MoehlisJ(2014)OptimalChaoticDesynchronizationforNeuralPopulations.13:276–305.

WilsonD,MoehlisJ(2015)Determiningindividualphaseresponsecurvesfromaggregatepopulationdata.022902:1–10.

ZarJH(2010)BiostatisticalAnalysis.

ZhangK,BhatiaS,OhMY,CohenD,AngleC,WhitingD(2010)Long-termresultsofthalamicdeepbrainstimulationforessentialtremor.JNeurosurg112:1271–1276.

Page 63: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

63

Appendix1:AlternativeMetricsofEvaluatingEffectsofTremorSuppressionAlternativemetricsweredevelopedforcalculatingchangeinamplitude,frequency,andphase.Asummaryofthemwillbepresentedfollowedbyanexplanationofeachmetric.

ChangeinAmplitudeTheresultsreportedinthisdissertationusethechangeinamplitudemetricgivenbyEquation4.However,10alternativemetricsweredeveloped.Thep-valuesandphasesoftheirresultvectorsfromtheMoore-RayleighandScaledRayleightestsareprovidedinTable9.Themeanphaseoftheresultvectorforalltestsforwhichthep<0.05thresholdwasmet(boldedinTable9)was69.8°,withastandarddeviationof8.7°.Thisisthediametricoppositeof249.8°. p-value Phaseofresultant

vector Moore-

RayleighScaledRayleigh

Moore-Rayleigh

ScaledRayleigh

'subtract_last_block' 0.0137 0.0277 75.1° 82.8°'subtract_last_block_norm' 0.0165 0.9239 73.4° 147.5°'point_normalize' 0.205 0.7449 49.0° 13.7°'simple_median' 0.4424 0.4246 103.7° 117.1°'normalize' 0.2393 0.0521 64.1° 359.6°'subtract_prev' 0.0002 𝟏𝟎�𝟒 61.5° 61.4°'subtract_prev_norm' 𝟏𝟎�𝟒 0.2002 64.4° 24.8°'regression' 0.6202 0.5376 143.9° 148.4°'poly2_latent' 0.079 0.0586 109.9° 111.7°'poly2_diff' 0.6846 0.814 101.8° 126.7°Table9:StatisticalSignificanceofAlternativeMetricsMeasuringChangeinAmplitudeinExperimental

Data

Tests of metrics for which the p < 0.05 threshold was met are bolded. Using Bonferronicorrection (𝛼 = 10), the adjusted threshold to meet is p < 0.005; the tests that meet themultiplecomparisonsthresholdareunderlined.

ChangeinFrequency&PhaseTheresultsreportedinthisdissertationusethechangeinfrequencyandphasemetricsgivenbyEquation4andEquation11respectively.However,8alternativemetrics–2forchangeinphaseand6forchangeinfrequency–weredeveloped.Furthermore,therewere2methodsforcalculatingthefrequencyforaperiod:1.usingthemedianoftheinstantaneousfrequency,and2.estimatingfrequencyfrom

Page 64: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

64

thenumberofzero-crossingsintremoramplitude.Thep-valuesfromtheMoore-RayleighandScaledRayleightestsareprovidedinTable10.Themeanphaseoftheresultvectorforalltestsforwhichthep<0.05thresholdwasmet(boldedinTable9)was267.2°,withastandarddeviationof16.2°. p-value Moore-Rayleigh ScaledRayleigh'prc_point_normalize'(inst) 0.004 0.0026'prc_point_normalize'(zc) 0.0039 0.0146'prc_first_last_median'(inst) 0.0034 0.0016'prc_first_last_median'(zc) 0.0026 0.0111'subtract_last_block'(inst) 0.0174 0.1019'subtract_last_block'(zc) 0.0002 𝟏𝟎�𝟒'subtract_last_block_norm'(inst) 0.0164 0.1112'subtract_last_block_norm'(zc) 0.0002 0.0002'simple_median'(inst) 0.0992 0.0396'simple_median'(zc) 0.0386 0.0319'normalize'(inst) 0.3488 0.4537'normalize'(zc) 0.2842 0.2606'subtract_prev'(inst) 0.0019 0.0014'subtract_prev'(zc) 0.004 0.0132'subtract_prev_norm'(inst) 0.0018 0.0019'subtract_prev_norm'(zc) 0.0036 0.018Table10:StatisticalSignificanceofAlternativeMetricsMeasuringChangeinFrequencyandPhasein

ExperimentalData

Tests of metrics for which the p < 0.05 threshold was met are bolded. Using Bonferronicorrection (𝛼 = 16), the adjusted threshold tomeet is p < 0.0031; the tests thatmeet themultiplecomparisonsthresholdareunderlined.“inst”denotesmetricsthatusedinstantaneousfrequency;“zc”denotesthosethatusedthezero-crossingmethodtocalculatefrequency.

