Top Banner
Op-Amp Circuits: Part 1 M. B. Patil [email protected] www.ee.iitb.ac.in/~sequel Department of Electrical Engineering Indian Institute of Technology Bombay M. B. Patil, IIT Bombay
142

Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Mar 23, 2018

Download

Documents

duongxuyen
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-Amp Circuits: Part 1

M. B. [email protected]

www.ee.iitb.ac.in/~sequel

Department of Electrical EngineeringIndian Institute of Technology Bombay

M. B. Patil, IIT Bombay

Page 2: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amps: introduction

* The Operational Amplifier (Op-Amp) is a versatile building block that can beused for realizing several electronic circuits.

* The characteristics of an op-amp are nearly ideal → op-amp circuits can beexpected to perform as per theoretical design in most cases.

* Amplifiers built with op-amps work with DC input voltages as well → useful insensor applications (e.g., temperature, pressure)

* The user can generally carry out circuit design without a thorough knowledgeof the intricate details of an op-amp. This makes the design process simple.

M. B. Patil, IIT Bombay

Page 3: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amps: introduction

* The Operational Amplifier (Op-Amp) is a versatile building block that can beused for realizing several electronic circuits.

* The characteristics of an op-amp are nearly ideal → op-amp circuits can beexpected to perform as per theoretical design in most cases.

* Amplifiers built with op-amps work with DC input voltages as well → useful insensor applications (e.g., temperature, pressure)

* The user can generally carry out circuit design without a thorough knowledgeof the intricate details of an op-amp. This makes the design process simple.

M. B. Patil, IIT Bombay

Page 4: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amps: introduction

* The Operational Amplifier (Op-Amp) is a versatile building block that can beused for realizing several electronic circuits.

* The characteristics of an op-amp are nearly ideal → op-amp circuits can beexpected to perform as per theoretical design in most cases.

* Amplifiers built with op-amps work with DC input voltages as well → useful insensor applications (e.g., temperature, pressure)

* The user can generally carry out circuit design without a thorough knowledgeof the intricate details of an op-amp. This makes the design process simple.

M. B. Patil, IIT Bombay

Page 5: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amps: introduction

* The Operational Amplifier (Op-Amp) is a versatile building block that can beused for realizing several electronic circuits.

* The characteristics of an op-amp are nearly ideal → op-amp circuits can beexpected to perform as per theoretical design in most cases.

* Amplifiers built with op-amps work with DC input voltages as well → useful insensor applications (e.g., temperature, pressure)

* The user can generally carry out circuit design without a thorough knowledgeof the intricate details of an op-amp. This makes the design process simple.

M. B. Patil, IIT Bombay

Page 6: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-Amp 741

Q23

Q2Q1

Q3 Q4

Q5 Q6

Q7

Q8

Q9

Q10

Q11

Q12

Q13 Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

Q24R1 R2R3

R4

R6

R7

R8

R9

R10

R5CC

Symbol

offset adjust

OUT

OUT

−VEE

VCC

VCC

−VEE

M. B. Patil, IIT Bombay

Page 7: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp: equivalent circuit

OUT

OUT OUT

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → wecan assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω

M. B. Patil, IIT Bombay

Page 8: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp: equivalent circuit

OUT

OUT OUT

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → wecan assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω

M. B. Patil, IIT Bombay

Page 9: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp: equivalent circuit

OUT

OUT OUT

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → wecan assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω

M. B. Patil, IIT Bombay

Page 10: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp: equivalent circuit

OUT

OUT OUT

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → wecan assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω

M. B. Patil, IIT Bombay

Page 11: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp: equivalent circuit

OUT

OUT OUT

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

* The external resistances (∼ a few kΩ) are generally much larger than Ro and much smaller than Ri → wecan assume Ri →∞, Ro → 0 without significantly affecting the analysis.

* VCC and −VEE (∼ ±5V to ±15V ) must be supplied; an op-amp will not work without them!

In op-amp circuits, the supply voltages are often not shown explicitly.

*

Parameter Ideal Op-Amp 741

AV ∞ 105 (100 dB)

Ri ∞ 2 MΩ

Ro 0 75 Ω

M. B. Patil, IIT Bombay

Page 12: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-Amp: equivalent circuit

linearsaturation saturation

10

5

0

−5

−10 −10

0

5

−5

10

OUT

OUTOUT

saturation

linear

saturation

0−5 5−0.2 −0.1 0 0.1 0.2

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

−Vsat

Vsat

slope=AV

Vi (V)

Vo(V

)

Vo(V

)

Vi (mV)

* The output voltage Vo is limited to ±Vsat, where Vsat ∼ 1.5V less than VCC .

