Top Banner
Optics and Optical Design Chapter 5: Electromagnetic Optics Lectures 9 & 10 Cord Arnold / Anne L’Huillier
39

Optics and Optical Design 5: Electromagnetic Optics ...

Jun 03, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optics and Optical Design 5: Electromagnetic Optics ...

Optics and Optical Design

Chapter 5: Electromagnetic Optics

Lectures 9 & 10

Cord Arnold / Anne L’Huillier

Page 2: Optics and Optical Design 5: Electromagnetic Optics ...

Electromagnetic waves in dielectric media

Page 3: Optics and Optical Design 5: Electromagnetic Optics ...

EM‐optics compared to simpler theories

Page 4: Optics and Optical Design 5: Electromagnetic Optics ...

Electromagnetic spectrum

Electromagnetic optics describes all kinds of EM‐waves in all possible spectral ranges in possible kinds of media (vacuum, dielectric, conductive, etc.).

Page 5: Optics and Optical Design 5: Electromagnetic Optics ...

Example: THz imaging

The THz Network, www.thznetwork.net www.dailymail.co.uk

Page 6: Optics and Optical Design 5: Electromagnetic Optics ...

Particle ‐ wave

Wikipedia

X-ray imaging (shadow-graphy)

http://www.scienceiscool.org/

X-ray diffraction

X-ray image from the hand of Albert von Koelliker, taken in 1896.

Page 7: Optics and Optical Design 5: Electromagnetic Optics ...

Maxwell Equations in vacuum

Contributions from:‐Charles‐Augustin de Coulomb‐Hans Christian Örsted‐Carl Friedrich Gauss‐Jean‐Baptiste Biot‐André‐Marie Ampére‐Michael Faraday

‐ Unified by James Clerk Maxwell in 1861 as set of twenty equations.

‐ The current form, termed Maxwell Equations, was compressed by using vector notation by Oliver Heavyside in 1884.

Page 8: Optics and Optical Design 5: Electromagnetic Optics ...

Maxwell Equations in a source free medium

Page 9: Optics and Optical Design 5: Electromagnetic Optics ...

Boundary conditions

Page 10: Optics and Optical Design 5: Electromagnetic Optics ...

Different types of media

• Linear: If P(r,t) is linearly related to Ԑ(r,t).• Nondispersive: The response is instantaneous. The 

polarization P(r,t) does not depend on earlier times.

• Homogeneous: The relation between P and Ԑ is no function of space.

• Isotropic:  The relation between P and Ԑ is independent of the direction of Ԑ.

• Spatially nondispersive: The relation between P and Ԑ is local.

Page 11: Optics and Optical Design 5: Electromagnetic Optics ...

Linear, nondispersive, homogeneous, isotropic, source‐free media

Page 12: Optics and Optical Design 5: Electromagnetic Optics ...

Anisotropic, linear, nondispersive media

The susceptibility tensor χ can have up to nine independent elements χji.

Page 13: Optics and Optical Design 5: Electromagnetic Optics ...

Dispersive media

Page 14: Optics and Optical Design 5: Electromagnetic Optics ...

Monochromatic electromagnetic waves

Introduce monochromatic fields

All fields and flux densities can be written in their monochromatic versions 

accordingly.

Page 15: Optics and Optical Design 5: Electromagnetic Optics ...

Transverse electromagnetic (TEM) plane wave

E is orthogonal to H. Both are orthogonal to the direction of propagation k.

Page 16: Optics and Optical Design 5: Electromagnetic Optics ...

Vectorial spherical wave

Page 17: Optics and Optical Design 5: Electromagnetic Optics ...

Example: focusing of vectorial waves

Page 18: Optics and Optical Design 5: Electromagnetic Optics ...

Vectorial solutions of the Helmholtz Equation

Page 19: Optics and Optical Design 5: Electromagnetic Optics ...

Absorption and dispersion

Page 20: Optics and Optical Design 5: Electromagnetic Optics ...

Transmission bands for common materials in optics

Page 21: Optics and Optical Design 5: Electromagnetic Optics ...

Implications of dispersion

Page 22: Optics and Optical Design 5: Electromagnetic Optics ...

Refractive index for different isotropic materials and crystals

Page 23: Optics and Optical Design 5: Electromagnetic Optics ...

The resonant medium

Page 24: Optics and Optical Design 5: Electromagnetic Optics ...