AlternativeMetrics

'subtract_last_block'Usedforchangeinamplitudeandfrequency,thismetrictookthedifferencebetweenthemedianamplitudeorinstantaneousfrequency(orzero-crossingestimateofthefrequency)overthewhole5-secondperiodofthecurrentblockandthatofthepreviousblock.Iftherewasnopriorblock,themedianamplitudeorfrequency(orzero-crossingestimate)wascalculatedforthe1-secondno-stimulationperiodimmediatelyprecedingthecurrent5-secondblock.

Page 65: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

65

'subtract_last_block_norm'Usedforchangeinamplitudeandfrequency,thismetricnormalizedthe‘subtract_last_phase’metricbydividingitbythemedianamplitudeorfrequency(orzero-crossingestimate)ofthepreviousblock.

'point_normalize'Usedforchangeinamplitude,thismetrictookthedifferencebetweentheamplitudeattheendofthecurrentblock(t=5s)andtheamplitudeatthebeginningofthecurrentblock(t=0s)andnormalizedthisdifferencebythelatterterm.

'simple_median'Usedforchangeinamplitudeandfrequency,thismetricwassimplythemedianoftheamplitudeorinstantaneousfrequency(orzero-crossingestimateoffrequency)overthewhole5-secondperiodofthecurrentblock.

'normalize'Usedforchangeinamplitudeandfrequency,thismetrictookthedifferencebetweenthemedianamplitudeorinstantaneousfrequency(orzero-crossingestimateoffrequency)ofthelastsecondofthecurrentblock(t=4-5s)andthatofthefirstsecondofthecurrentblock(t=0-1s)andnormalizedthisdifferencebythelatterterm.

'subtract_prev'Usedforchangeinamplitudeandfrequency,thismetrictookthedifferencebetweenthemedianamplitudeorinstantaneousfrequency(orzero-crossingestimateoffrequency)ofthewhole5-secondperiodofthecurrentblockandthatofthe1-second,no-stimulationperiodimmediatelyprecedingit.

'subtract_prev_norm'Usedforchangeinamplitudeandfrequency,thismetricnormalizedthe‘subtract_prev’metricbydividingitbythemedianamplitudeorinstantaneousfrequency(orzero-crossingestimateoffrequency)ofthe1-second,no-stimulationperiodimmediatelyprecedingit.

'regression'Usedforchangeinamplitude,thismetricwastheslopeofalinefittedtothetremoramplitudevaluesforthewhole5-secondperiodofthecurrentblock.

'poly2_latent'Usedforchangeinamplitude,thismetricwasthetimestepatwhichaquadraticlinefittothetremoramplitudevaluesforthewhole5-secondperiodofthecurrentblockwasaminimumormaximumpoint.

'poly2_diff'Usedforchangeinamplitude,thismetricwasthedifferencebetweentheminimumormaximumpointfromafittedquadraticlinetothetremoramplitudevaluesforthewhole5-secondperiodofthecurrentblockandthemidpointvaluebetweenthetremoramplitudevaluesatthebeginning(t=0s)andend(t=5s)oftheblock.

Page 66: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

66

'prc_point_normalize'Usedforchangeinphase,thismetrictookthedifferencebetweentheunwrappedphaseattheendofthe5-secondperiodofthecurrentblock(t=5s)andtheprojected,unwrappedphasebasedonthemedianfrequency(orzero-crossingestimate)ofthepreviousblockandnormalizeditbytime(5seconds)andbythelengthofacycle(2𝜋).Iftherewasnopreviousblock,the1-second,no-stimulationperiodimmediatelyprecedingthecurrentblockwasusedasthereferencesignalinstead.Theonlydifferencebetweenthismetricandtheoneusedinthisdissertationwasthereferencefrequency;forthedefaultchangeinphasemetric,thereferencefrequencywasthemedianinstantaneousfrequencyofthe1-second,no-stimulationperiodimmediatelyprecedingthecurrentblock.