* For −Vsat < Vo < Vsat, Vi = V+ − V− = Vo/AV , which is very small→ V+ and V− are virtually the same.

M. B. Patil, IIT Bombay

Page 13: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-Amp: equivalent circuit

linearsaturation saturation

10

5

0

−5

−10 −10

0

5

−5

10

OUT

OUTOUT

saturation

linear

saturation

0−5 5−0.2 −0.1 0 0.1 0.2

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

−Vsat

Vsat

slope=AV

Vi (V)

Vo(V

)

Vo(V

)

Vi (mV)

* The output voltage Vo is limited to ±Vsat, where Vsat ∼ 1.5V less than VCC .

* For −Vsat < Vo < Vsat, Vi = V+ − V− = Vo/AV , which is very small→ V+ and V− are virtually the same.

M. B. Patil, IIT Bombay

Page 14: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-Amp: equivalent circuit

linearsaturation saturation

10

5

0

−5

−10 −10

0

5

−5

10

OUT

OUTOUT

saturation

linear

saturation

0−5 5−0.2 −0.1 0 0.1 0.2

Vo VoVi ViAV Vi AV Vi

Ro

−VEE

VCC

Ri

−Vsat

Vsat

slope=AV

Vi (V)

Vo(V

)

Vo(V

)

Vi (mV)

* The output voltage Vo is limited to ±Vsat, where Vsat ∼ 1.5V less than VCC .

* For −Vsat < Vo < Vsat, Vi = V+ − V− = Vo/AV , which is very small→ V+ and V− are virtually the same.

M. B. Patil, IIT Bombay

Page 15: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 16: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 17: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 18: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 19: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 20: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 21: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

Vsat

−Vsat

Vi (V)

Vo(V

)

* Broadly, op-amp circuits can be divided into two categories:

- op-amp operating in the linear region

- op-amp operating in the saturation region

* Whether an op-amp in a given circuit will operate in linear or saturation region depends on

- input voltage magnitude

- type of feedback (negative or positive)

(We will take a qualitative look at feedback later.)

M. B. Patil, IIT Bombay

Page 22: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

iinVsat

−Vsat

Vi (V)

Vo(V

)

In the linear region,

* Vo = AV (V+ − V−), i.e., V+ − V− = Vo/AV , which is very small

→ V+ ≈ V−

* Since Ri is typically much larger than other resistances in the circuit,we can assume Ri →∞ .

→ iin ≈ 0

These two “golden rules” enable us to understand several op-amp circuits.

M. B. Patil, IIT Bombay

Page 23: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

iinVsat

−Vsat

Vi (V)

Vo(V

)

In the linear region,

* Vo = AV (V+ − V−), i.e., V+ − V− = Vo/AV , which is very small

→ V+ ≈ V−

* Since Ri is typically much larger than other resistances in the circuit,we can assume Ri →∞ .

→ iin ≈ 0

These two “golden rules” enable us to understand several op-amp circuits.

M. B. Patil, IIT Bombay

Page 24: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

iinVsat

−Vsat

Vi (V)

Vo(V

)

In the linear region,

* Vo = AV (V+ − V−), i.e., V+ − V− = Vo/AV , which is very small

→ V+ ≈ V−

* Since Ri is typically much larger than other resistances in the circuit,we can assume Ri →∞ .

→ iin ≈ 0

These two “golden rules” enable us to understand several op-amp circuits.

M. B. Patil, IIT Bombay

Page 25: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

10

−10

−5

5saturation

linear

saturation

0OUT

OUT

0−5 5

VoViAV Vi

Ro

−VEE

VCC

Ri

iinVsat

−Vsat

Vi (V)

Vo(V

)

In the linear region,

* Vo = AV (V+ − V−), i.e., V+ − V− = Vo/AV , which is very small

→ V+ ≈ V−

* Since Ri is typically much larger than other resistances in the circuit,we can assume Ri →∞ .

→ iin ≈ 0

These two “golden rules” enable us to understand several op-amp circuits.

M. B. Patil, IIT Bombay

Page 26: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 27: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 28: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 29: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 30: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 31: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 32: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 33: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 34: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

RL

R2

R1

Vi

Vo

i1

RL

R2

R1

i1

Vi

Vo0.1 V−1V

Since V+ ≈ V−, V− ≈ 0V → i1 = (Vi − 0)/R1 = Vi/R1 .

(The non-inverting input is at real ground here, and the inverting input is at virtual ground.)

Since ii (current entering the op-amp) is zero, i1 goes through R2 .

→ Vo = V− − i1 R2 = 0−(Vi

R1

)R2 = −

(R2

R1

)Vi .

The circuit is called an “inverting amplifier.”

Where does the current go?

(Op-amp 741 can source or sink about 25 mA.)

