Top Banner
1 Lecture Lecture Lecture Lecture – 13 13 13 13 Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) – III III III III Prof. Radhakant Padhi Prof. Radhakant Padhi Prof. Radhakant Padhi Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Optimal Control, Guidance and Estimation OPTIMAL CONTROL, GUIDANCE AND ESTIMATION Prof. Radhakant Padhi, AE Dept., IISc-Bangalore 2 Outline Review of LQR solution using State Transition Matrix (STM) Approach Application of STM for tactical missile guidance Frequency-domain interpretation of LQR and Robustness property
21

Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

Feb 21, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

1

Lecture Lecture Lecture Lecture –––– 13131313

Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) Linear Quadratic Regulator (LQR) –––– IIIIIIIIIIII

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

Optimal Control, Guidance and Estimation

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore2

Outline

� Review of LQR solution using State

Transition Matrix (STM) Approach

� Application of STM for tactical missile

guidance

� Frequency-domain interpretation of

LQR and Robustness property

Page 2: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

2

Solution of LQR Problems using State Solution of LQR Problems using State Solution of LQR Problems using State Solution of LQR Problems using State

Transition Matrix (STM) ApproachTransition Matrix (STM) ApproachTransition Matrix (STM) ApproachTransition Matrix (STM) Approach

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore4

STM Solution of LQR Problems(1) Soft constraint problems

� Performance Index (to minimize):

� Path Constraint:

� Boundary Conditions:

( )( )

( )( )

0

,

1 1

2 2

f

f

t

T T T

f f f

t

L X UX

J X S X X Q X U RU dt

ϕ

= + +∫������� ���������

X A X BU= +ɺ

( )

( )00 :Specified

: Fixed, : Freef f

X X

t X t

=

Page 3: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

3

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore5

STM Solution of LQR Problems(1) Soft constraint problems

� Terminal penalty:

� Hamiltonian:

� State Equation:

� Costate Equation:

� Optimal Control Eq.:

� Boundary Condition:

( ) ( )1

2

T T TH X Q X U RU AX BUλ= + + +

( ) ( )1

2

T

f f f fX X S Xϕ =

X AX BU= +ɺ

( ) ( )/T

H X QX Aλ λ= − ∂ ∂ = − +ɺ

( ) 1/ 0 TH U U R B λ−∂ ∂ = ⇒ = −

( )/f f f fX S Xλ ϕ= ∂ ∂ =

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore6

STM Solution of LQR Problems(1) Soft constraint problems

( )

1

1

11 12

21 22

Substituting in the state equation

we can write:

The solution dictates that:

,

a

f

T

T

aT

A

f

t t

U R B

X XA BR BXA

Q A

X X Xt t

λ

λ λλ

ϕ ϕϕ

ϕ ϕλ λ λ

= −

− = =

− −

= =

ɺ

ɺ�����������������

ft

Page 4: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

4

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore7

STM Solution of LQR Problems(1) Soft constraint problems

( ) ( ) ( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )

11 12

11 12

11 12

21 22

21 22

However, we know that

So we can write:

, ,

, ,

, , ,

Similarly,

, ,

, , ,

f f f

f f f f

f f f f f

f f f f f f

f f f f

f f f f f f

S X

X t t t X t t

t t X t t S X

t t t t S X t t X

t t t X t t

t t t t S X t t X

λ

ϕ ϕ λ

ϕ ϕ

ϕ ϕ

λ ϕ ϕ λ

ϕ ϕ

=

= +

= +

= + =

= +

= + = Λ

X

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore8

STM Solution of LQR Problems(1) Soft constraint problems

( ) ( )( ) ( )

( )( )

In summary, we can write:

,

,

At , we must satisfy the B.C.

,This dictates that:

,

f f

f f

f

f f

f f f

f f

f f f

X t t t X

t t t X

t t

X X

S X

t t I

t t S

λ

λ

=

= Λ

=

=

=

=

Λ =

X

X

Page 5: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

5

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore9

STM Solution of LQR Problems(1) Soft constraint problems

( ) ( )

[ ]2 2

22

However, we know

Substituting the solution froms of and ,

we get

This leads to

: We can find the closed f

a

f f

a

ff

a n nn nn n

XXA

X t t

X XA

XX

A

λλ

λ

×××

=

=

ΛΛ

= ΛΛ

X X

X X

Note

ɺ

ɺ

ɺ

ɺ

ɺ

ɺ

0

orm solution now.

Alternatively (less preferable), we can integrate

this system backwards from to ;ft t

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore10

STM Solution of LQR Problems(1) Soft constraint problems

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0

1

0 0 0 0

1

0 0

1

0 0

is not known.

