Top Banner
Operational amplifiers Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10) Used for buffering and impedance transformation between signal source and readout device Applications are measurement of action potentials and other high- amplitude bioelectric events Medium-gain amplifiers (x10 to x1000) Recording of ECG waveforms, muscle potentials etc. High-gain amplifiers (x1000 up to x10 6 ) Sensitive measurements, like recording EEG (brain potentials)
28
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • Operational amplifiers

    Types of operational amplifiers (bioelectric amplifiers have different gain values) Low-gain amplifiers (x1 to x10)

    Used for buffering and impedance transformation between signal source and readout device

    Applications are measurement of action potentials and other high-amplitude bioelectric events

    Medium-gain amplifiers (x10 to x1000) Recording of ECG waveforms, muscle potentials etc.

    High-gain amplifiers (x1000 up to x106 ) Sensitive measurements, like recording EEG (brain potentials)

  • Operational amplifiers

    Circuit symbol of the operational amplifier Vout=Aol(Vin(+)-Vin(-))

  • Operational amplifiers

    Behavior of op-amps Output voltage can be in range from negative to positive supply voltage

    - Rail-to-rail ops allow widest voltage range (nearly up to supply voltage)- Normal op-amps have lower output voltage range

    The (-) input produce an output signal that is 180 out of phase with the input signal

    The (+) input produce an output signal that is in phase with the input signal

    No current flows in to either input terminal of the op amp (infinity Input impedance )

    Op amp with negative feedback works as an amplifier (the two input terminals are at the same voltage)

    Op amp with positive or no feedback works as a comparator

  • Operational amplifiers

    Attributes of ideal op-amps Open-loop Gain is infinite

    No offset voltage

    Input impedance is infinite (acts as an idea voltmeter)- bioelectric amp must have very high input impedance because all the bioelectric signal source exhibit a high source impedance

    Output impedance is zero (acts as an idea voltage source)

    Zero noise contribution

    Bandwidth is infinite (no frequency-response limitations, no phase shift)

  • Basic amplifier configurations

    Basic amplifier configurations Inverting amplifier or follower

    Non-inverting amplifier or follower

    Summing amplifier

    Differential amplifier

    Transimpedance amplifier (amplifies and converts input current to output voltage)

  • Inverting amplifier or follower

  • Inverting amplifier or follower

    The input-output plot of an inverting amplifier (fig) Linearity over a limited range of Vin The op amp is saturated at 13V (further increase in Vin no change in

    Vout)

  • Inverting amplifier

  • Error sources - Inverting amplifier

    Fig. 7-4 shows detailled circuit of an inverting amplifier Bias currents Ib- and Ib+ and output load current Io Three types of internal resistance and capacitance

    (1) Common-mode Rcm and Ccm, referring to internal ground Vee (2) Differential Rdiff and Cdiff between positive and negative input (3) output Ro

    Internal ground reference Vee as middle of positive and negative supplyErrors through external components Rs creates a 0.5% gain error (from the ideal -1V/V), Rs becomes part of a

    voltage divider with R1 at the input.-This small error can sum up in multiple staged amplifiers

    Ro creates another gain error through voltage divider behavior with the load resistance of the following stage

    - In this case Rl is large enough, so the influence from Ro isnt strong enough

  • Error sources - Inverting amplifier

    Errors through internal components

    Rcm (is parallel with R1) causes small errors, as it is usually > 1000M

    Through Ccm (< 5pF) higher gain errors will be produced in higher frequencies (Rc=1/jc)

    -Example: at 1 Mhz Ccm reactance is at 32k, which shunts the external resistance, therefore creating a higher gain error

    Other errors

    Bias current Ib- (nA-fA) creates a voltage at the feedback resistor which shows up at the output-In values: Ib- = 10nA, therefore 0.1 mV across R2, with Eout = 10V that means an error of 0.001%; therefore the error is rather small in this case

  • Non-inverting amplifier or follower

    Unity gain non-inverting amp is used as a Buffer And for impedance matching between a high source impedance and a low-impedance input circuit

  • Non-inverting amplifier or follower

    Input - Output characteristic of a non-inverting amplifier

  • Non-inverting amplifier

  • Non-inverting amplifierand errors

    Details in circuit displayed in fig 7-8 Input signal drives very high internal impedance (Rcm, Rdiff etc.).Therefore

    very little gain error is induced Small gain error is produced by the voltage divider consisting of Ro and RL Furthermore additional gain errors are created through the bias currents

    flowing through the feedback resistances (Ib- and Ib+)

    Bias currents correlate to ambient temperature Fig 7-10 provides an overview

    concerning the influence fromambient temperature to bias current

  • Non-inverting amplifier Example

    ph probe amplifier

  • Summing amplifier

  • Summing amplifier

    It is used to remove undesirable dc voltage from a signal.

    Vo=0 if=0 ij+ib=0

  • Differential amplifier

    Produces an output voltage proportional to the difference between the voltage applied to the two input terminals

    The voltage gain is the same as for inverting followers when the ratio of feedback resistor to input resistor is equal at both terminals.

    Unity gain when all four resistor are equal Removes common-mode noise and amplifying the differential signal.

    One op-amp differential amplifier

    U4

    U3

  • Differential amplifier

    The input resistance of one op amp differential amplifier is to low for high-resistance source. Satisfactory for low-resistance source such as Wheatstone bridge

    Solution: add two non-inverting gain followers of high input resistance Instrumentation amp has also higher gain

    Differential Gain of the two non-inverting combined followers:

    One op-amp differential amplifier

    Three op-amp differential amp or Instrumentation amplifier

  • Instrumentation Amplifier

  • Sensors and Op-amp Examples

  • Transimpedance amplifier

    current to voltage converter A positive input current pulse produces a negative output voltage The If is almost equal to Iin since Ib is small Example (fig): 10nA input gives 0.1V output Most common bioelectric amp is the photodiode amplifier

  • Integrator - a low pass filter

    Gives as an output the integral of an input When a voltage is applied to the integrator, a current I2 begins to charge

    C1.

    It is function as a low-pass filter with frequency response: The gain decreases as f (f=2f) increases

  • Differentiator - a high pass filter

    Gives as an output the differential of an input

    It is function as a high-pass filter with frequency response: The gain increases as f (f=2f) increases

    Input Output

  • Active filters

    Frequency Response:

  • Comparators

    Compares the input voltage with some reference voltage and gives in the output positive or negative saturation limits of the op-amp

  • Comparators

  • Schmitt Trigger Comparator

    Operational amplifiersOperational amplifiersOperational amplifiersOperational amplifiersBasic amplifier configurationsInverting amplifier or followerInverting amplifier or followerInverting amplifierError sources - Inverting amplifierError sources - Inverting amplifierNon-inverting amplifier or followerNon-inverting amplifier or followerNon-inverting amplifierNon-inverting amplifierand errorsNon-inverting amplifier ExampleSumming amplifierSumming amplifierDifferential amplifierDifferential amplifierInstrumentation AmplifierSensors and Op-amp ExamplesTransimpedance amplifierIntegrator - a low pass filterDifferentiator - a high pass filterActive filtersComparatorsComparatorsSchmitt Trigger Comparator