M. B. Patil, IIT Bombay

Page 35: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

5

0

−5 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =0.5V

f=1 kHz

Vo

10 k

1 k

Vi

Vi,V

o(Volts) Vo

* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it fromthe “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT isbiased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)

M. B. Patil, IIT Bombay

Page 36: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

5

0

−5 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =0.5V

f=1 kHz

Vo

10 k

1 k

Vi

Vi,V

o(Volts) Vo

* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it fromthe “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT isbiased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)

M. B. Patil, IIT Bombay

Page 37: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

5

0

−5 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =0.5V

f=1 kHz

Vo

10 k

1 k

Vi

Vi,V

o(Volts) Vo

* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it fromthe “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT isbiased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)

M. B. Patil, IIT Bombay

Page 38: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

5

0

−5 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =0.5V

f=1 kHz

Vo

10 k

1 k

Vi

Vi,V

o(Volts) Vo

* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it fromthe “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT isbiased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)

M. B. Patil, IIT Bombay

Page 39: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

5

0

−5 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =0.5V

f=1 kHz

Vo

10 k

1 k

Vi

Vi,V

o(Volts) Vo

* The gain of the inverting amplifier is −R2/R1. It is called the “closed-loop gain” (to distinguish it fromthe “open-loop gain” of the op-amp which is ∼ 105).

* The gain can be adjusted simply by changing R1 or R2 !

* For the common-emitter amplifier, on the other hand, the gain −gm (RC ‖ RL) depends on how the BJT isbiased (since gm depends on IC ).

(SEQUEL file: ee101 inv amp 1.sqproj)

M. B. Patil, IIT Bombay

Page 40: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

15

0

−15 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =2V

f=1 kHz

Vo

10 k

1 k

Vo

Vi

Vi,V

o(Volts)

* The output voltage is limited to ±Vsat.

* Vsat is ∼ 1.5 V less than the supply voltage VCC .

M. B. Patil, IIT Bombay

Page 41: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

15

0

−15 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =2V

f=1 kHz

Vo

10 k

1 k

Vo

Vi

Vi,V

o(Volts)

* The output voltage is limited to ±Vsat.

* Vsat is ∼ 1.5 V less than the supply voltage VCC .

M. B. Patil, IIT Bombay

Page 42: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

15

0

−15 0 0.5 1 1.5 2

t (msec)

RL

R2

R1

Vi

Vm =2V

f=1 kHz

Vo

10 k

1 k

Vo

Vi

Vi,V

o(Volts)

* The output voltage is limited to ±Vsat.

* Vsat is ∼ 1.5 V less than the supply voltage VCC .

M. B. Patil, IIT Bombay

Page 43: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

10

0 20 40 60 80

0

−10

RL

R2

R1

Vi

Vm=1V

f=25 kHz

Vo

10 k

1 k

Vi,V

o(Volts)

Vo (expected)

Vo

Vi

t (µsec)

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.

(SEQUEL file: ee101 inv amp 2.sqproj)

M. B. Patil, IIT Bombay

Page 44: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

10

0 20 40 60 80

0

−10

RL

R2

R1

Vi

Vm=1V

f=25 kHz

Vo

10 k

1 k

Vi,V

o(Volts)

Vo (expected)

Vo

Vi

t (µsec)

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.

(SEQUEL file: ee101 inv amp 2.sqproj)

M. B. Patil, IIT Bombay

Page 45: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

10

0 20 40 60 80

0

−10

RL

R2

R1

Vi

Vm=1V

f=25 kHz

Vo

10 k

1 k

Vi,V

o(Volts)

Vo (expected)

Vo

Vi

t (µsec)

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.

(SEQUEL file: ee101 inv amp 2.sqproj)

M. B. Patil, IIT Bombay

Page 46: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

10

0 20 40 60 80

0

−10

RL

R2

R1

Vi

Vm=1V

f=25 kHz

Vo

10 k

1 k

Vi,V

o(Volts)

Vo (expected)

Vo

Vi

t (µsec)

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.

(SEQUEL file: ee101 inv amp 2.sqproj)

M. B. Patil, IIT Bombay

Page 47: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

10

0 20 40 60 80

0

−10

RL

R2

R1

Vi

Vm=1V

f=25 kHz

Vo

10 k

1 k

Vi,V

o(Volts)

Vo (expected)

Vo

Vi

t (µsec)

* If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate”limitation.

* The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall).

* For the 741, the slew rate is 0.5V /µsec.

(SEQUEL file: ee101 inv amp 2.sqproj)

M. B. Patil, IIT Bombay

Page 48: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

RLRL

R2R2

R1R1ViVi VoVo

Circuit 1 Circuit 2

What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us Vo = −R2

R1Vi .