The resonant medium

Page 25: Optics and Optical Design 5: Electromagnetic Optics ...

Multi resonance media

Page 26: Optics and Optical Design 5: Electromagnetic Optics ...

Sellmeier Equation for the refractive index far from resonance

Page 27: Optics and Optical Design 5: Electromagnetic Optics ...

Kramers‐Kronig Relations 

The Kramers-Kronig relations relate mathematically the real and imaginary parts of the susceptibility to each other. Knowing one determines the other and vice versa.

Page 28: Optics and Optical Design 5: Electromagnetic Optics ...
Page 29: Optics and Optical Design 5: Electromagnetic Optics ...

Causal response function

Noncausal odd function

Signum function

Causal response function ththtth oo signum

0for real is and 0for 0 tthtth (causal funtion)

dtthtjthtdtthtjH sincosexp

Page 30: Optics and Optical Design 5: Electromagnetic Optics ...

Frequency space imaginary part of a causal response function

Frequency space real part of a causal response function

The real and imaginary parts are related because they originate from the same function and they contain the same information!

oo HHH SIGNUM

Imaginarypart

Realpart

Page 31: Optics and Optical Design 5: Electromagnetic Optics ...

The Drude Model for conductive media

ω<ωp – The effective permittivity is negative, β(ω) is imaginary. Light cannot propagate. => Perfect mirror.

ω>ωp – The effective permittivity is positive. Light can propagate. The refractive index is below 1.

ω=ωp – β(ω)=0. Light cannot propagate. But one can resonantly excite plasma waves. Plasmons!

Page 32: Optics and Optical Design 5: Electromagnetic Optics ...

Pulse propagation in dispersive media

Page 33: Optics and Optical Design 5: Electromagnetic Optics ...

Dispersive media

The field moves in respect to the envelope due to the difference of phase and group velocity

The pulse spreads due to group velocity dispersion (GVD)

Page 34: Optics and Optical Design 5: Electromagnetic Optics ...

Temporal and spectral representation of laser pulses and the time‐bandwidth product

Frequency0

Frequency0

Fourier transform

44.02 FWHM

Time-bandwidth product (Gaussian pulse)

Time

FWHM

Time

FWHM

Ele

ctric

fiel

d (a

.u.)

Ele

ctric

fiel

d (a

.u.)

Spe

ctra

l pow

er (a

.u.)

Spe

ctra

l pow

er (a

.u.)

tjtAtU 0exp Carrier frequency

Pulse envelope (spectrally broad)

Pulsed plane wave

Page 35: Optics and Optical Design 5: Electromagnetic Optics ...

Laser pulses in dispersive media

zjtzAzAtzA

zjzAzA

exp,0FF,~F,

exp,0~,~

11

Spectral plane wave propagator

2000

0

0

!2''

!1' n

c

Wave number expansion around a carrier ω0:

'/1 gvGroup velocity ’’ Group velocity dispersion

Plane wave propagation

Each frequency component evolves with a different wave

number

00

2

2

'',1'

gv

Group velocity and group velocity

dispersion (GVD) result from dispersion.

ms''

2

ms' Inverse of a speed Inverse of an acceleration

Page 36: Optics and Optical Design 5: Electromagnetic Optics ...

Group velocity and group index

0000

000

00

0000

0

020

0

0

20

0

00

0

20

00

20

20

0

0

0

0

','

'1

'

2

22

2,

nnNNc

nncv

nnc

nnc

n

cc

c

g

Depends on the change of the refractive index in respect to the wavelength

Group index

The speed of a pulse is determined by the rate of change of the refractive index

Refractive index for a typical material

Page 37: Optics and Optical Design 5: Electromagnetic Optics ...

Group velocity dispersion (GVD)

020

30

00

20

0

200

02

2

''2

''

22''

nc

D

cc

Refractive index for fused silica

GVD is proportional n’’(0), that is the curvature of n(0).

00

020

2

020

30 '',''

nc

Dnc

D

GVD for fused silica

zDzD 00 DD

Estimation for dispersive pulse broadening

Page 38: Optics and Optical Design 5: Electromagnetic Optics ...

Pulse broadening in dispersive media

Page 39: Optics and Optical Design 5: Electromagnetic Optics ...

Dispersive media

n>1

N>1=> vg<vp

Anomalousdispersion

Normaldispersion

Anomalousdispersion

N>1=> vg<vp

n<1