However, at , we have:

, , . . ,

Substituting for we get:

, ,

t , ,

f

f f f f

f

f f

f f

X

t t

X t t t X i e X t t X

X

X t t t t t X

t t t t Xλ

=

= =

=

= Λ

Problem :

X X

X X

X

Page 6: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

6

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore11

STM Solution of LQR Problems(1) Soft constraint problems

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

( )

1

11

0 0 0

0

Finally,

, ,

This gives a "sample-data feedback law" (where the most

recent sample time is ). If a continous determi

T

T

f f

K t

U t R t B t t

R t B t t t t t X K t X

t

λ−

−−

= −

= − Λ = − X�����������������������������������

( ) ( ) ( )

nation of

the state is made, the most recent sample time is the

current time. In that case:

U t K t X t= −

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore12

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

( )

( )

( )( )

( )( )

( ) ( ) ( )

0 0

1

1

, : Given

1

2

, 0, 1, ,

1

2

f

o

f

o

t

T T

t

f

f i f

n f

tqT T T

i i f

i t

X AX BU X t X

J X QX U RU dt

x t

X t x t i q n

x t

J x t X QX U RU AX BU X dtυ λ=

= + =

= +

= = = ≤

= + + + + −

∑ ∫

ɺ

⋮ ⋯

ɺ

Page 7: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

7

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore13

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

( )

( )( )

1

0 0

System dynamics:

Boundary conditions:

: Given

0, 1, ,

0, ( 1), ,

T

aT

i f

i f

X XA BR BXA

Q A

X t X

x t i q

t i q n

λ λλ

λ

− − = =

− −

=

= =

= = +

TPBVP Formulation

ɺ

ɺ

( )

STM Solution:

,

f

f

t

X Xt tϕ

λ λ

=

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore14

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

( )( )

( )( )

( ) ( )

( ) ( )

1 q 1

Collecting the appopriate entries of the matrix,

the general solution can be written as:

,

,

where

, , | ( ), , ( )

, : STM for

, : STM for

f

f

T

q f n f

f

f

t tX t

t t t

x t x t

t t X t

t t t

ϕ

µ

λ µ

µ υ υ

λ

+

=

Λ

Λ

X

X

≜ ⋯ ⋯

Page 8: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

8

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore15

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

[ ]

( )[ ]

[ ]( ) ( ) ( )

( )[ ] ( )

[ ]( )

2 22 12 1

0

In summary, we have:

With:

0,

0 |

| 0,

0

These equations can be integrated backwards from to .

Preferab

a n nnn

q n

f f

n q n qn q q

q n qq q

f f

n q n

f

A

t tI

It t

t t

×××

×

− × −− ×

× −×

− ×

= ΛΛ

=

Λ =

X X

X

ɺ

ɺ

ly, one should find the closed form solution.

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore16

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

1

0 0

1

0 0

11

0 0

Clearly, at , if , is non-singular, then

,

In that case,

, ,

, ,

Solution form is same. However, the B.C. is

differe

f

f

f f

T

f f

t t t t

X t t X t

t t t t t X t

U t R t B t t t t t X t

µ

λ

−−

=

=

= Λ

= − Λ

X

X

X

Note :

nt and hence solution is different.

Page 9: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

9

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore17

STM Solution of LQR Problems(2) Hard constraint problems: Zero terminal error

( ) ( ) ( ) ( ) ( )( )

( )

( ) ( )

( ) ( )( )

( )

0

11

0

For continuous data (i.e )

, ,

Problem: As , , ,

However, , is singular.

Hence, as .

This makes sense as

T

f f

K t

f f f f

f f

f

t t

U t R t B t t t t t X t

K t X t

t t t t t t

t t

K t t t

−−

= − Λ

= −

→ →

→ ∞ →

X

X X

X

���������������������������������

we are insisting on zero terminal error.

Example: Optimal Missile Guidance Example: Optimal Missile Guidance Example: Optimal Missile Guidance Example: Optimal Missile Guidance

Through STM Solution of LQRThrough STM Solution of LQRThrough STM Solution of LQRThrough STM Solution of LQR

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

Page 10: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

10

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore19

Fundamental Problem of

Tactical Missile Guidance

PN Guidance: M Ma NV λ= ɺ

Ma

LOS

MV

TV

λM

θ

M

T

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore20

Optimal Missile Guidance

Through LQR

� System dynamics

� Cost Function

v a

y v

=

=

ɺ

ɺ

( )2 21 1

2 2

ft

f

t

J c y a dt= + ∫

LOS

a

v

Page 11: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

11

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore21

Optimal Missile Guidance

Through LQR

� System matrices in the LQR formulation

� Time-to-go definition

[ ] ( ), Lateral acceleration

0 0 1,

1 0 0

0 0 0 0, 1,

0 0 0

T

f

X v y U a

A B

Q R Sc

= =

= =

= = =

( )go ft t t= −

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore22

Optimal Missile Guidance

Through LQR

( ) ( )