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

→ Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and

Vo = −R2

R1Vi does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

M. B. Patil, IIT Bombay

Page 49: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

RLRL

R2R2

R1R1ViVi VoVo

Circuit 1 Circuit 2

What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us Vo = −R2

R1Vi .

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

→ Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and

Vo = −R2

R1Vi does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

M. B. Patil, IIT Bombay

Page 50: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

RLRL

R2R2

R1R1ViVi VoVo

Circuit 1 Circuit 2

What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us Vo = −R2

R1Vi .

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

→ Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and

Vo = −R2

R1Vi does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

M. B. Patil, IIT Bombay

Page 51: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits: inverting amplifier

RLRL

R2R2

R1R1ViVi VoVo

Circuit 1 Circuit 2

What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged?

Our previous analysis would once again give us Vo = −R2

R1Vi .

However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive.

→ Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and

Vo = −R2

R1Vi does not apply any more.

(Circuit 2 is also useful, and we will discuss it later.)

M. B. Patil, IIT Bombay

Page 52: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −(−Vi

R1

)R2 = Vi

(1 +

R2

R1

).

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and thecircuit operation becomes completely different.

M. B. Patil, IIT Bombay

Page 53: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −(−Vi

R1

)R2 = Vi

(1 +

R2

R1

).

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and thecircuit operation becomes completely different.

M. B. Patil, IIT Bombay

Page 54: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −(−Vi

R1

)R2 = Vi

(1 +

R2

R1

).

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and thecircuit operation becomes completely different.

M. B. Patil, IIT Bombay

Page 55: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −(−Vi

R1

)R2 = Vi

(1 +

R2

R1

).

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and thecircuit operation becomes completely different.

M. B. Patil, IIT Bombay

Page 56: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

ii

i1

i2

RL

R2

R1

Vi

Vo

* V+ ≈ V− = Vi

→ i1 = (0− Vi )/R1 = −Vi/R1 .

* Since ii = 0, i2 = i1 → Vo = V− − i2 R2 = V+ − i1 R2 = Vi −(−Vi

R1

)R2 = Vi

(1 +

R2

R1

).

* This circuit is known as the “non-inverting amplifier.”

* Again, interchanging + and − changes the nature of the feedback from negative to positive, and thecircuit operation becomes completely different.

M. B. Patil, IIT Bombay

Page 57: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1Vs

Vo =

(1+

R2

R1

)Vs

i1Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AVR1

R1 + R2. Huge!

M. B. Patil, IIT Bombay

Page 58: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1Vs

Vo =

(1+

R2

R1

)Vs

i1Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AVR1

R1 + R2. Huge!

M. B. Patil, IIT Bombay

Page 59: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1Vs

Vo =

(1+

R2

R1

)Vs

i1Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AVR1

R1 + R2. Huge!

M. B. Patil, IIT Bombay

Page 60: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1Vs

Vo =

(1+

R2

R1

)Vs

i1Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AVR1

R1 + R2. Huge!

M. B. Patil, IIT Bombay

Page 61: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting or non-inverting?

Inverting amplifier

Non−inverting amplifier

RL

RL

R2

R2

R1

R1

Vs

Vs

Vo = −R2

R1Vs

Vo =

(1+

R2

R1

)Vs

i1Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

Vs

RL

R1

R2

VoViAV Vi

Ro

Ri

* If the sign of the output voltage is not a concern, which configuration should be preferred?

* For the inverting amplifier, since V− ≈ 0V , i1 = Vs/R1 → Rin = Vs/i1 = R1 .

* For the non-inverting amplifier, Rin ∼ Ri AVR1

R1 + R2. Huge!

M. B. Patil, IIT Bombay

Page 62: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Inverting and non-inverting amplifiers: summary

Inverting amplifier Non−inverting amplifier

RL RL

R2 R2

R1 R1Vs

Vs

Vo = −R2

R1Vs Vo =

(1+

R2

R1

)Vs

M. B. Patil, IIT Bombay

Page 63: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

R2

R1

Vi

Vo

R2R1

Vi

Vo

R2

R1

Vi

Vo

R1

R2

Vi

Vo

M. B. Patil, IIT Bombay

Page 64: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

R2

R1

Vi

Vo

R2R1

Vi

Vo

R2

R1

Vi

Vo

R1

R2

Vi

Vo

M. B. Patil, IIT Bombay

Page 65: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

R2

R1

Vi

Vo

R2R1

Vi

Vo

R2

R1

Vi

Vo

R1

R2

Vi

Vo

M. B. Patil, IIT Bombay

Page 66: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

R2

R1

Vi

Vo

R2R1

Vi

Vo

R2

R1

Vi

Vo

R1

R2

Vi

Vo

M. B. Patil, IIT Bombay

Page 67: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

RL RL

R2

R1 Vo Vo

Vi Vi

Consider R1 →∞ , R2 → 0 .