'prc_first_last_median'Usedforchangeinphase,thismetricissimilartothepreviousmetric,exceptitusedthemedianunwrappedphaseofthelast100mssecondofthecurrentblock(t=4.9-5s)andtheprojected,unwrappedphaseofthesame100msperiodusingthepreviousblock’sfrequencyasthereferencefrequency.

Page 67: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

67

Appendix2:SimulatedChangeinPhaseCurveswithDifferentNumbersofOscillatorsFigure23showshowtheoscillatorpopulation’schangeinphasecurvedivergesmorefromtheindividualPRCfunction,𝑧(𝜃^) = cos(𝜃^ +

��),asthenumberof

oscillatorsincreases.

Page 68: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

68

Figure23:ChangeinPhaseCurveforSimulatedDatawhenDifferentNumbersofOscillators(N=2,5,8)

Page 69: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

69

The change in phase,∆𝜃 , was calculated for all 108 simulated blocks generated in eachsimulationusingthe2oscillators(1strow),5oscillators(2ndrow),and8oscillators(3rdrow)respectively and plotted above (red circles).When usingN= 2, 5, and 8 oscillators, linearinterpolationsof themedian∆𝜃foreachphaseof stimulationareplotted (blue lines)alongwiththestandarderror.Themedianchangeinphasevaluesforthe9referenceblocksofnostimulationarealsoplotted(orangelines).

Page 70: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

70

Appendix3:DifferentStimulationFunctionsThechangeinfrequency(Figure24)andphasecurves(Figure25)forsimulationsusingthe“half”,“random”,and“uniform”stimulationfunctionsareincludedhere.

Page 71: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

71

Figure24:ChangeinFrequencyCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”

Stimulationfunctions

Page 72: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

72

Thechange in frequency,∆𝑓,wascalculated forall108simulatedblocksgenerated ineachsimulationusingthe“Half”(1strow),“Random”(2ndrow),and“Mixture”(3rdrow)stimulationfunctionandplottedabove(redcircles).Whenusingeachofthesestimulationfunctions,linearinterpolationsof themedian∆𝑓foreachphaseof stimulationareplotted (blue lines)alongwiththestandarderror.Themedianchangeinfrequencyvaluesforthe9referenceblocksofnostimulationarealsoplotted(orangelines).

Page 73: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

73

Figure25:ChangeinPhaseCurvesforSimulatedDatawhenusing“Half”,“Random”,and“Mixture”

Stimulationfunctions

Page 74: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

74

The change in phase,∆𝜃 , was calculated for all 108 simulated blocks generated in eachsimulationusingthe“Half”(1strow),“Random”(2ndrow),and“Mixture”(3rdrow)stimulationfunctionandplottedabove(redcircles).Whenusingeachofthesestimulationfunctions,linearinterpolationsof themedian∆𝜃foreachphaseof stimulationareplotted (blue lines)alongwiththestandarderror.Themedianchangeinphasevaluesforthe9referenceblocksofnostimulationarealsoplotted(orangelines).

Page 75: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

75

Appendix4:ExtendedKuramotoModelSimulationToolAwebsimulationoftheKuramotoneuraloscillatorswasdevelopedtobeusedinapublicengagementeventwithlocalOxfordshirehighschoolstudents.Itcanbeusedasagame,inwhichusersearnpointsbydesynchronizingapopulationofKuramotoneuraloscillators,tointuitivelyteachtheoptimalphase-dependentDBSstrategythattheKuramotomodelsuggests(i.e.stimulatingatthepositivezero-crossinginthePRCfunction).Itcanalsobeusedasaresearchandvisualizationtool,wherenearlyalltheKuramotosimulationparameterscanbesetbytheuser,includingaphasicstimulationstrategy.Theusercanthenobservethestateoftheneuraloscillatorpopulation,itssynchrony,andthetremorsignalasthesimulationrunswiththeuser-specifiedmodelparameters.Thesimulationtoolcanbeaccessedatthislink:http://ruthcfong.github.io/kuramoto.

Page 76: Optimizing and Modeling Phase-Locked Deep Brain ...ruthcfong.github.io/files/ruth_fong_msc_dissertation...While conventional DBS has some parameters, such as the strength and frequency

76

Figure26:ScreenshotofSimulationTool