( )

1

0 0 1 0

1 0 0 0

0 0 0 1

0 0 0 0

Solution:

( ) ( )( ),

( ) ( )( )

To compute , lets compute

a

a

T

T

A

A

f f

f f

f f

X XX A BR B

Q A

X t X tX tt t t t

t tt

t A

λ λλ

ϕ ϕλ λλ

ϕ

− − = = −− −

= = −

ɺ

ɺ�������

�������

2 3 4 5, , , .a a a aA A A etc…

Page 12: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

12

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore23

Optimal Missile Guidance

Through LQR

2

3

4

0 0 1 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 1

0 0

a

a

a

A

A

A

− − − = = − −

− − = = −

=

0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

− = −

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore24

Optimal Missile Guidance

Through LQR

( )

2

2 32 32 3

1 0 / 2

1 / 2 / 6

2! 3! 0 0 1

0 0 0 1

aA t

a a a

t t

t t tt tt e I A t A A

− = = + + + = −

Hence,

( ) ( )

2

2 3

1 0 ( ) ( ) / 2

( ) 1 ( ) / 2 ( ) / 6,

0 0 1 ( )

0 0 0 1

f f

f f f

f f

f

t t t t

t t t t t tt t t t

t tϕ ϕ

− − −

− − − − = − = −

Page 13: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

13

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore25

Optimal Missile Guidance

Through LQR

( )Define . Thengo f

t t t= −

( )

2

2 3

1 0 / 2

1 / 2 / 6,

0 0 1

0 0 0 1

go go

go go go

f

go

t t

t t tt t

− − − = −

11 12 11 12

( , )

( ) ( , ) ( , ) ( , ) ( , )

f

f f f f f f f f

t t

X t t t X t t t t t t S Xϕ ϕ λ ϕ ϕ = + = + X

�����������

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore26

Optimal Missile Guidance

Through LQR

11 12

2

2 3

2

3

21 22

( , ) ( , ) ( , )

1 0 / 2 0 0

1 / 2 / 6 0

1 / 2

1 / 6

( , ) ( , ) ( , )

0 0 1 0 0 0

0 0 0 1 0 0

f f f f

go go

go go go

go

go go

f f f f

go go

t t t t t t S

t t

t t t c

ct

t ct

t t t t t t S

t ct

c c

ϕ ϕ

ϕ ϕ

= +

= + − − −

=

− −

Λ = +

− − = + =

X

Page 14: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

14

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore27

Optimal Missile Guidance

Through LQR

( ) ( ) ( )

( ) ( ) ( )

[ ]

( )

12

1

3

1

12

3

2

3 3

Hence

1 / 20( , ) ( , )

1 / 60

Finally

1 / 20 ( )1 0

1 / 60 ( )

1 1 1

3 3

gogo

f f

go go

T

gogo

go go

go go

go go

ctctt t t t t X t X t

t ctc

U t a t R B t

ctct v t

t ctc y t

t tv t

t tc

λ

λ

− = Λ = − −

= = −

− = − − −

= − −

+ +

X

( )1

y t

c

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore28

Final Latax Expression

� Latax solution:

� Special case ( ):

( ) ( ) ( )2

3 31 1 1 1

3 3

go go

go go

t ta t v t y t

t tc c

= − −

+ +

c → ∞

( )( ) ( )

23

go go

v t y ta t

t t

= − +

Page 15: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

15

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore29

Correlation Between Linear Optimal

Guidance and PN Guidance

( ) ( )

( )( ) ( ) ( )

( ) ( )

2 2

2

( ) 1 ( )

Changing sign and differentiating both sides,

( 1)1 1

Hence

3 3

f f

f

ff f

f f

y t y t

VV t t t t

t t y y v y

V V t tt t t t

v yV

t t t t

σ

σ

σ

− = =

− −

− − − = − = − + −− −

= − + − −

ɺɺ

ɺ

( )Lets assume: 0, : is constantVσ → Note

Sign convention for :

anti-clockwise positive

clockwise negative

σ ⇒ ⇒

Note :

LOS

a

v

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore30

Correlation Between Linear Optimal

Guidance and PN Guidance

� Comparing the Expressions:

� PN is an Optimal Guidance Provided:

• Linearized engagement dynamics is considered

• Non-maneuvering and stationary (slow-moving) targets

• LOS angle is not high

• Induced drag minimization (through Latax minimization) issue is ignored

• N = 3 is used as the navigation constant

3a V σ= ɺ

(This is the optimal guidance law, which is same as PN guidance law with N = 3 )

Page 16: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

16

Frequency Domain Interpretation of Frequency Domain Interpretation of Frequency Domain Interpretation of Frequency Domain Interpretation of

LQR and Robustness MarginsLQR and Robustness MarginsLQR and Robustness MarginsLQR and Robustness Margins