Vo

Vi→ 1 +

R2

R1→ 1 , i.e., Vo = Vi .

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

M. B. Patil, IIT Bombay

Page 68: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

RL RL

R2

R1 Vo Vo

Vi Vi

Consider R1 →∞ , R2 → 0 .

Vo

Vi→ 1 +

R2

R1→ 1 , i.e., Vo = Vi .

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

M. B. Patil, IIT Bombay

Page 69: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

RL RL

R2

R1 Vo Vo

Vi Vi

Consider R1 →∞ , R2 → 0 .

Vo

Vi→ 1 +

R2

R1→ 1 , i.e., Vo = Vi .

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

M. B. Patil, IIT Bombay

Page 70: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier

RL RL

R2

R1 Vo Vo

Vi Vi

Consider R1 →∞ , R2 → 0 .

Vo

Vi→ 1 +

R2

R1→ 1 , i.e., Vo = Vi .

This circuit is known as unity-gain amplifier/voltage follower/buffer.

What has been achieved?

M. B. Patil, IIT Bombay

Page 71: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Consider an amplifier of gain AV . We would like to have Vo = AV Vs .

However, the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

To obtain the desired Vo , we need Ri →∞ and Ro → 0 .

The buffer (voltage follower) provides these features.

M. B. Patil, IIT Bombay

Page 72: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Consider an amplifier of gain AV . We would like to have Vo = AV Vs .

However, the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

To obtain the desired Vo , we need Ri →∞ and Ro → 0 .

The buffer (voltage follower) provides these features.

M. B. Patil, IIT Bombay

Page 73: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Consider an amplifier of gain AV . We would like to have Vo = AV Vs .

However, the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

To obtain the desired Vo , we need Ri →∞ and Ro → 0 .

The buffer (voltage follower) provides these features.

M. B. Patil, IIT Bombay

Page 74: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Consider an amplifier of gain AV . We would like to have Vo = AV Vs .

However, the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

To obtain the desired Vo , we need Ri →∞ and Ro → 0 .

The buffer (voltage follower) provides these features.

M. B. Patil, IIT Bombay

Page 75: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

KCL at B:VB

RL+

VB − AVVi

Ro+

VB − VA

R2= 0.

Source current: IS =VA

R1+

VA − VB

R2.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

. STOP

M. B. Patil, IIT Bombay

Page 76: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

KCL at B:VB

RL+

VB − AVVi

Ro+

VB − VA

R2= 0.

Source current: IS =VA

R1+

VA − VB

R2.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

. STOP

M. B. Patil, IIT Bombay

Page 77: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

KCL at B:VB

RL+

VB − AVVi

Ro+

VB − VA

R2= 0.

Source current: IS =VA

R1+

VA − VB

R2.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

. STOP

M. B. Patil, IIT Bombay

Page 78: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

KCL at B:VB

RL+

VB − AVVi

Ro+

VB − VA

R2= 0.

Source current: IS =VA

R1+

VA − VB

R2.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

.

STOP

M. B. Patil, IIT Bombay

Page 79: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

KCL at B:VB

RL+

VB − AVVi

Ro+

VB − VA

R2= 0.

Source current: IS =VA

R1+

VA − VB

R2.

Using Vi = ISRi , VA =VS − Vi , and after some algebra, we get

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

. STOP

M. B. Patil, IIT Bombay

Page 80: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier: input resistance (continued)

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

.

Since Ro is much smaller than R1, R2, RL, or Ri ,

Rin ≈1 + Ri

[(1

R1+

1

R2

)+

AV

R2

](

1

R1+

1

R2

) ≈Ri

[R1 + R2

R1R2+

AV

R2

]R1 + R2

R1R2

≈ AVRiR1

R1 + R2.

M. B. Patil, IIT Bombay

Page 81: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Non-inverting amplifier: input resistance (continued)

Non−inverting amplifier

AB

ISRL

R2

R1

VS

RL

R1

R2

VS

ViAV Vi

Ro

RiVo =

(1+

R2

R1

)Vs

Rin =VS

IS=

(1 +

Ro

RL+

Ro

R2

)+ Ri

[(1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

+AV

R2

](

1

R1+

1

R2

)(1 +

Ro

RL+

Ro

R2

)− Ro

R22

.

Since Ro is much smaller than R1, R2, RL, or Ri ,

Rin ≈1 + Ri

[(1

R1+

1

R2

)+

AV

R2

](

1

R1+

1

R2

) ≈Ri

[R1 + R2

R1R2+

AV

R2

]R1 + R2

R1R2

≈ AVRiR1

R1 + R2.

M. B. Patil, IIT Bombay

Page 82: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

ViAV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =Vi

Ri.

→ Rin =VS

IS= Ri (AV + 1)

M. B. Patil, IIT Bombay

Page 83: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

ViAV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =Vi

Ri.

→ Rin =VS

IS= Ri (AV + 1)

M. B. Patil, IIT Bombay

Page 84: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

ViAV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =Vi

Ri.

→ Rin =VS

IS= Ri (AV + 1)

M. B. Patil, IIT Bombay

Page 85: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

ViAV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =Vi

Ri.

→ Rin =VS

IS= Ri (AV + 1)

M. B. Patil, IIT Bombay

Page 86: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: input resistance

Buffer

ISRL

VS

RL

Vs

ViAV Vi

Ro

Ri

Vo=Vs

Let Ro → 0.

VS = Vi + AVVi = Vi (1 + AV ).

IS =Vi

Ri.

→ Rin =VS

IS= Ri (AV + 1)

M. B. Patil, IIT Bombay

Page 87: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance

Non−inverting amplifier

RL

Vo

R2

R1

Vs

RL

Vs

R1

R2

ViAV Vi

Ro

Ri

Rout

To find Rout,

* Deactivate the input source.

* Replace RL with a test source V ′.

* Find the current (I ′) through V ′.

* Rout =V ′

I ′.

M. B. Patil, IIT Bombay

Page 88: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance

Non−inverting amplifier

RL

Vo

R2

R1

Vs

RL

Vs

R1

R2

ViAV Vi

Ro

Ri

Rout

To find Rout,

* Deactivate the input source.

* Replace RL with a test source V ′.

* Find the current (I ′) through V ′.

* Rout =V ′

I ′.

M. B. Patil, IIT Bombay

Page 89: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance

Non−inverting amplifier

RL

Vo

R2

R1

Vs

RL

Vs

R1

R2

ViAV Vi

Ro

Ri

Rout

To find Rout,

* Deactivate the input source.

* Replace RL with a test source V ′.

* Find the current (I ′) through V ′.

* Rout =V ′

I ′.

M. B. Patil, IIT Bombay

Page 90: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance

Non−inverting amplifier

RL

Vo

R2

R1

Vs

RL

Vs

R1

R2

ViAV Vi

Ro

Ri

Rout

To find Rout,

* Deactivate the input source.

* Replace RL with a test source V ′.

* Find the current (I ′) through V ′.

* Rout =V ′

I ′.

M. B. Patil, IIT Bombay

Page 91: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

ViAV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)V ′ ≡ −kV ′.

I ′ = I1 + I2 =V ′ − AVVi

Ro+

V ′ − (−Vi )

R2=

1

Ro

(V ′ + kAVV

′) +1

R2

(V ′ − kV ′

).

I ′

V ′=

1

Ro(1 + kAV ) +

1

R2(1− k)→ Rout =

V ′

I ′=

Ro

(1 + kAV )‖ R2

(1− k)≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =(Ri ‖ R1)

R2 + (Ri ‖ R1)→ 1 ⇒ Rout≈

Ro

1 + AV

M. B. Patil, IIT Bombay

Page 92: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

ViAV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)V ′ ≡ −kV ′.

I ′ = I1 + I2 =V ′ − AVVi

Ro+

V ′ − (−Vi )

R2=

1

Ro

(V ′ + kAVV

′) +1

R2

(V ′ − kV ′

).

I ′

V ′=

1

Ro(1 + kAV ) +

1

R2(1− k)→ Rout =

V ′

I ′=

Ro

(1 + kAV )‖ R2

(1− k)≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =(Ri ‖ R1)

R2 + (Ri ‖ R1)→ 1 ⇒ Rout≈

Ro

1 + AV

M. B. Patil, IIT Bombay

Page 93: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

ViAV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)V ′ ≡ −kV ′.

I ′ = I1 + I2 =V ′ − AVVi

Ro+

V ′ − (−Vi )

R2=

1

Ro

(V ′ + kAVV

′) +1

R2

(V ′ − kV ′

).

I ′

V ′=

1

Ro(1 + kAV ) +

1

R2(1− k)→ Rout =

V ′

I ′=

Ro

(1 + kAV )‖ R2

(1− k)≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =(Ri ‖ R1)

R2 + (Ri ‖ R1)→ 1 ⇒ Rout≈

Ro

1 + AV

M. B. Patil, IIT Bombay

Page 94: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

ViAV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)V ′ ≡ −kV ′.

I ′ = I1 + I2 =V ′ − AVVi

Ro+

V ′ − (−Vi )

R2=

1

Ro

(V ′ + kAVV

′) +1

R2

(V ′ − kV ′

).