Prof. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant PadhiProf. Radhakant Padhi

Dept. of Aerospace Engineering

Indian Institute of Science - Bangalore

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore32

Frequency Domain Interpretation

( ) ( )

[ ]

1

o

Optimal Trajectory

Assumtions: (i) , is stabilizable

(ii) , is observable

Open-Loop Characteristic Polynomial

TX A BR B P X A BK X

A B

A Q

s sI A

−= − = −

∆ = −

ɺ

Page 17: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

17

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore33

Frequency Domain Interpretation

( )

[ ] [ ] [ ]

[ ] [ ]

[ ]

1

1

1

Closed-Loop Characteristic Polynomial

=

c

o

s sI A BK sI A BK

sI A BK sI A sI A

I K sI A B sI A

I K sI A B s

∆ = − − = − +

= − + − −

+ − −

= + − ∆

[ ]1

Loop Gain Matrix:

K sI A B−

− −[ ]1

Return Difference Matrix:

I K sI A B−

+ −

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore34

Kalman Equation

in Frequency Domain

[ ]

( )

1

1

Algebraic Riccati Equation:

Add and subtract :

Define

T T

T T

T T

PA A P PBR B P Q

sP

sP PA sP A P PBR B P Q

P sI A sI A P K RK Q

s s

− − + =

− − − + =

− + − − + =

Φ ≜ [ ]

( ) [ ]

( ) [ ]( ) [ ]( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1

1 11

Then

Pre-multiply by and Post-multiply by

TTT T

T T

T T T T T T T T

I A

s sI A

s sI A sI A sI A

B s s B

B s PB B P s B B s K RK s B B s Q s B

− −−

Φ − − −

Φ − − − = − − = − −

Φ − Φ

Φ − + Φ + Φ − Φ = Φ − Φ

Page 18: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

18

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore35

Frequency Domain Interpretation

( ) ( ) ( ) ( )

[ ]

1

1 1

However,

. .

Adding on both sides, after some algebra it can be shown that

. .

T

T

T

TT T

T T

K R B P

i e RK B P

K R PB

R

B s Q s B R I K s B R I K s B

i e

B sI A Q sI A B

− −

=

=

=

Φ − Φ + = + Φ − + Φ

− − −

[ ] [ ]1 1

This is called as the "Kalman Equation" in the frequency domain.

T

R

I K sI A B R I K sI A B− −

+

= + − − + −

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore36

Example: Double Integrator

( )

1 2

2

2 2 2

1 20

1

2

Identitfy the Various Matrices

0 1 0 1 0 ; ;

0 0 1 0 1

x x

x u

J x x u dt

A B b Q

=

=

= + +

= = = =

System Dynamics :

Performance Index :

Solution :

ɺ

ɺ

; 1R r

= =

Page 19: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

19

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore37

Example: Double Integrator

[ ] [ ]

[ ]

[ ]

2 21 1

1

2

11 12

With , , and

The Kalman equation

10

and ; 1 1

T T

Q R I C D I B I j s

I K sI A B I C sI A B

ssI A

s s

K k k

ω

− −

= = = = = =

+ − = + −

− =

=

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore38

Example: Double Integrator

[ ] ( ) [ ] ( )

[ ] ( ) ( )

2 2

11 12 11 12

2 2

1 1 1 1

0 0So 1 1

1 11 10 0

1 1 1 1

1 0 0 1 0 1

0 1 11 10 0

A ge

s ss sk k k k

s s

s ss s

s s

− − + + =

− − +

neral a set of Algebraic Equations are obtained by equating

the powers of .s

Page 20: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

20

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore39

Example: Double Integrator

( )2 2

11 12 112 4 2 4

11 12

*

* *

A single Scalar Equation:

1 1 1 1 1 2 1

gives 1, 3

Optimal feedback control:

1 3

:

This

k k ks s s s

k k

u

u KX

+ − + = − +

= =

= − = −

Note

can be verified with Algebraic Riccati Equation formulation.

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore40

LQR Design:

Robustness of Closed Loop System

� Gain Margin:

� Phase Margin:

Reference: D. S. Naidu, Optimal Control Systems, CRC Press, 2003 (Chp. 4, pp.184-187)

1Minimum , Maximum

2= = ∞

060≥

Note: Margins are valid only with exact state feedback.

Page 21: Optimal Control, Guidance and Estimation...Optimal Missile Guidance Through LQR System dynamics Cost Function v a y v = = ɺ ɺ 1 1( )2 2 2 2 tf f t J c y a dt= + ∫ σ V LOS a v

21

OPTIMAL CONTROL, GUIDANCE AND ESTIMATION

Prof. Radhakant Padhi, AE Dept., IISc-Bangalore41

Thanks for the Attention….!!