I ′

V ′=

1

Ro(1 + kAV ) +

1

R2(1− k)→ Rout =

V ′

I ′=

Ro

(1 + kAV )‖ R2

(1− k)≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =(Ri ‖ R1)

R2 + (Ri ‖ R1)→ 1 ⇒ Rout≈

Ro

1 + AV

M. B. Patil, IIT Bombay

Page 95: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer: output resistance (continued)

Non−inverting amplifier

I′

I2

I1

RL

Vo

R2

V′

V′−Vi

R1

R1

R2

Vs

ViAV Vi

Ro

Ri

AV Vi

Vi = − (Ri ‖ R1)

R2 + (Ri ‖ R1)V ′ ≡ −kV ′.

I ′ = I1 + I2 =V ′ − AVVi

Ro+

V ′ − (−Vi )

R2=

1

Ro

(V ′ + kAVV

′) +1

R2

(V ′ − kV ′

).

I ′

V ′=

1

Ro(1 + kAV ) +

1

R2(1− k)→ Rout =

V ′

I ′=

Ro

(1 + kAV )‖ R2

(1− k)≈ Ro

(1 + kAV )

Special case: Op-amp buffer

k =(Ri ‖ R1)

R2 + (Ri ‖ R1)→ 1 ⇒ Rout≈

Ro

1 + AV

M. B. Patil, IIT Bombay

Page 96: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

RL

Vs RLVs Vs

Rin Rout

In summary, the buffer (voltage follower) provides

* a large input resistance Rin as seen from the source.

* a small output resistance Rout as seen from the load.

* a gain of 1, i.e., the output voltage simply follows the input voltage.

M. B. Patil, IIT Bombay

Page 97: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

RL

Vs RLVs Vs

Rin Rout

In summary, the buffer (voltage follower) provides

* a large input resistance Rin as seen from the source.

* a small output resistance Rout as seen from the load.

* a gain of 1, i.e., the output voltage simply follows the input voltage.

M. B. Patil, IIT Bombay

Page 98: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

RL

Vs RLVs Vs

Rin Rout

In summary, the buffer (voltage follower) provides

* a large input resistance Rin as seen from the source.

* a small output resistance Rout as seen from the load.

* a gain of 1, i.e., the output voltage simply follows the input voltage.

M. B. Patil, IIT Bombay

Page 99: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

RL

Vs RLVs Vs

Rin Rout

In summary, the buffer (voltage follower) provides

* a large input resistance Rin as seen from the source.

* a small output resistance Rout as seen from the load.

* a gain of 1, i.e., the output voltage simply follows the input voltage.

M. B. Patil, IIT Bombay

Page 100: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects (revisited)

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Problem: We would like to have Vo = AV Vs .

But the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

M. B. Patil, IIT Bombay

Page 101: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Loading effects (revisited)

Vs RL

Rs

Vi VoAV Vi

Ro

Ri

Problem: We would like to have Vo = AV Vs .

But the actual output voltage is,

Vo =RL

Ro + RLAV Vi = AV

RL

Ro + RL

Ri

Ri + RsVs .

M. B. Patil, IIT Bombay

Page 102: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

ViAV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zerosource resistance.

M. B. Patil, IIT Bombay

Page 103: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

ViAV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zerosource resistance.

M. B. Patil, IIT Bombay

Page 104: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

ViAV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zerosource resistance.

M. B. Patil, IIT Bombay

Page 105: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

ViAV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zerosource resistance.

M. B. Patil, IIT Bombay

Page 106: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp buffer

buffer 2

load

amplifier

buffer 1

source

RL

Vs

Rs

ViAV Vi

Ro

Ri

Vo

i1

i2

Vo1 Vo2

Since the buffer has a large input resistance, i1 ≈ 0A,

and V+ (on the source side) = Vs → Vo1 = Vs .

Similarly, i2 ≈ 0A, and Vo2 = AV Vi = AV Vs .

Finally, Vo = Vo2 = AV Vs , as desired, irrespective of RS and RL.

Note that the load current is supplied by the second buffer which acts as a voltage source (=AVVs) with zerosource resistance.

M. B. Patil, IIT Bombay

Page 107: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 108: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 109: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 110: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 111: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 112: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Op-amp circuits (linear region)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

i3

i2

i1 i ii

if

V− ≈ V+ = 0V → i1 = Vi1/R1, i2 = Vi2/R2, i3 = Vi3/R3 .

i = i1 + i2 + i3 =

(Vi1

R1+

Vi2

R2+

Vi3

R3

).

Because of the large input resistance of the op-amp, ii ≈ 0→ if = i , which gives

Vo = V− − if Rf = 0−(Vi1

R1+

Vi2

R2+

Vi3

R3

)Rf = −

(Rf

R1Vi1 +

Rf

R2Vi2 +

Rf

R3Vi3

),

i.e., Vo is a weighted sum of Vi1, Vi2, Vi3.

If R1 = R2 = R3 = R , the circuit acts as a summer, giving

Vo = −K (Vi1 + Vi2 + Vi3) with K = Rf /R .

M. B. Patil, IIT Bombay

Page 113: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Summer example

1.2

0.6

0

−0.6

−1

−2

−3

0 1 2 3 4t (msec)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

SEQUEL file: ee101 summer.sqproj

R1 = R2 = R3 = 1 kΩ

Rf = 2 kΩ

→ Vo = −2 (Vi1 + Vi2 + Vi3)

i3

i2

i1 i ii

if

Vi2

Vi1

Vi3

Vo

* Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).

* Op-amps make life simpler! Think of adding voltages in any other way.

M. B. Patil, IIT Bombay

Page 114: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Summer example

1.2

0.6

0

−0.6

−1

−2

−3

0 1 2 3 4t (msec)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

SEQUEL file: ee101 summer.sqproj

R1 = R2 = R3 = 1 kΩ

Rf = 2 kΩ

→ Vo = −2 (Vi1 + Vi2 + Vi3)

i3

i2

i1 i ii

if

Vi2

Vi1

Vi3

Vo

* Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).

* Op-amps make life simpler! Think of adding voltages in any other way.

M. B. Patil, IIT Bombay

Page 115: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Summer example

1.2

0.6

0

−0.6

−1

−2

−3

0 1 2 3 4t (msec)

Vi3

Vi2

Vi1

RL

Vo

Rf

R3

R2

R1

SEQUEL file: ee101 summer.sqproj

R1 = R2 = R3 = 1 kΩ

Rf = 2 kΩ

→ Vo = −2 (Vi1 + Vi2 + Vi3)

i3

i2

i1 i ii

if

Vi2

Vi1

Vi3

Vo

* Note that the summer also works with DC inputs (so do inverting and non-inverting amplifiers).

* Op-amps make life simpler! Think of adding voltages in any other way.

M. B. Patil, IIT Bombay

Page 116: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 117: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 118: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 119: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 120: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 121: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Choice of resistance values

* If resistances are too small, they draw larger currents → increased powerdissipation

* If resistances are too large,

- The effect of offset voltage and input bias currents becomes morepronounced (to be discussed).

- Combined with parasitic (wiring) capacitances, large resistances canaffect the frequency response and stability of the circuit.

- Thermal noise increases as R increases, and it may not be desirable in

some applications.

* Typical resistance values: 0.1 k to 100 k.

M. B. Patil, IIT Bombay

Page 122: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 123: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 124: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 125: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 126: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 127: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 128: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 129: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Design an amplifier with Rin = 10 k and AV =−100.

Vo

Vi

Rin

R′2

R′1

Vo

Vi

R′1

I1V10V

Rin = R′1 = 10 k.

AV = − R′2R′1

= −100→ R′2 = 100× 10 k = 1 MΩ

R′2 may be unacceptable from practical considerations.

→ need a design with smaller resistances.

If we ensureV1

I1= R′2, we will satisfy the gain condition.

M. B. Patil, IIT Bombay

Page 130: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 131: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 132: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 133: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 134: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 135: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

I1V1

I2R1

R2

R3

I2 =V1

R3 + (R1 ‖ R2)

I1 =R2

R1 + R2I2 =

R2

R1 + R2× R1 + R2

R3(R1 + R2) + R1R2V1

Reff ≡V1

I1=

R1R2 + R2R3 + R3R1

R2

→ Choose R1, R2, R3 such that Reff =R′2 = 1 MΩ.

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

M. B. Patil, IIT Bombay

Page 136: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 137: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R

→ Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 138: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)

→ R2 =R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 139: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 140: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 141: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay

Page 142: Op-Amp Circuits: Part 1 - ee.iitb.ac.insequel/ee101/mc_opamp_1.pdfOp-amps: introduction * The Operational Ampli er (Op-Amp) is a versatile building block that can be used for realizing

Vo

Vi

R′2

Vo

Vi

R2R′1

R′1

R1 R3

Reff =R1R2 + R2R3 + R3R1

R2

We want Reff = R′2 = 1 MΩ.

Let R1 = R3 ≡ R → Reff =R2 + 2R R2

R2= R

(R

R2+ 2

)→ R2 =

R

Reff

R− 2

For R = 10 k, R2 =10 k

100− 2≈ 102 Ω.

Ref: Wait et al, Introduction to op-amp theory and applications, McGraw-Hill, 1992.

Vo

Vi

10 k

10 k

102Ω

10 k

M. B. Patil, IIT Bombay